
Abstract: In this paper, we deal with two important issues
in relation to modular reconfigurable manipulators, namely,
the determination of the modular assembly configuration
optimally suited to perform a specific task and the synthesis
of fault tolerant systems.  We present a numerical approach
yielding an assembly configuration that satisfies four kine-
matic task requirements: reachability, joint limits, obstacle
avoidance and measure of isotropy.  Further, because fault
tolerance is a must in critical missions that may involve
high costs if the mission were to fail due to a failure in the
manipulator system, we address the property of fault toler-
ance in more detail.  Initially, no joint limits are considered,
in which case we prove the existence of fault tolerant ma-
nipulators and develop an analysis tool to determine the
fault tolerant work space.  We also derive design templates
for spatial fault tolerant manipulators.  When joint limits
are introduced, analytic solutions become infeasible but in-
stead a numerical solution procedure can be used, as is il-
lustrated through an example.

1  Introduction
Conventional (serial or parallel link) manipulators are often
considered to be general-purpose and flexible systems.  Un-
fortunately, these systems are not general purpose.  In order
to understand this, consider a computer which is a general
purpose computing engine if it can compute a computable
function.  Following a similar logic, a manipulator will be
general purpose if it could do a “doable” task.  In defining
a general purpose manipulator, one has, of course, to define
a “doable” task first.  For the time being, let us avoid this
open issue and consider two tasks that two different manip-
ulators can perform, but that cannot be performed by either
manipulator separately.  If this is the case, then one may
conclude that none of the above two manipulators are gen-
eral purpose.  So if one has to define a general purpose ma-
nipulator, then one has first to define a criterion for
“doable” tasks (like “doability”).  Such a definition may
lead to the development of models of “doability” (like com-
putability) and maybe to Turing-like machine models of
manipulators.  While such a development would certainly
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do a lot for advancing the state-of-the-art in manipulators,
it is not our intention to address this general problem.

In order to make the problem tractable, let us define a set of
tasks that we would like to perform with a  manipulator.
Let us also define a set of basic modules (consisting of
joints and links) that we may combine to create various ma-
nipulators.  Finally, let us assume the existence of a meth-
odology that will accept a task (in the form of a program or
as a set of requirements) as input and find a manipulator
that can be created  from the given set of modules to per-
form the task.  This scenario is described in Figure 1, and it
allows us to  put forth one possible definition of a general-
purpose manipulator.

General-purpose Manipulator: If for every task in the set of
tasks, it is possible to find a manipulator that can be created
from the given set of modules to do the task, then we define
the system of modules (or the system of all possible manip-
ulators) as general purpose with respect to the set of tasks.
We will call such a system a Reconfigurable Modular Ma-
nipulator System (RMMS).

Note that the above definition does not require us to define
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manipulator.



a set of all possible “doable” tasks nor does it require us to
define the criteria for determining “doability” even though
that is the ultimate goal of our research.

Our past work has addressed the development of the mod-
ules and the technology for the RMMS [29].  The RMMS
has many potential applications in both hazardous and in-
dustrial environments.  It puts forth the idea of designing a
specific manipulator for a task and also the notion of the
user writing device (or manipulator) independent code.  The
RMMS raises several theoretical issues and it is our aim to
address one of these in this paper.  Specifically, we describe
a design methodology that accepts a task specification as its
input, determines a kinematic configuration of the desired
manipulator and selects the modules to create this manipu-
lator.

In order to support the current practice of picking the best
configuration amongst available robots, severalexpert sys-
tems have been built to aid the user or the applications de-
velopment engineer [23].  A straightforward extension of
this selection process has been the inclusion of the design
of new manipulators, optimally suited for a specific
application [1, 24].  A totally different approach to the robot
design problem finds its roots insimulation.  A variety of
commercial robot simulation packages are currently
available [6, 30], providing designers with convenient tools
to quickly check the implications of different design deci-
sions.  In general, however, these simulation packages still
require a human to make the design decisions.  Finally, a
third way of dealing with the problem of robot design, has
grown out of the field ofmechanism design[21, 27].  Un-
like the rule based expert systems, these programs are algo-
rithmic in nature.  Commonly, the design process is
subdivided in two stages: form synthesis and dimensional
synthesis.  The first stage is usually performed by searching
over the set of feasible mechanism types, while the second
stage consists of optimizing the set of dimensional parame-
ters.

The approach we propose in this paper differs from the
methods listed above, because we are specifically interested
in modular manipulators.  The interest in modular manipu-
lators has grown steadily over the last decade [9, 32], and
several related research issues have been
addressed [2, 3, 12, 18, 22, 26].  However, the problem of
determining the modular configuration optimally suited for
one specific task, has never been addressed before to the
best of our knowledge.  In this paper, we investigate mod-
ular design fromkinematic task requirements.  These re-
quirements affect only the kinematic structure of the
manipulator, whiledynamic requirements affect both its ki-
nematic and dynamic structure.  Examples of kinematic re-
quirements are work space volume, maximum reach, and
maximum positional error.  Examples of dynamic require-
ments are maximum payload, maximum joint velocities,

and maximum joint accelerations.  Just as  task require-
ments can be classified as kinematic or dynamic require-
ments, the design procedure can also be split into two parts:
kinematic design anddynamic design [18].  Kinematic de-
sign determines the kinematic structure of the manipulator,
while dynamic design determines the dynamic configura-
tion.  However, the dynamic design may require a change
in kinematic structure, and thus a few iterations may be
necessary to find a manipulator that satisfies both kinematic
and dynamic requirements.

In the first part of this paper, we only consider reachability,
joint limit, obstacle avoidance, and measure of isotropy re-
quirements.  A numerical procedure is proposed which de-
termines a modular assembly configuration that meets all
the requirements.  In the second part, we focus our attention
on one additional requirement, namely, fault tolerance.  Re-
cently, fault tolerant (or failure tolerant) robotics has been
the subject of several publications [19, 31], in which differ-
ent aspects of the problem are addressed.  Visinsky et al.
[31] propose a framework to includefailure detectionin
fault tolerant robot systems.  Lewis and Maciejewski [19],
on the other hand, discuss the importance of thecontroller
and the redundancy resolution.  In this paper, the stress is
on design of fault tolerant manipulators.  We define fault
tolerance as the ability to continue the performance of a
task even after immobilization of a joint due to failure.
Several properties of fault tolerant manipulators are dis-
cussed and in Section 5, it is shown how the task require-
ment of fault tolerance can be included in the numerical
design procedure described in Section 2

2  Kinematic Design: Preliminary Results
2.1   Problem Statement
The problem solved in this section is the determination of a
modular assembly configuration, that satisfies all the kine-
matic task requirements.  These requirements are that the
manipulator must be able to reach a specified set of posi-
tions/orientations,pj, (reachability requirement), without
violating the motion constraints of the joint modules (joint
limit requirement), and without colliding with any parallel-
epiped-shaped obstacles in the workspace (obstacle avoid-
ance requirement).  Moreover, at the positions/orientations,
pj, the measure of isotropy, which is defined in Section 5.2,
must be larger than a user specified minimum (measure of
isotropy requirement).

In Section 2.2 and 2.3, we develop a numerical procedure to
solve this design problem.  To facilitate the implementation
of our approach, we consider six types of modules, as
shown in Figure 2.  The choice of these specific modules
guarantees a simple conversion from the module dimen-
sions and orientations into the Denavit-Hartenberg (D-H)
parameters of the resulting manipulator (A set of 3 D-H pa-
rameters per degree-of-freedom, determines unambiguously



the kinematic structure of any serial link manipulator).  It
has been shown by Kelmar and Khosla [12] that this con-
version can be achieved for modules of arbitrary geometry.
The actual number of different modules considered for the
design can be far larger than six, due to variations in the pa-
rametrized dimensions and our design method is general
enough to allow for this.

We also require that the robot base be fixed and known, that
the first joint module be of type 0 or 1 (i.e. the first joint
axis is vertical), and that the last module be a wrist with
three axes intersecting at a point.  These restrictions result
from our implementation of the inverse kinematics and can
be relaxed by using iterative solutions to the inverse kine-
matics problem, as proposed in [2].  Also, the requirement
that the robot base be fixed and known, can be relaxed as
was shown by Kim [15], who addressed the problem of ki-
nematic synthesis and base position synthesis simultaneous-
ly.

Finally, we would like to point out that this design problem
can possibly have more than one solution.  Consider the de-
sign of a 2-DOF planar manipulator, with link lengths
and , satisfying the task requirement that the manipulator
should be able to reach a point located behind an obstacle
without violating the joint limits, as is illustrated in
Figure 3.  The region of the -plane containing the
solutions is bounded by the curves labeled c, d and e.  All
the manipulators inside this region satisfy all the design re-
quirements and, therefore, are allequally good with respect
to these requirements.

2.2    Solution Approach
In this section, we evaluate different approaches to the

Figure 2: The manipulator module types con-
sidered in the design procedure.
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problem of determining the modular configuration, given
some kinematic task specifications.  The problem can be in-
terpreted as amapping from task specifications into con-
straints in the modular configuration space, as is shown in
Figure 1.  This mapping is nontrivial due to the highly non-
linear character of the kinematic relations and due to the
complexity of the task specifications.  Krishnan [18], there-
fore, suggested to solve the inverse problem first, namely, to
analyze which task requirements are satisfied by a given
modular configuration.  This information is stored in lookup
tables, which can then be used in a search procedure.  One
obvious disadvantage to this approach is the combinatorial
explosion in the number of different configurations.  Let the
number of different modules available be , and let  be
the number of relative orientations in which one module
can be mounted on the previous module.  The total number
of configurations that can be obtained from this set of mod-

Figure 3: A two-DOF planar design example
with solution.
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ules is:

(1)

This approach would therefore require a very large amount
of memory storage for the lookup tables.  Also, adding a
new module requires that all the lookup tables be updated.

A different approach is to first design a manipulator defined
by a set of continuously varying D-H parameters, a point of
the D-H configuration space, as proposed in [25], and then
transform this design into a modular configuration.  The
main problem here is the discretization of the continuous
solution.  As is known from integer programming, simply
taking the discrete configuration nearest to the continuous
solution might result in an infeasible solution.  Therefore,
we suggest working directly in the modular configuration
space.  Of course, an exhaustive search in this space suffers
from combinatorial explosion in much the same way the
look up table approach does.  However, the efficiency of the
search procedure can be improved drastically by ‘guiding’
the search to the most promising regions of the search
space.  Instead of answering the question whether a certain
modular design meets all the task requirements with a sim-
ple ‘yes’ or ‘no’, we estimate the ‘goodness’ or ‘badness’
of the design, i.e., “How far are we away from a solution?”
Guiding the search then means focusing the search effort on
directions of decreasing ‘badness’.  This approach is usual-
ly referred to as aheuristic search technique [28], because
in general, it is impossible to compute the ‘badness’, or the
distance to the nearest solution, exactly.  The heuristic func-
tion only estimates this distance so that it is possible that,
locally, the heuristic decreases even though the actual dis-
tance to a solution increases. This corresponds to a local
minimum in optimization terminology.  To overcome this
inadequacy, we have to employ a search method that allows
for local hill climbing, such assimulated annealing.

Simulated annealing was first proposed by Kirkpatrick [16]
as a combinatorial optimization algorithm.  The method is
a random iterative improvement algorithm with the modifi-
cation that, under certain conditions, an increase in the heu-
ristic function is accepted (In order to be compatible with
the standard terminology in discussions of simulated an-
nealing, we use the term objective function instead of heu-
ristic function, henceforth).  A new trial configuration is
generated randomly in the neighborhood of the current con-
figuration.  The condition for acceptance of this trial config-
uration is:

(2)

which depends on a control variable, , the temperature.
The algorithm is started at a high temperature for which

Num R i 1−( ) N!
N i−( ) !

i 1=

N

∑=

∆Fobj 0≤ accept⇒
exp ∆Fobj T⁄−( ) random 0 1),[> accept⇒




T

most new configurations are accepted.  After each iteration
the temperature  is decreased until no new acceptable con-
figuration can be found.  The search is thenfrozen.  We
adapted this basic algorithm slightly to include the special
properties of our objective function.  In particular, the algo-
rithm is stopped when a new trial configuration has an ob-
jective function value equal to zero, even if the search is not
yet frozen.  We know that a configuration with a ‘badness’
of zero satisfies all the design requirements.

2.3   Computation of the Objective Function
The goal in this section is to find an objective function
which is zero when all the design specifications are satisfied
and which is otherwise proportional to the amount of viola-
tion of these specifications.  Minimizing the objective func-
tion by simulated annealing corresponds then to a search,
guided towards the most promising regions of the search
space.  For a given modular configuration, the correspond-
ing objective function can also be interpreted as apenalty
for violating certain task specifications.  The goal of the
search is then to find a configuration with zero penalty.

We now propose a methodology for constructing a penalty
function.  Let us first define some terminology.  Aconfigu-
ration is the set of D-H parameters which determines unam-
biguously the kinematic structure of a modular manipulator
configuration.  Aposture is the position of a manipulator
corresponding to a specific set of joint angles.  Atask point
is a specified position/orientation of the end effector that the
manipulator must be able to reach without violating the oth-
er task requirements.

By taking a closer look at the task requirements, one notices
that all the requirements are defined for a specific configu-
ration in a specific posture reaching for a specific task point.
The penalty for such a posture should be defined such that,
if any single requirement is not satisfied, the penalty for the
posture is positive.  This can be achieved by defining a non-
negative penalty for each task requirement, as described in
[25], and summing these penalties for a posture:

(3)

The task penalty is now defined as the minimum over all
the posture penalties, so that it is zero when all the task re-
quirements are satisfied for at least one posture:

(4)

Finally, the total penalty of a manipulator configuration is
given by the sum of all the task penalties:

. (5)

2.4   Example
The example solved in this section is the design of a seven
degree-of-freedom manipulator that is able to reach eight
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different task points, located in an environment which in-
cludes five obstacles.  The joint modules have a limited mo-
tion range and the task points must be reached in a posture
with a measure of isotropy of at least 0.6.  It is also required
that the manipulator consists of a subset of the twenty dif-
ferent modules (4 joints, 1 wrist, 16 links: we also consider
a link of length zero).  It is assumed, at this point, that an
unlimited number of each type of module is available, so
that a design which includes the same module type several
times is acceptable.  All the task requirements are summa-
rized in the input file in Figure 4.

7 # number of degrees of freedom

3 # number of dimensions

8 # number of relative orientations

16 # number of link modules

#number |length

#---------------------

0 0.0

1 0.1

2 0.2

3 0.3

4 0.4

5 0.5

6 0.6

7 0.7

8 0.8

9 0.9

10 1.0

11 1.1

12 1.2

13 1.3

14 1.4

15 1.5

4 # number of joint modules

#number|type |l1 |d |l2 |th_min|th_max

#--------------------------------------------------

0 0 0.0 0.1 0.0 -150.0 150.0

1 1 0.1 0.1 0.0 -150.0 150.0

2 2 0.1 0.1 0.1 -150.0 150.0

3 3 0.1 0.1 0.1 -150.0 150.0

1 # number of wrist modules

#number|l1 |l2 |min1 |max1 |min2 |max2 |min3 |max3

#--------------------------------------------------------------

-

0 0.1 0.05 -100.0 100.0 -150.0 150.0 -266.0 266.0

0.6 # mi_min: min measure of isotropy.

8 # num_points: number of points

#xpos |ypos |zpos |Xrot |Yrot |Zrot

#--------------------------------------------------------

0.5 0.5 1.0 0. 0. 90.

0.5 0.0 0.5 0. 90. 0.

0.5 0.0 1.5 0. -90. 0.

0.5 -0.5 1.0 0. 0. -90.

1.5 0.5 1.0 0. 0. 90.

1.5 0.0 0.5 0. 90. 0.

1.5 0.0 1.5 0. -90. 0.

1.5 -0.5 1.0 0. 0. -90.

5 # num_obst: number of obstacles.

#xpos |ypos |zpos |Xrot |Yrot |Zrot |xdim |ydim |zdim

#--------------------------------------------------------------

-

2. -2. 0.425 0. 0. 0. 3.7 3.7 0.85

2. 2. 0.425 0. 0. 0. 3.7 3.7 0.85

2. -2. 1.425 0. 0. 0. 3.7 3.7 0.85

Figure 4: The input file of the 7-DOF example.

A quick calculation gives us an idea of the extent of the
search space.  A 7-DOF manipulator consists of five links,
four joints and one wrist, and is further determined by five
angles, specifying the relative orientations of the joint mod-
ules.  Taking into account the restrictions, that the first joint
module must be of type zero or one and the last module
must be a wrist, the number of configurations in the search
space equals:

(6)

Starting from a random initial guess, the simulated anneal-
ing algorithm evaluated on the average only about
configurations before finding a solution.  One of these solu-
tions is tabulated in Table 1 and Table 2.  It is a SCARA-
like manipulator with a nearly spherical joint at the end of
the second link.  The offset along the first axis is 1 meter
and the first twist angle is , so that the first and second
link move in a horizontal plane exactly between the four
obstacles.  Because of the spherical joint, link 3 can move
either in a horizontal or a vertical plane, so that all the task
points can be reached without hitting any obstacles, as
shown in Figure 5.

3   Fault Tolerance
In the rest of this paper, we focus our attention on one ad-
ditional task requirement, namely, fault tolerance.  To set
the stage for our development, we define the following
properties of fault tolerant manipulators [2]:

#links( ) 5 #joints( ) 3 #joints of type 0 or 1( )

165 43 2 1 85 4.4 1012×≈⋅ ⋅ ⋅ ⋅=

#wrists( ) #rel. orient.( ) 5

2700

link# angle# joint#

1 10 4 1

2 14 4 3

3 3 3 0

4 12 6 3

5 14 0 —

Table 1: Module numbers of 7-DOF design.

dof

1 1.1 1.6 180˚

2 0.1 0.0 90˚

3 1.8 0.0 –90˚

4 0.1 0.0 90˚

5 1.6 0.0 90˚

6 0.0 0.0 -90˚

7 0.05 0.0 —

Table 2: D-H parameters of 7-DOF design.

di ai αi

180°



• Fault Tolerant (FT) Manipulator :  An -DOF ma-
nipulator that will still be able to meet the task spec-
ifications, even if any one or more of its joints fail
and are frozen at any arbitrary joint angles.

• Reduced Order Derivative (ROD):  When some
joints of a manipulator fail, the effective number of
joints is smaller than the initial number of joints.
The resulting faulty manipulator is called a reduced
order derivative.

• Order of Fault Tolerance:  An -DOF manipulator
is FT of the -th order, if and only if all DOF
reduced order derivatives can still perform the spec-
ified task.

• Fault Tolerant Work Space (FTWS):  The fault
tolerant work space of an -th order FT -DOF ma-
nipulator is the set of points reachable by all possi-
ble DOF reduced order derivatives.

These definitions differ from the concept of fault tolerance
as proposed Maciejewski [20].  Instead of attributing the
property of fault tolerance to amanipulator, he quantifies a
measure of fault tolerance for a manipulatorpostureand de-
scribes a technique to determine the optimal FT posture,
based on the singular value decomposition of the Jacobian
matrix.  If a joint fails in this optimal posture, the resulting
reduced order derivative will have maximum possible dex-
terity.  However, a failure at a different angle may make the
execution of the task impossible.

If no specific task is mentioned,  it is assumed that the task
consists of reaching a nonzero volume of points in the task
space, i.e., an -dimensional manifold in the -dimen-
sional task space.  A manipulator that can only reach a man-
ifold of dimension lower than  in a FT way, is considered
not to be fault tolerant.

4  Properties of Fault Tolerant Manipulators
4.1   Existence
Suppose that we have an -DOF manipulator, , that sat-
isfies all the kinematic requirements of a given task.  It has
been shown that such a manipulator can be found by using

Figure 5: The manipulator reaching point 2
avoiding all the obstacles.
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the task based design approach described in Section 2.  An
obvious way to make this manipulator FT is to design every
joint with a redundant actuator [33], as is shown in
Figure 6.  If one of the actuators of the resulting -DOF
FT manipulator were to fail, the redundant actuator could
take over and the manipulator would still be functional.
Similarly, a -th order FT manipulator can be constructed
by duplicating every DOF  times, resulting in a -
DOF manipulator.

4.2   Boundary of the Fault Tolerant Work Space
In this section, we show that a boundary point of the FTWS
is a critical value (A critical value is an end-effector posi-
tion that can be reached in a singular configuration, i.e., that
is the image of a critical point [4]).

Consider a th order FT planar manipulator, .  A bound-
ary point, , of the FTWS has to be an element of the

boundary of the work space of at least one ROD, , ob-
tained by freezing  joints of .  Indeed, if  were an in-
terior point of the work spaces of all RODs, then it would
by definition be an interior point of the FTWS and not a

boundary point.  The Jacobian of , , can be obtained

from the Jacobian of , , by deleting the columns cor-

responding to the frozen DOFs.  Because  is a boundary

point of the work space of , the Jacobian of  at

is singular.  We prove now that  is singular too.  Suppose

that  were non-singular, then at least one of the columns
corresponding to a frozen DOF would be outside the col-
umn space of the singular matrix, .  Physically this
means that a small change in the angle of that frozen DOF
would cause the end effector of  to move in a direction
with a component perpendicular to the boundary of the

work space of the ROD, , as illustrated in Figure 7.  The
ROD with this new frozen angle would be unable to reach

Figure 6: An example of forming a six DOF first or-
der FT manipulator from a three DOF manipulator.
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the point, , which would therefore be outside the FTWS,

and this contradicts the fact that  is a boundary point of

the FTWS.  Thus,  is singular and  is a critical value.

Consequently, the FTWS is bounded by critical value man-
ifolds.  For planar positional manipulators, the critical value
manifolds are concentric circles, and the FTWS is an annu-

lus with inner radius and outer radius .

4.3   Required Degree of Redundancy
In Section 4.1, it is shown that, in general,  redundant
DOFs—i.e.  DOFs in total—are sufficient to
achieve th order fault tolerance.  For planar positional ma-
nipulators, however, we prove that  DOFs are also nec-
essary for th order fault tolerance.

The proof shows that  DOFs (or  redundant

DOFs) are insufficient, by finding a lower bound for

and an upper bound for .  First consider the ROD ob-

tained by freezing the first  joints at  radians, as illustrat-
ed in Figure 8.  The maximum reach in the opposite

direction is an upper bound for :

(7)

Figure 7: A ROD unable to reach a point outside the
FTWS.
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where  is the length of the th link.  In order for

to be positive, we must have that:

. (8)

Making this assumption, we find that  is bounded be-

low by the inner radius of the work space of the ROD ob-
tained by freezing the  last joints at  radians, as
illustrated in Figure 8:

. (9)

From Equation (7) and Equation (9), it follows that at best

, (10)

resulting in a one-dimensional FTWS.  Therefore, a
-DOF manipulator cannot be FT ■

4.4   Including Orientation
Thus far, we have only considered planar positional manip-
ulators.  The results for positional manipulators can be eas-
ily extended to the case in which orientation is considered
also, by converting the orientational problem into an equiv-
alent positional problem:

Figure 8: Upper bound for  and a

lower bound for .
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An -DOF manipulator, , is th order FT with
respect to a set of points, , if and
only if:

1. the positional manipulator, , obtained from
by deleting its last link, , is th order fault tolerant
with respect to the set of points

2.  can reach the points in  in any direction in a
th fault tolerant way.

The positional manipulator, , needs at least
DOFs to be th order FT with respect to ; therefore, the
manipulator  needs at least  DOFs.  Now, con-
sider a -DOF manipulator with the first
links having length, , and the last link having length zero.
It is easy to verify that this manipulator can reach

 in a

th order FT way.  Thus,  DOFs are necessary
and sufficient for th order fault tolerance of planar manip-
ulators when orientation is included

This result and the result obtained in Section 4.3 can be
summarized in the following theorem:

Theorem:
For planar manipulators,  redundant DOFs are
necessary and sufficient for th order fault toler-
ance.

4.5   Spatial Fault Tolerant Manipulators
For planar FT manipulators, we were able to prove that
is the required degree of redundancy.  The proof was based
on geometric work space analysis.  However, the geometric
analysis becomes too complex for spatial manipulators, es-
pecially since we are dealing with redundant manipulators.
Therefore, we will demonstrate some properties of spatial
FT manipulators using two examples.

As a first example, consider a 5-DOF spatial positional ma-
nipulator.  Its D-H parameters are listed in Table 3.  This
manipulator is first order FT, and because of its simple ki-
nematic structure, an analytic expression for the boundary
of the FTWS can be derived.  The FTWS is symmetric with
respect to the first axis.  A cross section (the X-Z plane), as
shown in Figure 9, can be described by two segments of a

n M k
W xi yi ϕi, ,( ){ }=

M' M
l n k

W' xi ln ϕicos− yi ln ϕisin−,( ){ }=
M' W'
k 1−( )

M' 2k 2+( )
k W'
M 2k 3+( )

2k 3+( ) 2k 2+( )
l

W x y ϕ, ,( ) x2 y2+ 2l and ϕ 0 2π, )[∈≤{ }=
k 2k 3+( )

k

2k
k

2k

DOF

1 0 1 90˚

2 a 1 0˚

3 -a 1 90˚

4 b 1 0˚

5 -b 1 —

Table 3: D-H parameters of a  first order FT
spatial manipulator, without orientation.

i di ai αi

circle with radius 2 and center at , and a

straight line from  to .
An important property of this FTWS is that it does not have
any holes or a central void, so that the FTWS of the same
manipulator scaled by any factor, , contains the origi-
nal FTWS.  As a result, this FT manipulator can be used as
a design template.  Any specified set of points can be
reached in a first order FT way by a scaled version of the
template.

In Section 4.2, it is shown  that the boundary of the FTWS
of a planar manipulator coincides with its critical value
manifolds.  Figure 10 demonstrates that this property also
holds for the 5-DOF spatial manipulator considered in this
example.  The critical value manifolds are computed using
the algorithm described in [4] and are depicted in a solid
line.  The bold part of the critical value manifolds is the
boundary of the FTWS.

As a second example, consider an 8-DOF manipulator, with
D-H parameters listed in Table 4.  It is the same manipula-
tor as in example one, with a zero-length 3-roll-wrist added
at the end.  This manipulator can reach in a first order FT
way all the points in the FTWS of example onein any di-
rection.  This property can be demonstrated with the fol-
lowing arguments.  When one of the first five DOFs fails,
the manipulator can still reach any position in the FTWS
(because the 5-DOF positional manipulator is FT) and can
take any orientation at this position using the intact 3-roll-

Figure 9: A cross section of the FTWS of a
5-DOF spatial manipulator example.
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wrist.  When one of the DOFs in the wrist fails, we are left
with a 7-DOF manipulator which has enough orientational
capabilities to reach any point in the FTWS in any orienta-
tion.  Consequently, one could call this thedextrousFTWS.
Since there are again no holes or voids in the FTWS, this
manipulator can also be used as a design template.

Finally, one should notice that both examples have only two
redundant DOFs, which seems to indicate that the theorem
in Section 4.4 is extendable to spatial manipulators.

4.6   Joint Limits
In Section 3, the definition of a FT manipulator included the
specification that joints could fail “at any arbitrary angle.”
Thus far, we did not consider joint limits and therefore “at
any arbitrary joint angle” meant at any angle between  and

.  From now on, however, an arbitrary joint angle is re-

Figure 10: A cross section of the boundary of
the FTWS of a 5-DOF spatial manipulator

(bold) as part of its critical value manifolds.
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DOF
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3 -a 1 90˚

4 b 1 0˚

5 -b 0 90˚

6 1 0 90˚

7 0 0 90˚

8 0 0 —

Table 4: D-H parameters of an 8-DOF  first order
FT spatial manipulator.

i di ai αi

0
2π

stricted to be within the joint limits.  Using two examples,
we discuss now how the introduction of joint limits changes
the properties of FT manipulators.

First, consider a 4-DOF positional planar manipulator with
links of length one.  Figure 11 illustrates how the work
space changes when the joint limits (the same limits for all
joints) vary from  through .  As one would ex-
pect the FTWS shrinks,  but it also changes position.  A
point that isoutside the FTWS of a manipulator without

Figure 11: The FTWS of a 4-DOF planar ma-
nipulator with joint limits.
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joint limits can becomeinside the FTWS when joint limits
are introduced.  This can be understood by thinking of the
FTWS as the intersection of the work spaces of all RODs.
When joint limits are introduced, the work space of every
ROD reduces in size, but the intersection of fewer RODs
has to be taken to obtain the FTWS.

As a second example, we revisit the 5-DOF spatial manip-
ulator of the previous section.  As depicted in Figure 12, the
FTWS of this 5-DOF manipulator shrinks rapidly when the
joint angle intervals are reduced.  Moreover, a central hole
appears and the FTWS splits into two disconnected parts.
When the joint angle interval becomes smaller than

, the FTWS vanishes.

From the above examples, it is clear that the analysis, and
therefore also the design of FT manipulators is very com-
plex when joint limits are introduced.  Whereas we were
able to generate design templates for the case of no joint
limits (or joint limits of ), finding ageneral design
template is infeasible due to the infinite number of possible
joint limits.  Therefore, in the next section, we extend the
numerical procedure developed in Section 2 to include the
determination of the kinematic structure of FT manipulators
when joint limits are considered.

Figure 12: A cross section of the FTWS of a 5-
DOF spatial manipulator with joint limits.
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5  Task Based Design of Fault Tolerant Manip-
ulators
5.1   Mathematical Formulation
In this section, we formulate a method to determine the ki-
nematic structure of a manipulator which is FT with respect
to the task of reaching a set of positions/orientations,

, and for which the joint
limits for each of the DOFs are given.  The formulation is
based on the approach of Section 2 which can be summa-
rized with the following equation:

. (11)

A manipulator is first order FT with respect to a task if all
possible first order RODs can fulfill the task.  Equation (11)
can then be adapted to include first order fault tolerance as
follows:

(12)

The maximization yields zero when all the RODs, resulting
from a failure of joint , are able to reach the task point.  As
a result, the minimization over the D-H parameters equals
zero if and only if all possible RODs are able to reach every
specified task point.

5.2   Implementation
Equation (12) contains three nested optimizations.  For each
ROD, the innermost minimization finds the posture, for
which the penalty function is minimal.  The task that we
consider is to reach a certain point without violating the
joint limit constraints.  The penalty function therefore con-
sists of two parts.  A first part penalizes the failure to reach
the point (without considering joint limits). This penalty is
equal to the norm squared of the residue, , namely, the
distance between the actual position/orientation of the end
effector and its desired position/orientation.  A second part,
penalizes the joint limit violations.  This penalty is equal to

. (13)

The resulting minimization is thus a nonlinear least squares
(NLLS) problem, and is commonly solved in robotics appli-
cations using a Newton-Raphson scheme [13] (cfr. numeri-
cal inverse kinematics literature). This scheme converges
very quickly when the penalty at the optimum is zero, i.e.,
for a zero residual NLLS problem.  However, it is possible
that a task point is outside the reach of the manipulator, in
which case the minimization becomes a large residual prob-
lem.  For this class of problems, the Newton-Raphson
scheme (or Gauss-Newton algorithm) converges slowly and
is outperformed by the BFGS algorithm (Broyden-Fletcher-
Goldfarb-Shanno [8]).  As shown by Fletcher and Xu [7],
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the best overall performance is obtained by a hybrid algo-
rithm, which combines the advantages of both the Gauss-
Newton and BFGS algorithms.

The second optimization in Equation (12) is the maximiza-
tion over the joint angle, .  A typical example of the ob-
jective function is shown in Figure 13.  Notice that the
function and its gradient are zero possibly over a large part
of the domain, namely, where the task point is reachable.
To solve the maximization, we need to incorporate addi-
tional information.  The key observation is that when the
desired point is outside the reach of the manipulator, the in-
nermost minimization algorithm always gets stuck at the
boundary of the work space of the manipulator, where the
Jacobian matrix of the manipulator loses rank [17].  The
measure of isotropy, , is defined as [14]:

, (14)

with  the number of Cartesian coordinates.  For a singular
Jacobian,  is zero.  Consequently, a minimization over
leads to regions where the penalty is possibly positive.
Thus, the derivative of  with respect to , can be used to
compensate for the lack of gradient information in the norm
of the residue.  As one can see in Figure 13, however, the
measure of isotropy is a multimodal function of .  Be-
cause there is only one optimization variable, an efficient
global optimization algorithm, such as the algorithm de-
veloped by Zilinskas [34], can be used.  is a combina-
tion of a one-stage Bayesian algorithm and Brent’s local
minimization resulting in smart global coverage and accu-
rate local refinement.

The third and outermost optimization minimizes the total
penalty of a kinematic configuration, defined by the

 D-H parameters, and is solved again using the
simulated annealing algorithm.
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Figure 13: The penalty function and the measure of
isotropy.

frozen angleθj

∆

∆
det JJT( )m

trace JJT( ) / m
=

m
∆ ∆

∆ θj

θj

P*

P*

3n 1−( )

6  Numerical Results
To illustrate the approach developed in the previous section,
we give an example of a first order FT spatial manipulator
design: a five DOF spatial manipulator that is required to be
first order FT while accomplishing the task of reaching
three points:

(15)
Notice that we do not consider end effector orientation at
this time.  From the example in Section 4.5, we know that
five degrees of freedom are sufficient for first order fault
tolerance.  Our numerical results confirm this.  The D-H pa-
rameters of a possible design are listed in Table 5.
Figure 14 shows a cross section along the XZ-plane of the

p1 0.5 0 0.5, ,( )=

p2 0 0.5 0.25, ,( )=

p3 0.75 0 0.5, ,( )=

5 DOF solution

DOF

1 0.2 0.7 90˚

2 0.1 1.0 0˚

3 0.9 0.1 135˚

4 0.6 0.5 0˚

5 0.1 1.3 —

Table 5: D-H parameters of a first order FT spatial
solution.
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boundary of FTWS.

7  Summary
In this paper, we developed an approach for determining a
configuration for a reconfigurable modular manipulator able
to fulfill a specific task.  We considered tasks that included
four kinematic requirements: reachability, joint limits, ob-
stacle avoidance and measure of isotropy.  Attributing a
penalty to each manipulator configuration, enabled us to re-
duce the search effort drastically, by guiding the search to
the most promising regions of the configuration space.  Lo-
cal minima in the penalty were avoided by using simulated
annealing as a search algorithm.  We also defined a property
of a small class of redundant manipulators, calledfault tol-
erance.  Based on the definition, we were able to construc-
tively prove the existence of FT manipulators by
duplicating the joints.  When no joint limits are considered,
we proved analytically that,  redundant DOFs are neces-
sary and sufficient for fault tolerance of planar manipula-
tors.  We also proved that the boundary of the FTWS
consists of critical values.  For spatial manipulators,  design
templates were introduced, with which a manipulator that is
able to reach a specified set of points, can be designed by
scaling the template appropriately.  For manipulators with
joint limits, analytical solutions become infeasible.  There-
fore, we introduced a numerical design method based on an
earlier developed “task based design” approach.  All the
different steps of our development were illustrated with de-
sign examples.
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