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ABSTRACT

In this paper, we define a modeling paradigm that provides
simulation support for the design of mechatronic systems.
The paradigm supports associating more than one simulation
model with each system component. These models are orga-
nized in a reconfigurable model that represents the entire
model space of the component. The elements of this space
are models that vary from abstract (conceptual) to concrete
(fully determined), thereby supporting the evolutionary
nature of the design process. They allow the designer to
work with high-level concepts that can be specialized at later
stages in the design process.

INTRODUCTION

Because of the intense competition in the current global
economy, successful companies must react quickly to chang-
ing trends in the market place.  For example, the need for a
new product can be triggered by the introduction of new
technologies, changes in customer demands, or fluctuations
in the cost of basic materials and commodities.  To capitalize
on these imbalances in the market, a company must con-
ceive, design, and manufacture new products quickly and
inexpensively.  Because the design process consumes a sig-
nificant portion of the total development time, a shorter
design cycle provides a distinct competitive advantage.

The design cycle can be shortened significantly through vir-
tual prototyping. A virtual prototype enables the designers to
test whether the design specifications are met by performing
simulations rather than physical experiments; a physical pro-

totype is only needed for final testing.  Not only does virtual
prototyping make design verification faster and less expen-
sive, it provides the designer with immediate feedback on
design decisions.  This in turn promises a more comprehen-
sive exploration of design alternatives and a better perform-
ing final design.  To fully exploit the advantages of virtual
prototyping, however, simulation models have to be accurate
and easy to create.  

Creating high-fidelity simulation models is a complex activ-
ity that can be quite time-consuming.  To take full advantage
of virtual prototyping, it is necessary to develop a modeling
paradigm that supports model reuse, that is integrated with
the design environment, and that provides a simple and intu-
itive interface which requires a minimum of analysis exper-
tise.  This paper introduces such a paradigm: composable
and reconfigurable modeling, which is based on model com-
position from system components.

Reconfigurable models allow the designer to model systems
in a hierarchical fashion. Initially, a system can be described
by high-level components and the interactions between
them. The models of the high-level components can then be
refined iteratively without having to modify the system-level
model description. As a result, the system model can be
incrementally adapted as more detailed design features
become known. This is in contrast to most currently avail-
able modeling environments in which a small change in the
system description may require a large change in the model
structure.

In this paper, we consider simulation models of mechatronic
systems. Mechatronics can be defined as 

“A technological field that combines mechanics
with electronics and information technology to form
both functional interaction and spatial integration
in components, modules, products and systems.”
(Breunese 1996)

1. Corresponding author.



To provide simulation support to the mechatronic design
approach, we need modeling tools that capture system
behavior across energy domains. In recent years, a number
of modeling languages have emerged that capture mathemat-
ical models of mechatronic systems. These languages are
based on object-oriented principles, and include Dymola
(Dynasim AB 1999, Elmqvist et al. 1993), OMOLA (Ander-
son 1994), NMF (Sahlin 1996), and—more recently—Mod-
elica (Elmqvist 1998) and VHDL-AMS (IEEE 1999). 

Although these modeling languages are object oriented in
nature, they do not permit the model structure to be easily
modified. Instead, only mechanisms for parameter reconfig-
uration are provided. Given the evolutionary nature of the
design process, it would be desirable to accommodate recon-
figuration of the model structure also.

In de Vries’ work with polymorphic models (the MAX sys-
tem), he suggests an approach to achieve structure configu-
ration (de Vries et al. 1995). His polymorphic models are
similar to our concept of reconfigurable models; however,
they present the following limitations: 

• An instance of a model is considered an implementation.
This forces a new type to be defined for each new set of
parameter values for an implementation.

• Models are represented by bond graphs, which limits
their applicability to lumped parameter systems.

To overcome such limitations, we propose a system repre-
sentation based on two concepts: interface and implementa-
tion. In this model representation, systems are described
from a systems engineering point of view where subsystems
interact with their environment through energy exchange.
The interface of a system describes the interaction through a
set of ports. The implementation, on the other hand,
describes a system’s internal behavior. The interface and
implementation together define a complete model of a sys-
tem. A direct consequence of this new representation is that
it is possible to assign different implementations to the same
system interface, thereby achieving reconfigurability of
models. We call system models that are based on this model-
ing paradigm reconfigurable models.

Because reconfigurable models are an extension of port-
based models, we will first describe the port-based modeling
paradigm.

PORT-BASED MULTI-DOMAIN MODEL-
ING OF MECHATRONIC SYSTEMS

To provide better support for simulation-based design of
mechatronic systems, we have developed a modeling and

design paradigm based on composition.  A wide variety of
products, ranging from consumer electronics to cars, contain
mostly off-the-shelve components and components reused
from previous design generations; for instance, in cars, the
portion of completely new components is often less than
twenty percent.  As a result, the design of such systems con-
sists primarily of the configuration or assembly of existing
components.

The modeling of such systems can also be viewed as compo-
sition.  We can obtain a system level simulation model, by
combining the component models with the models that
define the interactions between the components.  Assuming
the models for individual components already exist in a com-
ponent library, and that the physics of the interactions
between the components have been modeled in a library of
interaction models, a system level simulation model can be
generated through the composition of existing component
and interaction models. To support modeling through com-
position, we have developed a port-based modeling para-
digm.

A port-based modeling paradigm

In our modeling paradigm, subsystems interact with each
other through ports (Diaz-Calderon et al. 1998, 1999). As
noted above, ports represent localized points on the bound-
ary of the system where energy exchange between the sys-
tem and the environment takes place. At a port, energy flows
in and out of the system. Consequently, there is a port for
each interaction point, and each port will belong to an energy
domain. For example, consider an electric transformer with
four terminals. Each terminal represents a port through
which electrical energy flows in and out of the transformer.
In this example, the ports belong to the electrical energy
domain; this captures the flow of power in terms of the volt-
ages and currents on the two sides of the transformer.

The energy flow through a port is represented by means of
two variables: an across variable and a through variable.
Across variables represent values measured between a global
reference point and the port. For instance, the across variable
at one of the ports in the transformer represents the voltage
between the physical terminal and ground. Through vari-
ables represent values measured through the element; e.g.,
the current in the transformer example.

Connections between ports represent the interactions
between different components. A connection between two
ports represents the energy exchange between two sub-
systems and imposes algebraic constraints on the port vari-
ables involved in the connection. In general, these



constraints take two forms: one form enforces the equality of
the across variables, and the second enforces the sum of the
through variables to be zero.

Physical interactions that represent energy exchange have no
predefined direction. Therefore, we capture a physical inter-
action with undirected connections representing non-causal
interactions. This approach to modeling reflects the physical
interactions more accurately and relieves the modeler of
specifying the input/output relations, as would be required in
a modeling environment such as Simulink.

Besides ports and connections that model energy flow, we
also consider signals and signal ports. No energy flows
through the signal ports, and the interaction between signal
ports is causal. That is, signal ports have a predefined input-
output direction that constrains the signal flow between com-
ponents. Signal and signal ports capture a system based on a
block diagram description similar to Simulink.

The system’s ports are collectively grouped into an interface,
which defines the interaction points of the system with the
environment. In this way, we can describe systems as self-
contained entities, whose interactions with the environment
can be described independently of the internal behavior of
the system, as illustrated in Figure 1.

The port-based modeling paradigm can describe component
interactions in any energy domain as long as the interaction
is not distributed but lumped. Consider for example a flexi-
ble beam. A finite element model may describe the behavior
of the beam. However, presuming that the interaction points
of the beam are localized at the two ends, we can describe its
interaction with the environment with two ports located at
the two ends. Thus, our modeling paradigm is limited to
interactions that are localized at a finite number of points on
the boundary of the system.

As illustrated in Figure 2, the port-based modeling paradigm
also supports a hierarchical model structure. The hierarchy

can have any number of levels; however, in order to trans-
form it into an adequate simulation model, the hierarchy
must be terminated with primitive systems, or systems that
cannot be divided into smaller subsystems. Compound sys-
tems on the other hand are composed by connecting primi-
tive models or compound models at a lower level in the
hierarchy.

Equation-based modeling

The behavior of a primitive system can be specified using
either of two formalisms, depending on whether the system
is energy-based or not. Both formalisms represent the behav-
ior of the system with a set of constitutive equations. The
difference between the two types of systems lies in how the
constitutive equations are specified and how the system’s
topology is described.

In the first formalism, the behavior of non-energy-based sys-
tems is described using a procedural approach. In this case, a
signal quantity represents the quantity that is available to the
environment through the interface of the system. Constitu-
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Figure 1: Model of an engineering system. Energy ports
are represented by non-directed lines while signal ports are
represented by arrows.

Figure 2: Hierarchical model structure



tive equations of this kind are described as assignments
(causal equations) that compute the value of a signal quantity
based on the inputs to the subsystem.

In the second formalism, the behavior of energy-based sys-
tems can be represented using a graph-based model (Diaz-
Calderon et al. 1999). Each edge in the graph has two associ-
ated quantities, called branch quantities: across quantity and
through quantity. These quantities are analytic functions of
time (i.e., they are piece wise continuous with a finite num-
ber of discontinuities). Across quantities, represent effort
such as voltage, temperature, or pressure that are the result of
a measurement taken across two energy ports of the system.
Through quantities represent flow such as current, heat flow
rate, or fluid flow rate that are the result of a measurement
taken in series with the component. To illustrate this, con-
sider an example of an electrical network. Here, the vertices
of the graph represent equipotential nodes in the circuit, and
edges represent branches of the circuit through which current
flows. The measurement taken across two nodes defines the
across branch quantity, while the measurement taken in
series with the component defines the through quantity. 

The constitutive equations are expressed by relating the
across and through quantities of one or several branches—
for example, a resistor has a single branch, and its constitu-
tive equation (Ohm’s law) relates the voltage across (the
across quantity) and the current through (the through quan-
tity) the resistor.

Constitutive equations define the behavior of a subsystem
without specifying a particular causal direction. The causal
direction emerges only when the equations are combined
with constitutive equations of other subsystems, and the
quantities that are external to the subsystem are specified. A
quantity is external to the subsystem if its value is computed
using a constitutive equation that is not part of the constitu-
tive equations of the subsystem. For example, when the con-
stitutive equation of a resistor is combined into a larger
system of equations, either the voltage or the current will be
defined externally; Ohm's law is causally oriented to reflect
this:  or . In the first case, the voltage v is
computed from the current i, which is computed using an
external equation. Similarly, in the second case, the current i
is computed from the voltage v. 

The equations appearing in the model can be of several
kinds: ordinary differential equations, algebraic equations,
or differential-algebraic equations. Ordinary differential
equations (ODE) can represent the variation of quantities as
a function of a single variable, such as time. Therefore,
ODEs are used to represent lumped parameter models. Alge-

braic equations do not contain partial or total derivatives.
When a model includes both ODE and algebraic equations,
the resultant system of equations is called a differential-alge-
braic system of equations (DAE). In this type of system,
algebraic equations represent constraints among the state
variables defined by the set of ODEs. 

Constitutive equations of both types (i.e., non-causal and
causal) may include a combination of branch quantities and
signal quantities. We call these types of models hybrid mod-
els since they describe the interaction of energy-based sys-
tems with non-energy-based systems. An example of this
type of behavioral description would be an electromechani-
cal system controlled by a digital controller.

If the system is compound, its behavior is described accord-
ing to the structural arrangement of subsystems, which in
turn may be compound or primitive. This unambiguously
defines the topological constraints among components. Con-
sequently, a compound system can be reduced through a
sequence of algebraic transformations into a primitive model
that exhibits the same behavior.

Meta knowledge

Whether using a compound or primitive model to describe a
system’s behavior, constitutive equations do not provide suf-
ficient information to reason about the properties of the sys-
tem since they are based on implicit assumptions and
approximations. In other words, the context in which a
model of a system can be applied is not explicit. If such
knowledge were explicit, one could not only reason about
the applicability of the model to a given problem, but also
decide when models having similar properties can be inter-
changed. 

One kind of meta knowledge that we consider is the operat-
ing region of the model. The operating region defines the
space of admissible values for the quantities of the model,
which provide meaningful results. Outside this space, the
model may provide erroneous results that invalidate its
application. To ensure that a model is used within its operat-
ing region, we explicitly express its bounds through the
operating conditions of the model. Operating conditions are
conditional expressions on the quantities of the model and
explicitly define the sub-domain for each quantity for which
the equations stated in the model are valid.

When it is necessary to define multiple operating regions, for
example to capture a large portion of the system’s operating
region, operating conditions are disjointed. Each element of
the disjunction represents a valid operating region that has an
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associated set of constitutive equations. In other words, oper-
ating conditions allow us to segment the domain of the quan-
tities involved in the constitutive equations. Consequently,
we can obtain a model that is applicable within a larger oper-
ating region of the system. For example, consider the operat-
ing region of the system shown in Figure 3. The domains of
the three quantities define the solution space of the system.
The operating conditions given as a function of the three
quantities (represented by the functions OCi) segment the
space into four regions (A, B, C, and D), each of which has
an associated set of equations (represented by the function
Rj) that describe valid behavior under these conditions.

Current support for port-based modeling

Using object-oriented modeling principles, it is possible to
describe a port-based model that is composable and hierar-
chical (Elmqvist 1998, Sahlin 1996, Anderson 1994, IEEE
1999). However, in an object-oriented modeling paradigm,
there is not necessarily a clear separation between the inter-
face of the model and the implementation of its behavior.
Often both concepts are merged together into a single model-
ing entity. In this modeling approach, only parametric recon-
figuration is allowed. However, to evaluate the design at
different levels of detail, changes in structure should also be
supported. This is achieved with reconfigurable models.

RECONFIGURABLE COMPONENT
MODELS

In a reconfigurable model, the interface of the model and the
implementation of its behavior are considered to be two sep-
arate concepts. By considering these two concepts indepen-
dently, it is possible to associate different implementations
with a single interface, achieving a structural modification of

models, and consequently, creating a reconfigurable model
(Figure 4). In addition to the traditional changes in parameter
values, a reconfigurable model provides a mechanism to
describe changes in the model structure by using the princi-
ples of composition and instantiation.

The composition principle denotes the mechanism by which
the formal behavior of the component is described in terms
of interfaces of subcomponents and their interactions. Since
composition unambiguously represents topological con-
straints among components, a composed model given by the
pair  can be reduced to a primitive model 
which exhibits equivalent behavior, where  represents
the binding of implementation  to interface .

Figure 3: Segmentation of the domain based on different operating regions
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Figure 4: A reconfigurable system model.
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As a result of the principle of instantiation, compound imple-
mentations are abstract. They are a composition of abstract
interfaces, that still need to be bound to implementations to
specify the behavior completely. Consequently, instantiating
a compound component (i.e., a component with a compound
implementation) requires the recursive instantiation of each
interface in the component.

Reconfigurable models are hierarchical in nature. Based on
the composition principle, we define self-contained imple-
mentations of a system in terms of the composition of sub-
system interfaces; i.e., a compound implementation.
However, a hierarchical system defined by reconfigurable
models is not fixed. Rather, it changes as implementations
are bound to the interfaces (model instantiation) that
describe the compound implementation. Specifically, bind-
ing different implementations to an interface results in a dif-
ferent structural arrangement and thus a different
hierarchical structure.

The second principle—the principle of instantiation—
describes the mechanism by which the interface of a model
is bound to its implementation. An implementation that
meets the requirements of an interface, can generally be
bound to it. However, the semantics of the resulting model
must be consistent with the context in which the model is
used. For example, consider the case of a resistor and a
capacitor whose interfaces both include the same set of inter-
action points (two electrical terminals). In such a case, an
implementation that satisfies the interface for the resistor
will also satisfy that of the capacitor. However, the semantics
of the resulting model will differ; hence they cannot be inter-
changed. In summary, we will allow bindings that produce
models having the same semantic meaning. 

There are two kinds of implementations that can be bound to
an interface and maintain a consistent semantic interpreta-
tion of the model. These are implementations with different
representations of equivalent behavior, and implementations
with different behavior. Accordingly, if  and  are two
implementations that satisfy interface , then,

(1)

The instantiation principle also provides the basis for defin-
ing a family of systems (i.e., the model space of a compo-
nent). An interface that can be bound to different
implementations by the instantiation principle defines a fam-
ily of systems. All members of the family will show the
same interaction characteristics but with different formal
behavior. This method of describing membership of an ele-
ment in a set is referred to as a type in the theory of computa-

tional objects and can be phrased as follows (Abadi and
Cardelli 1996):

“The type of an object provides the semantic infor-
mation that completely characterizes the object but
not its behavior.”

An interface defines a type, each member of which is a sub-
system having a unique formal behavior. Based on this
observation, it is possible to organize system models into a
type hierarchy. This type hierarchy is derived from a type
system that provides the notions of subtype and supertype
(Abadi and Cardelli 1996).

Let the symbol <: represent a reflexive and transitive subtype
relation between interfaces I and I’, then:

Definition Subtyping. I’ <: I if I’ has the same ports and
parameters as I and possibly more, and the following condi-
tions pertain:

1. The types of the ports are subtypes of types of corre-
sponding ports in I.

2. The types of the parameters are subtypes of the corre-
sponding parameters in I.

3. The semantics of the parameters are equivalent to the 
semantics of the corresponding parameters in I.

Based on the definition of subtype (and its complement,
supertype), two operations can be defined on the type hierar-
chy, namely, specialization and generalization. Specializa-
tion involves finding an interface for the same family of
components that includes more detail, while generalization
involves finding an interface that is less specific. These oper-
ations are carried out by traversing the hierarchy in either a
downward direction (specialization) or an upward direction
(generalization).

Definition Specialization. Let x and y be two interfaces.
Interface y is a specialization of interface x, denoted ,
if and only if the type of y is a subtype of the type of x, and
for any system S that contains x, y can be substituted for x
while maintaining the same semantics. This can be stated
formally as:

(2)

where the operator  should be interpreted as “x is
substituted by y in S” and  should be read “the system S
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evaluated with interface x”. Similarly, it is possible to derive
the property of generalization based on the supertype rela-
tion.

Parameter handling

In addition to the ports, it is also important to include the
parameters in the interface. Model parameters describe fun-
damental characteristics of the system. For example, inertia
and torque constants specify the invariant properties of a sys-
tem that represents an electric motor; they are constant quan-
tities that do not change value throughout the entire
simulation.

In defining parameters of lower level subsystems, two kinds
of parameters can be identified: formal and actual parame-
ters. A formal parameter is defined locally in the interface of
the subsystem, and it is used by a bound implementation. An
actual parameter contains the value of an argument that is
related to a formal parameter in a call to the model, and it is
defined by the environment. The value of the argument is the
value of an expression defined in terms of the formal param-
eters in the current scope. Parameter composition ensures
that the parameters of the system are propagated to all the
subsystems that were incorporated into the compound imple-
mentation.

The principles of instantiation and composition together with
parameter propagation provide the infrastructure required to
define reconfigurable models.

SUMMARY

In this paper, we have described a modeling paradigm based
on reconfigurable component models that supports the
design of mechatronic systems. In this paradigm, mathemati-
cal models consist of two elements: interface and implemen-
tation. The interface defines the mechanism by which the
model interacts with its environment, while the implementa-
tion describes the behavior of the component. Model recon-
figuration is achieved when the model of a component is
defined by binding an implementation to an interface.
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