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Abstract 
 
Degrees of freedom in an assembly are realized by creating mating features that permit relative 
motion between parts. In complex assemblies, interactions between individual degrees of freedom 
may result in a behavior different from the intended behavior. In addition, current methods perform 
assembly reasoning by approximating curved surfaces as piecewise linear surfaces. Therefore, it is 
important to be able to: reason about assemblies using exact representations of curved surfaces; 
verify global motion behavior of parts in the assembly; and create motion simulations of the 
assembly by examination of the geometry. In this paper, we present a linear algebraic constraint 
method to automatically construct the space of allowed instantaneous motions of an assembly from 
the geometry of its constituent parts. Our work builds on previous work on linear contact 
mechanics and on our previous work on curved surface contact mechanics. We enumerate the 
conditions under which general curved surfaces can be represented using a finite number of 
constraints linear in the instantaneous velocities. We compose such constraints to build a space of 
allowed instantaneous velocities for the assembly. The space is then described as a set-theoretic 
sum of contact-preserving and contact-breaking motion sub-spaces. Analysis of each subspace 
provides feedback to the designer, which we demonstrate through the use of an example assembly – 
a 4-part arm. Finally, the results of the analysis of a 4-bar linkage are compared to those from 
mechanism theory. 
 
1. Introduction 
 
Assemblies are composed from parts. The geometry of the parts imposes certain restrictions on the 
way that they can be assembled, and also on the way that they move relative to one another. This in 
turn has a bearing on their static stability, kinematic behavior, and dynamic performance 
characteristics. However, none of this information exists initially. It must be derived from the CAD 
models of the individual parts, and from the relative positions of these parts in the final assembly. 
In order that the collection of parts can be grouped together to form the assembly representation of 
the artifact, joints between parts must be specified. The joints between parts are defined by the 
designer at the conceptual design level to meet certain functional requirements of the assembly. 
Thus, there can be two types of constraints between parts, namely, constraints induced by the 
geometry of parts, and constraints introduced by the designer to satisfy functional requirements of 
the assembly. Both these types of constraints interact to produce a resultant behavior of a joint. 
 
Articulated devices are realized through contacts between parts. In order to verify that a complex 
device is a correct spatial realization of the intended functional design concept, we need to extract 
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its behavior from its geometric representation. Techniques have been developed to predict the 
instantaneous degrees of freedom from the CAD models of parts composed of polygonal planar 
faces [Hirai and Asada, 1993; Mattikalli et al., 1994]. However, these techniques handle only parts 
with planar faces; most engineering devices have curved parts. When curved parts are 
approximated as piecewise planar parts, erroneous results are possible. 
 
In this research, we present a methodology that extends our earlier work on contact surfaces. That 
work [Sinha et al., 1998] reasons about the degrees of freedom at each joint, based on surface 
mating constraints, that are in turn obtained from analyzing the nature of body to body contact. 
Non-penetration constraints are imposed along the boundary of each contact surface in the form of 
algebraic inequalities. It is shown that a finite number of non-penetration conditions are 
representative of the entire surface in contact. Using linear programming methods, instantaneous 
velocities and accelerations for each pair of bodies are computed. In this work, we obtain a set of 
properties that must be satisfied by a general contact surface in order to preserve the linearity of the 
model. We describe a method by which the space of allowable motions in the assembly can be 
described concisely. 
 
Such a methodology is useful in that it can provide useful feedback to the designer. He or she can 
determine which components are free to move in the assembly. The procedure can be completely 
automated, so that there are no errors induced by user interaction. This eliminates the possibility of 
input errors. In addition, since the method is algebraic and uses linear programming, it is fast and is 
valid for all possible surface contacts, unlike rule-based systems that operate on a feature level. 
This method will also account for contact surfaces with incomplete geometry (such as portions of 
planes, cylinders, or spheres). 
 
2. Review of Previous Work 
 
2.1. Early Work on Contact Mechanics 
 
Previous work on planar contact mechanics and screw theory prepared the foundation for this work. 
Ohwovoriole and Roth [1981] showed that unidirectional constraints can be modeled as screws. 
Hirai and Asada [1993] described the allowable motions of a part using polyhedral convex cones to 
represent the space of movement. Mattikalli and Khosla [1991] described a method to obtain 
degrees of freedom from component mating constraints, wherein they use a unit sphere to represent 
the space of all available degrees of freedom. 
 
Some issues have not yet been addressed satisfactorily in these frameworks. Current shortcomings 
in articulation research include: 
1. Only bodies described (or approximated) by planar surfaces are considered. 
2. Current techniques are local; global interaction (propagation of constraints beyond the point 

where they are induced) is not satisfactory. 
3. Current simulation techniques do not detect incorrect/incomplete inputs; there is no verification 

for correctness of the articulation representation and for the compound effect of geometric 
interactions and physics-based interactions. 

 
2.2. Contact Mechanics for Planar Contacts 
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A part in an assembly is in physical contact with one or more other parts. The nature of these 
contacts can provide useful information about the types and limits of the degrees of freedom at 
these contact points. Some of these contacts induce surface mating constraints, leading to the 
formation of a joint. Other contacts are incidental, in that they may introduce limits on the degrees 
of freedom of the joint [Rajan et al., 1997; Rajan and Nof, 1997]. Reasoning about these constraints 
provides the designer with valuable insight into the instantaneous degrees of freedom of the 
assembly. 
 
Other researchers ([Mattikalli et al., 1994], [Baraff and Mattikalli, 1993]) have worked with 
polygonal bodies and polygonal surfaces of contact. They approximate curved planar boundaries 
using straight lines, and use linear programming techniques to solve the contact problem. 
 
When a pair of parts are in contact with each other, it implies that there is no inter-penetration 
between the parts at the contact surfaces. This non-penetration condition at a point can be written 
as [Baraff and Mattikalli, 1993]: 
 

0)( ≥•×+ nrv
rrrr ω                 Eq. 1 

 
where v

r
 is the relative translational velocity between two parts, ωr  is the relative angular velocity 

between two parts, r
r

 is the position of the point and n
r

 is the normal at a point of contact on the 
surface of contact. This equation is linear in v

r
 and ωr . We define the generalized velocity vector as 

[ v
r  ωr ]. Equation 1 implies that the generalized velocity vector for relative motion between two 

points, one on each contact surface, should not have a component opposite to the normal to the base 
surface. A component into the base surface will imply penetration. 
 
To prevent the penetration of one part into the other, Equation 1 must be satisfied at every point on 
the surface of contact and on the boundary of the surface of contact. Such a method of expressing 
planar contact between two bodies has been used before. For example, see Baraff and Mattikalli 
[1993], where the authors use non-penetration conditions to determine the impending motion 
direction of polyhedral rigid bodies in contact. 
 
A closed planar surface (or patch) is bounded by a finite set of curves; these curves may be straight 
line segments or curved line segments. Any point in the interior of the patch can be expressed as a 
linear combination of points at the vertices of the boundary of the convex hull of the patch. As long 
as the convex hull has a finite number of vertices, there will be a finite number of non-penetration 
conditions, all of which will be linear in v

r
 and ωr . 

 
When extending to curved surface contacts, it is desirable to preserve the linearity of the 
formulation for reasons of computational efficiency; linearity allows for easier search and boundary 
enumeration. 
 
2.3. Extending Contact Mechanics to Curved Surfaces 
 
In a previous paper [Sinha et al., 1998], we extended the results obtained for planar surface contacts 
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by showing that similar results can also be obtained for spherical and cylindrical surfaces defined 
by edges which are great arcs (for spherical surfaces) or straight lines and circular arcs (for 
cylindrical surfaces). 
 
Spherical contact surfaces in contact always result in unconstrained rotations, because they share a 
common center. As before, the non-penetration conditions must be written at the vertices of the 
convex cone for the given spherical contact surface. However, since the cost of computing the 
convex cone is high, we chose to generate the non-penetration condition at the vertices of the 
spherical patch. This will not influence the final result. 
 
Non-penetration at every point in a contact patch on a cylindrical surface with boundary segments 
that are exclusively constant-z and constant-θ segments can be represented entirely by non-
penetration at the vertices of these segments. 
 
3. Generalized Contact Mechanics 
 
The discussion in Section 2 illustrates that for certain curved surfaces, if the boundary can be 
described by a finite number of segments all possessing certain properties, then the non-penetration 
condition at any point on the curved surface is satisfied if the non-penetration condition is satisfied 
at the finite number of boundary vertices. 
 
The nature of the physical contact between a pair of parts in an assembly provides useful 
information about the types and limits of the degrees of freedom. Some of these contacts induce 
surface mating constraints, leading to the formation of a joint. Other contacts are incidental, in that 
they introduce limits on the degrees of freedom of the joint. When two parts are in contact with 
each other, it implies that there is no inter-penetration between the parts at every point on the 
contact surfaces. Non-penetration conditions can be written as linear inequalities in the 
instantaneous velocity, which, when taken together, describe a linear subspace. 
 
The following Proposition will be used to establish a theoretical basis for the linear treatment of 
curved surfaces in assembly modeling. 
 
Proposition 1. Given: 

1. A continuous curve 3]1,0[:)( RC →∈λλ . 
2. C(0)=P1 and C(1)=P2; P1,P2 ∈  R3. 
3. C lies on a parametrizable, differentiable contact surface S formed between two bodies A and 

B. 
 
Then non-penetration (by Equation 1) at P1 and P2 implies non-penetration at any point on C, if 
and only if: 
 
1. C is a circular arc, possibly with infinite radius (limiting case of a straight line) 
2. The unit normal to C at any point along C is equal to the unit normal to S at that point. 
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Proof. We prove Proposition 1 by showing that given Equation 1 written at P1 and P2, Equation 1 
holds along a set of points between P1 and P2. 
 
Equation 1 written at P1 is: 
 

0)( 11 ≥•×+ nrv
rrrr ω                Eq. 2 

 
and at P2 is: 
 

0)( 22 ≥•×+ nrv
rrrr ω                Eq. 3 

 
where v

r
 is the relative translational velocity between the bodies A and B, ωr  is the relative angular 

velocity between the two bodies, 1r
r

 and 2r
r

 are the position vectors of P1 and P2, respectively. 1n
r

 
and 2n

r
 are the normals to S at P1 and P2 respectively. Forming a linear combination of Equation 2 

and Equation 3, we get: 
 

[ ]1,0 with 0))(1()( 2211 ∈≥•×+−+•×+ λωλωλ nrvnrv
rrrrrrrr

           Eq. 4 

 
Rearranging terms in Equation 4, we get: 
 

0)1())1(( 221121 ≥×•−+×•+•−+ rnrnvnn
rrrrrrrrr ωλωλλλ            Eq. 5 

 
For Equation 5 to be true and of the form of Equation 1, the following would have to be true ωrr

,v∀ : 
 

21 )1( nnn
rrr λλ −+=                Eq. 6 

 
and 
 

rnrnrn
rrrrrrrrr ×•=×•−+×• ωωλωλ 2211 )1(             Eq. 7 

 
Equation 6 is an expression which indicates that n

r
 spans all the normals from 1n

r
 and 2n

r
. For 

Equation 7 to be satisfied for all ωr , it is sufficient to show that: 
 

{ } rnnrnrn
rrrrrrr ×−+=×−+× 212211 )1()1( λλλλ             Eq. 8 
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Equation 8 is an expression for the generatrix or trace [Gray, 1998] r
r

 of C which generates a locus 
of points where Equation 1 is satisfied, given that it is satisfied at P1 and P2. Taking the dot product 
of Equation 8 with 1n

r
 and 2n

r
 and rearranging terms, we get: 

 
{ } ( )
{ } ( ) 0

0

212

211

=×•−
=×•−

nnrr
nnrr
rrrr
rrrr

               Eq. 9 

 
Thus, r

r  lies in the plane containing both P1 and P2 and normal to the vector 21 nn
rr × . Assuming that 

21 nn
rr × , we can then parameterize r

r
 as (see Figure 1): 

 

21 )1( and nnn
n
n

or
rrr

r
r

rr ββα −+=+=              Eq. 10 

 

 
Figure 1. Plane containing r

r
 also contains the normal vectors to r

r
. 

 
Where o

r
 is an arbitrary origin. Using Equation 10 to substitute for r

r
, 1r
r

 and 2r
r

 in Equation 8 and 
expanding, we get: 
 

[ ] 021
rrr

=−× βλα
n

nn
               Eq. 11 
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From Equation 11, it follows that since 21 nn
rr ×  cannot be zero (as per our assumption), λ is equal to 

β. In all of the subsequent analysis, we will use β, with the understanding that the parameterizations 
by λ and β are equivalent. 
 
We now impose the following constraint on C: 
 

0)( =• sn
ds
rd r
r

                Eq. 12 

 
where s is the arc length, and )(sn

r
 is the normal vector field. This condition requires the tangent 

vector to the curve at every point on the curve to be perpendicular to the normal to the surface, 
effectively forcing the curve to lie on the specified surface S. It also requires the normal vector to 
the curve to be parallel to the normal vector to the surface. Substituting from Equation 10: 
 

ds
d

n

d
nd

n
n

n
d

nd
n

n
n

ds
d

ds
rd βββ

αα
























 •−

+





=

2

1

r

r
r

r
r

r
r

r
rr

            Eq. 13 

 
or, upon simplification and substitution of Equation 11 in Equation 12: 
 

0)( ==• n
ds
d

sn
ds
rd rr
r α

               Eq. 14 

 
which implies that: 
 

( ) constant=sα                 Eq. 15 

 
With Equation 15, Equation 10 reduces to that of a circular arc in the plane. The unit normal vector 
to any point on this arc is equal to the unit normal vector to the surface S at that point 
 
To prove the converse, i.e. given a circular arc lying on the surface S with the unit normal vector 
field to the arc equal to the unit normal vector field of the surface, we write Equations 2 and 3 for a 
circular arc. Thus Equation 2 becomes: 
 

0))(( 11 ≥•+×+ nnRov
rrrrr ω               Eq. 16 

 
and Equation 3 becomes: 
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0))(( 22 ≥•+×+ nnRov
rrrrr ω               Eq. 17 

 
where R is the radius of the circular arc. Expanding Equations 17 and 18 and forming a linear 
combination: 
 

0))1(()( 21 ≥−+•×+ nnov
rrrrr λλω               Eq. 18 

 
which is of the same form as Equation 1. Therefore, non-penetration at the points P1 and P2 implies 
non-penetration all along C. Note that this is similar to the proof of non-penetration along a circular 
arc on a right circular cylinder, presented in Sinha et al. [1998]. This completes the proof of 
Proposition 1. 
 
Lemma 1.1. The curve C exists on surface S when: 
 
1. ( ) ( ) 02121 =×•− nnrr

rrrr  
2. The intersection of S with the above plane is a circular arc. 
 
Proof. The above two conditions follow from Proposition 1. Curve C lies in a plane containing the 
points P1 and P2, as defined in Equation 9. C is also a circular arc on S, as shown in Equation 15. 
 
Corollary 1.1. The straight line 21 )1(]1,0[:)( rrl

rr λλλλ −+→∈  on a plane surface S satisfies 
Proposition 1. 
 
Corollary 1.2. The great arc on a spherical surface S subtending an angle less than π satisfies 
Proposition 1. 
 
Corollary 1.3. The straight vertical line parallel to the axis and the circular arc subtending an 
angle less than π on a right circular cylindrical surface S satisfies Proposition 1. 
 
Proof. Corollaries 1.1 through 1.3 are discussed and proved individually in Sinha et al. [1998]. 
Here, we show that they emerge as special cases of Proposition 1. As per the Proposition, the only 
possible segment on a planar surface (Corollary 1.1), with 1n

r
 equal to 2n

r
, is the circular arc with 

infinite radius, i.e. the straight line joining the points P1 and P2. The great arc on a spherical surface 
also satisfies Proposition 1. The possible segments on a right circular cylindrical surface are the 
vertical straight line and the circular arc. The subtended angle is required to be less than π to 
prevent 1n

r
 being parallel to 2n

r
. 

 
Corollary 1.4. The straight vertical line starting at the apex of a right conical surface S satisfies 
Proposition 1. 
 
Proof. Upon examination of a right circular conical surface, we see the straight line (or meridian 
lines) of the cone has its unit normal vector equal to the unit normal vector of the surface of the 
cone. Therefore, Proposition 1 is satisfied. Note that circular arcs can be present on the cone, but 
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do not satisfy Proposition 1 because the unit normals along the arc are not equal to the unit normal 
vectors of the cone. 
 
4. Articulation in Assemblies 
 
The existence of an unconstrained degree of freedom will cause the generalized velocity space 
representation generated from the non-penetration conditions to be non-empty. Therefore, the 
velocity space can be analyzed to detect and classify unconstrained degrees of freedom. 
 
4.1. Solving the Set of Non-Penetration Conditions for Instantaneous Articulation 
 
Each primitive patch induces a non-penetration condition at each of its (finite) vertices. Since non-
penetration must not occur at any point at any time, the inequalities for all the non-penetration 
conditions for the all the patches of a pair of bodies considered simultaneously form the linear 
program: 
 

patches all in  verticesofnumer  Total1      0)( K
rrrr =≥×+• irvn ii ω          Eq. 19 

 
where v

r  and ωr  are the relative velocities between the two parts, in
r

 is the normal at each vertex 
and ir

r
 is the position of each vertex. 

 
Since at any time, all the non-penetration conditions for all the parts must be satisfied, it is possible 
to solve all the inequalities for all the vertices of all the parts in the same linear program. This will 
result in a solution which is globally valid. Using a single linear program, it is possible to obtain all 
the instantaneous degrees of freedom for the assembly. If we write the non-penetration condition 
for a patch concisely as: 
 

0
r

rr
rr

≥







−
−

BA

BA
patch

vv
ωω

J                Eq. 20 

 
where Jpatch is the Jacobian for that particular patch. Then the non-penetration conditions for all the 
patches in a body-body contact pair formed between bodies A and B can be written as: 
 

02

1

r
rr
rr

Mrr
rr

≥





−
−


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
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







=





−
−

BA

BA
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patch

patch

BA

BA
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vvvv

p

ωωωω
J

J
J

J              Eq. 21 

 
where p is the number of patches in which this body-body pair participates. Using expressions such 
as Equation 22 written for all the body-body contact pairs in an assembly, we get: 
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Jassembly is a complete representation of the assembly with instantaneous articulation. Solving this 
global simplex provides all the translational and angular velocities for all the body-body pairs 
simultaneously. 
 
The simplex is 6N-6-dimensional (3 variables for translational velocity and 3 variables for angular 
velocity for each of N-1 ungrounded bodies in the assembly). Since the origin is a vertex of this 
high-dimensional space, this structure is also called a Polyhedral Convex Cone. Such structures 
have been studied extensively by Goldman and Tucker [1956] and others. Hirai and Asada [1993] 
used cones to describe the possible contact-preserving and contact-breaking motions between two 
polyhedral bodies. 
 
4.2. A CAD Implementation for Instantaneous Articulation 
 
Having established a theoretical framework for treating curved surface contacts in the previous 
sections, we now describe the system which extracts non-penetration conditions from the CAD 
models of parts in an assembly. A contact graph structure G can be used to represent the assembly. 
In the contact graph, parts are represented as nodes, and contacts between parts are represented as 
edges between the corresponding nodes. Edges between nodes are automatically derived by 
performing intersections between the nodes. Each part is scaled by a measure proportional to its 
bounding box dimensions, so that the result of the intersection is a regular solid (or a set of regular 
solids). 
 

( ){ } Band A between onintersecti ofResult ;parts; ofSet ,:,, =≠∈= IBABAIBAG          Eq. 23 

 
The intersection information in each edge is examined for features that could indicate the presence 
of surface mating constraints. Each element of I can be thought of as a constraint patch on the 
mating surface between A and B. For a particular element, all boundary segments that do not satisfy 
Proposition 1 are discretized into primitive segments (straight lines on planes, circular arcs and 
straight lines on a cylinder for constant z and constant θ respectively, and great arcs on a sphere), 
each of which satisfy Proposition 1. The set I can be partitioned as: 
 

444 3444 21 UKUUU
n

nSSSSI
 finite

321=                Eq. 24 
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where S1 through Sn are a finite number of primitive surfaces (or portions thereof). On each S, 
there exists a finite set of boundary segments Ω : 
 

{ }
44 344 21 UKUU

m

m

 finite

21ˆ  s.t.       
S of segmentsboundary   ofSet :

ααασσ
σσ

=≈
∈=Ω

            Eq. 25 

 
where σ is either a primitive segment, or can be approximated as σ̂  which is a union of a finite 
number of primitive segments α. Thus, the intersection set I now is composed of a finite number of 
primitive boundary segments. 
 
The non-penetration condition for each end-point or vertex of each primitive boundary segment α 
is written as a constraint in the linear program. The linear space can now be described (or 
enumerated) using standard boundary enumeration techniques. Note that this technique will work 
only for those surfaces which satisfy Proposition 1. On other surfaces such as splines, non-
penetration conditions would have to be written for every point on the surface. 
 
Finding one solution to the simplex is easy; finding all solutions is a more difficult proposition. 
However, useful information can still be obtained by projecting the simplex on either the v

r
 or the 

ωr  space. Such linear programming methods have previously been used by Mattikalli et al. [1994] 
to obtain solutions to the stability problem for assemblies. 
 
Solutions are returned in the form of allowable instantaneous translational and angular velocities. 
Translational velocities of zero indicate that translation is constrained for that body-body pair. 
Angular velocities of zero indicate that rotation is constrained for that body-body pair. 
 
4.3. Giving Feedback to the Designer 
 
In order to completely describe all the possible relative motions of the assembly, it is necessary to 
completely describe the boundary of the polyhedral convex cone in 6N-6-dimensional space. 
 
Useful feedback can be provided to the designer in the form of questions such as: “What degrees of 
freedom exist when the rotations of a particular part are constrained?” This question can be 
answered by adding 0

rr =ω  for the body in question, to the set of constraints and evaluating the 
linear program. Other possible “what-if” analyses include grounding a part (i.e. setting 0

rr=v  and 
0
rr =ω  for that part) and obtaining the instantaneous degrees of freedom for all the other parts. 

 
The space of allowed motions can be represented by the set-theoretic sum of the space of motions 
which preserve the contact ( 0

rr
=VJassembly ), and the space of motions which break the contact 

( 0
rr

>VJassembly ), where V
r

 is the vector of generalized velocities: 
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breakingcontactpreservingcontactallowed SSS −− +=              Eq. 26 

 
Scontact-preserving is the space of possible generalized velocity vectors which cause all contacts to be 
maintained, or: 

)( assemblypreservingcontact JNullspaceS =−              Eq. 27 

 
The basis vectors of the nullspace completely describe the possible contact-preserving motions. A 
singular value decomposition of Jassembly is used to compute the nullspace. 
 
Computing the boundary of the space of contact-breaking motions is a much harder problem. Avis 
[1994], Avis and Fukuda [1991, 1996], Motzkin et al. [1953], Bremner et al. [1996], Fukuda and 
Prodon [1996] have all proposed methods to enumerate the boundary of a polyhedral convex cone. 
However, time requirements for these methods quickly explode when confronted with cones of 
increasing dimensionality. Nemhauser and Wolsey [1988] show that the extreme ray membership 
problem for a cone is in NP. Similar conclusions are drawn by Avis [1998]. For a discussion of the 
complexity class of enumeration problems see Fukuda [1998]. 
 
Given a cone, it is possible to verify the feasibility of a given solution in polynomial time 
[Nemhauser and Wolsey, 1988]. Therefore, we propose the following heuristic to construct a finite 
set of feasible solutions from the geometry of the assembly: 
 
1. For every primitive contact patch, pick the axis and a position on the axis - for planes, the 

normal to the plane; for cylinders and cones, the principal axis; for spheres, any axis; in 
addition, pick a second axis tangent to the direction of curve parameterization – for planes, an 
axis lying in the plane, for cylinders and cones, the axis of the base; for spheres, any axis 
perpendicular to the first axis. 

2. See if a translational velocity along and/or a rotational velocity about these axes are feasible 
solutions to the set of non-penetration conditions. 

3. Since there are a finite number of patches, therefore a finite number of axes, the number of 
possible feasible solutions will be finite. Note that this heuristic will fail to detect degrees of 
freedom that are not along axes of symmetry. 

 
Introduction of domain-specific knowledge (geometric information, in this case), enables us to 
draw useful inferences about the space of allowed motions. The feasible solutions that emerge from 
this test, along with the nullspace of the cone, form a representation of the cone. Feasible solutions 
for a particular pair of parts can be combined to form joints between parts. 
 
5. Illustrative Examples 
 
5.1. Example 1 (Arm): Demonstration of the Framework 
 
In order to illustrate the framework defined in the previous sections, we present an example 
assembly. The assembly in Figure 2 is a 4-part assembly, with three functional degrees of freedom. 
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We choose to render the base immobile (i.e. we ground it), by constraining all the six degrees of 
freedom. 
 

 
Figure 2 . 4-part assembly with 3 degrees of freedom. 

 
The system is implemented in C++, using ACIS as a solid modeller, and with Open Inventor for 3-
D visualization. Contact analysis indicates that this is an open-chain assembly, with 9 linear-
boundary planar contacts (base-to-arm, arm-to-slider and slider-to-rotor), 1 curved-boundary planar 
contact (base-to-arm), 8 partial cylindrical contacts (base-to-arm, arm-to-slider and slider-to-rotor). 
This generates a total of 81 inequalities, linear in 18 variables forming the relative translational and 
rotational velocities (assuming the base is grounded). 
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Figure 3. Formation of the Matrix Representation. 

 
The 81 constraints define a polyhedral convex cone in 18-dimensional space (see Figure 3). The 
matrix representation can be partitioned into two: the nullspace and the interior boundary 
enumeration representation. Singular value decomposition returns 3 singular values, indicating that 
there are three completely unconstrained degree of freedom (and as a result, the nullspace is 3-
dimensional). The nullspace basis [N1, N2, N3] is shown in Equation 29. 
 

[ ]
[ ]
[ ]
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         Eq. 28 

3N  
Nullspace basis vector N1 indicates the presence of a translational degree of freedom for the slider 
and rotor with respect to the base. This freedom is at a 45° angle to the horizontal plane, indicated 
by the equal infinitesimal relative translational velocities in the x and z directions. Basis vector N2 
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indicates that there is a relative instantaneous rotation of the rotor with respect to the base at a 45° 
angle to the horizontal plane. The [0 –17 0] translational component stems from the fact that the 
instantaneous rotation is not about the origin, but instead about the axis [1 0 1] through the point 
[18 0 1]. 
 
For the instantaneous velocity of the body to be zero at the point [18 0 1], 
 

0
rrrrr =×+′= pvvtotal ω                Eq. 29 

 or: 
 

[ ]0170 −=×=′ ωrr
pv                Eq. 30 

 
where v′ is the translational component, namely [0 –17 0]; ωr  is the instantaneous angular velocity 
component, namely [1 0 1]; and p

r
 is the locus of positions which satisfies Equation 30. Thus, we 

get an axis [1 0 1] passing through [18 0 1]. Thus, nullspace analysis describes the boundary of the 
cone. 
 
Feasible solutions are constructed from the contact patches. The 18 primitive patches result in 216 
candidate feasible solutions. Of these, four solutions are found to be valid. Of the 4 valid solutions, 
3 are identical to the nullspace basis vectors. The fourth is [0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0], 
corresponding to the contact-breaking motion (vertical translation along the z-axis) between the 
base and the other 3 parts. 
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Figure 4. Mapping feasible solutions to assembly joints. 

 
Once valid feasible solutions are available, it is possible to group them together to define joints 
between parts in the assembly. The two feasible solutions in this example result in a revolute joint 
being formed between the two subassemblies (see Figure 4). Joint information is added to the 
representation of the assembly. Such automatic detection of joints is useful when performing 
motion simulation. 
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5.2. Example 2 (1-DOF 4-Bar Linkage): Global Constraint Resolution 
 
To verify the correctness of our implementation, we compared the results of our system against the 
analytical formulation for a 4-bar linkage. The example in this subsection is a 4-bar assembly with 
1 degree of freedom (see Figure 5) with each bar having a joint axis-to-joint axis distance of 39 
units. Contact analysis indicates that there are 8 curved-boundary planar contacts (2 between each 
pair of bars) and 4 complete cylindrical contact (1 between each pair of bars). 
 

 
Figure 5. 4-Bar Linkage 

 
This generates 460 inequalities in 18 relative translational and rotational velocity variables 
(assuming that Bar 1 is grounded). The inequality coefficient matrix A (Figure 3) has a rank of 17. 
Therefore, the nullspace N is 1-dimensional, indicating the presence of 1 completely unconstrained 
degree of freedom. A basis vector for the nullspace of A is: 
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         Eq. 31 

 
Removing one of the bars would have resulted in an open-chain assembly, with 3 more degrees of 
freedom. The closed-loop eliminates these extra degrees of freedom, and this is reflected in the 1-
dimensional nullspace. Examining the nullspace, we see that for an unit instantaneous rotation of 
Bar 4 with respect to Bar 1 about the z-axis, Bar 2 undergoes a unit instantaneous rotation about 
the z-axis, but at a position of [39 0 0] (using Equation 29). Bar 3 undergoes an instantaneous pure 
translation along the x-axis of a magnitude 39 times that of the rotation. 
 
The 4-bar linkage has been extensively studied by mechanism theorists. Its behavior is well known. 
From [Paul, 1979] (see pp. 233-234), we see that the “velocity-loop equation” written for our 4-bar 
linkage is: 
 

Bar 1 

Bar 2 Bar 3 

Bar 4 
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where L is the length of the bar, 2ωr  is the angular velocity of Bar 2 with respect to Bar 1, 3ωr  is 
the angular velocity of Bar 3 with respect to Bar 1, and 4ωr  is the angular velocity of Bar 4 with 
respect to Bar 1. Thus, 2ωr  is equal to 4ωr  and 3ωr  is zero. Since the links are rigid, for every δθ  
rotation of Bar 2 and Bar 4, there must be a δθL  x-axis displacement of Bar 3. This is identical to 
the previous result. This validates our implementation of degree of freedom extraction. 
 
6. Discussion 
 
In current design practice, when a device which contained parts with curved surfaces is considered, 
reasoning about its behavior is usually done by analytical methods that are difficult to implement, 
or by approximating all the curves as piecewise planar surfaces [Mattikalli et al., 1994]. The 
approximation is made on the basis of past experience (i.e. selecting the number of planes to 
represent a curved surface is a heuristic). Such an approximation propagates throughout the design 
process - part and assembly designers must ensure that the approximation does not constrain the 
degrees of freedom in the device; analysts must ensure that assemblies which are stable are not 
modeled as unstable; tolerancing specialists must account for the fact that the approximated 
surfaces may have modeled tolerances that are different from the desired specifications; process 
engineers may discover problems of fit and/or interferences in the model when actually no problem 
occurs (and vice versa). Assembly process engineers, tool engineers and operators may notice that 
some assembly tasks are impossible to perform due to this approximation. 
 
Even with an acceptable approximation, it is difficult to propagate the physical behavior through 
the different aspects of the design process. Even in a collaborative setting, when a part or assembly 
used in a previous design project was reused in a new design project, all that was known a priori 
was the geometry of the part or assembly. Only the CAD model of the part or assembly persisted 
across designs. No physical model-related information about the part or assembly was reused. In 
addition, feature-based design of complex devices requires verification of the fact that actual 
kinematic behavior matches the required behavior. 
 
The above discussion indicates a need for three capabilities that will support all aspects of the 
design process - creation of the ability to exactly reason with curved surfaces; the ability to obtain 
kinematics from assembly geometry; and the ability to package kinematic behavior into the 
representation of a part or an assembly. 
 
A change in the geometry of a part or a change in the relative positions of parts necessitates a 
complete regeneration of the models of the mechanical behavior of the assembly. If an acceptable 
model that mimics the mechanics behavior of an artifact can be extracted from the geometry of the 
artifact, and if mechanics models are merged when the corresponding geometry is merged, then the 
designer will be able to: create new designs out of existing artifacts or parts and reuse portions or 
all of older designs in new design projects. In addition, the mechanical models will ensure 
physically correct behavior for the integrated artifact; this implies that any automatically generated 
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simulation will be faithful to the models. Therefore, the designer will not have to recreate a 
simulation each time a new product is designed from previously created artifacts or parts. 
 
At the conceptual level, the designer knows the type and behavior of the joints in the concept 
design. However, the geometry still needs to be defined. At the preliminary design stage, the 
geometric information is defined, and the relative positions and orientations of components in the 
assembly are specified. Following this stage, component and joint representations are enriched to 
achieve a final refinement of the geometry. 
 
In order to generate assembly or disassembly plans for such assemblies, the designer needs to take 
articulation information into consideration. However, current methods of representing articulation 
are restricted to systems that require complete specification by the user [ADAMS, 1998] or are 
feature recognition based [Rajan et al., 1997]. The former are open to incorrect input by the user 
resulting in illegal articulation behavior. The latter do not account for incomplete geometry and 
incidental contacts. 
 
Our method is able to handle incomplete curved geometry, while at the same time resolving global 
(i.e. multi-part) constraint interactions. Linear algebra-based constraint models are derived directly 
from CAD models, and then converted into articulation representations suitable for assembly 
planning and motion simulation. 
 
7. Conclusions and Future Work 
 
This research forwards the state-of-the-art in the following ways: 
 
Exact Treatment of Curved Geometry. Previous work on the application of linear programming 
techniques to the contact mechanics between two surfaces was restricted to handling planar 
surfaces only (see [Mattikalli et al, 1994] and [Baraff and Mattikalli, 1993]). Curved surfaces were 
handled by approximating them as planar facets, or by using graphical methods. This result was 
extended to curved surfaces whose boundaries possess certain properties. The vast majority of 
manufactured parts have contacts that possess such boundaries. Therefore, the work presented here 
allows a designer to analyze and design devices that contain parts (or components) that in turn 
contain a broad class of curved surfaces. 
 
Modeling Support For Kinematics Behavior. Solving the contact conditions at the boundary will 
enable the designer to obtain the instantaneous degrees of freedom of the device. Using generate-
and-test methods and reasoning about the geometry of the artifact will reveal the motion limits to 
the degrees of freedom. Such information, when combined with information about the mass 
distribution and with friction models, will allow the designer to determine the stability of the 
device, handle articulation during assembly planning, during synthesis of part geometry, as well as 
during the operation of the device. 
 
Accurate and Automatic Simulation Synthesis. Simulation of the operation of the 
electromechanical device requires kinematic and dynamic information. Since each component 
incorporates such information, high-fidelity simulation can be created and executed with minimal 
user interaction. 
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Interesting research issues remain with regard to the handling of model uncertainty and in the 
quantification of the effect of model approximations, such as the discretization of curved planar 
contact boundaries, on the final result of the articulation analysis. 
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