
  

Object-Oriented Libraries of Physical Components in Simulation and Design 
 
 

Li Han     Christiaan J. J. Paredis     Pradeep K. Khosla 
Institute for Complex Engineered Systems and  

Department of Electrical and Computer Engineering 
Carnegie Mellon University 

Pittsburgh, PA 15213 
{lihan,cjp,pkk}@cs.cmu.edu 

 
 

Keywords: Composable modeling, design evolution, 
object-oriented libraries, simulation-based design, virtual 
prototyping. 
 
Abstract 
 
    Our competitive global business environment promotes 
faster, better and cheaper product design. With the rapid 
advancing computational technology, virtual prototyping 
and simulation-based design have great potential to reduce 
design cost and improve design quality.  
 
    To support simulation-based design of mechatronic 
systems, our group has developed a simulation and design 
environment in which design and modeling are tightly 
integrated.  This integration is based on component objects 
that combine descriptions of both form and behavior of 
system components.  By composing component objects into 
systems, the design team simultaneously specifies design 
alternatives and creates their models. 
 
    To facilitate component reuse and organization, and to 
accommodate modeling of systems evolving throughout the 
design process, we have developed a hierarchical 
component library structure based on a function taxonomy. 
When moving from the top to the bottom of the hierarchy, 
the component objects become more specific. A single 
component may appear in multiple locations in the 
taxonomy, depending on the viewpoint for its classification.   
 
    We have also developed a mechanism that allows a 
component object to gain access to the high-level behavior 
models of its ancestors and to be replaced by its descendants 
with more detailed behavior models. This allows the virtual 
prototype to evolve throughout the whole design process 
and to achieve the accuracy and efficiency required for the 
simulation experiments at each design stage. 
 

1 INTRODUCTION 
 
    Our competitive global business environment promotes 
faster, better and cheaper product design. In general, design 
is an iterative procedure with design alternatives evolving 
from abstract to specific. In order to verify proper 
functioning and provide design feedback, design 
alternatives need to be tested with physical mock-ups or 
virtual prototypes. With the rapid advancing computational 
technology, it becomes relatively fast and cheap to create, 
modify and test computer models. This renders substantial 
potential to virtual prototyping over physical prototyping in 
terms of improved design quality and reduced temporal and 
monetary design cost. 
 
    The design process is iterative and hierarchical in nature. 
To solve complex design problems, a design team typically 
considers the problem at different levels of abstraction, 
ranging from very high-level system decompositions to very 
low-level detailed specification of components. 
Accordingly, in the early stages of the design process, 
simulation models can capture the high-level, intended 
behavior of sub-systems, allowing one to use simulation to 
make important conceptual trade-offs.  As more details of 
the actual embodiment are included in design artifacts, more 
detailed models of the physical components will gradually 
replace these high-level models.  This indicates a need for a 
modeling paradigm to accommodate the modeling of 
systems evolving throughout the design process. 
 
    To support virtual-prototyping and simulation-based 
design, component objects and their models need to be 
organized in a fashion that facilitates their retrieval and 
subsequent reuse in evolutionary design and modeling 
process. This paper will present our component and 
component library schemata designed to address these 
issues.  Section 2 discusses related work. Sections 3 and 4 
introduce respectively our component object and component 



  

object library schemata, and discuss their usage in 
simulation and design.  Section 5 concludes the paper with a 
summary and a brief discussion on future research. 
 

2 RELATED WORK 
 
    A physical component is typically characterized by its 
form, function, and behavior[1, 2].  The form is a 
description of the physical embodiment of an artifact, while 
function is the purpose of the artifact—the behavior that is 
intended for the artifact. As is illustrated in Figure 1, the 
actual behavior does not depend on the function, but only 
on the form. While design or synthesis needs to determine a 
form to satisfy a given function, design verification needs to 
derive the behavior from the form and verify whether this 
behavior matches the function.  In the context of virtual 
prototyping, the behavior is described by mathematical 
models and design verification is achieved by performing 
simulation experiments with these models. 
 
    In general, one can think of design as a process that 
consists of decomposition and composition.  High-level 
functions are hierarchically decomposed into functions for 
subsystems; these sub-functions are then mapped to 
physical components that are in turn recomposed into a 
complete system.  This is the so-called configuration design 
process, which leads to designs specified in terms of 
components and their interconnections with each other. 
Such a design representation parallels the hierarchical 
modeling paradigm of a system:  models of components are 
connected to each other via interaction models (describing 
the dynamics of the component interactions) to reach a 
model of the system.  Both representations are based on 
hierarchical composition: composition of form in design 
and behavioral models in simulation [3, 4].  
 

    By taking advantage of the parallelism between 
composition in configuration design and composition in 
system modeling, a designer may simultaneously specify 
designs and create their models.  This is already common 
practice in several single-domain simulations such as 
electrical systems[5-7] and mechanical systems[8, 9]. The 
current trend is to extend this approach to multi-domain 
simulation [10, 11].  
 
    One mechanism to facilitate model composition is 
equation-based modeling[7, 12], which uses a set of 
equations to establish relations between the states, their 
derivatives, and time. Declarative or equation-based 
modeling does not impose a fixed causality on the model, as 
in the case of procedural modeling that uses assignments to 
express a dependent variable as a function of independent 
variables (fixed causality). The simulation engine for 
declarative modeling is responsible for converting the 
equations into software procedures that can be evaluated by 
the computer. The advantage of declarative languages is 
that users do not have to define the mathematical causality 
of the equations, so that the same model can be used for any 
causality imposed by other system components  
  
    The software design methodology of object-oriented 
programming has been applied to systems modeling as well, 
with the benefits of simplified model creation and 
maintenance [13-15] [16-18]. An important principle of 
object-oriented programming is that of information hiding 
or encapsulation: only the public interface of an object 
affects its interconnections with other objects. The same 
principle can be applied to modeling by making a clear 
distinction between the physical interactions of an object 
with its environment (interface) and its internal behavior 
(implementation) [19, 20]. The advantage of encapsulation 
is that a system can be modeled by composing (connecting) 
the interfaces of its sub-systems, independently of the future 
implementations of these subsystems [4, 20, 21]. 
 
    A second important principle of object-oriented 
programming is inheritance: objects that are derived from a 
parent class inherit its interface and data members.  
Similarly, in modeling, a model that derives from a parent 
model inherits the parent’s interface and equations.  The 
child model can be extended by including additional 
physical interactions (ports and parameters) in the interface 
or additional equations in the implementation [13, 14, 16]. 
Object oriented model design results in a hierarchical 
organization of component objects and simplifies the tasks 
of component and model reuse, maintenance, and 
organization.  
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Figure 1: The relation between form, function, and 

behavior in the context of virtual prototyping 



  

    The current design databases used in industry mainly 
contain geometry CAD information. It has been recognized 
that more information on design, such as functional 
descriptions, design rationales, manufacturing processes, 
mathematical models and animations, is needed to facilitate 
design knowledge exchange and reuse.  This issue has been 
addressed in the study of several research groups[22-24]. A 
very comprehensive effort to organize and store design 
knowledge is part of the ongoing NIST design repository 
project [25, 26].  
 

3 COMPONENTS IN COMPOSABLE 
SIMULATION AND DESIGN 
 
    To facilitate virtual prototyping and simulation-based 
design of mechatronic systems, our group has been working 
on a composable simulation and design paradigm, which is 
based on model composition from sub-components[27-31]. 
Our research so far has focused on developing mechanisms 
for component and model reuse, evolution and organization. 
In the following two sections, we will introduce the 
schemata for component objects and component object 
libraries. We will discuss their usages in simulation and 
design, and point out related technical issues. 
 
3.1 Data Schema for Components 
 
    For the efficiency of system design and modeling, a 
component object needs to include information that reflects 
the characteristics of the modeled physical component. In 
our current implementation, a component object, as shown 
in Figure 2, consists of a configuration interface, 

configuration(s), CAD model(s), behavioral model(s), and 
relationships between them.  
 
    The configuration interface of a component consists of 
ports and instantiation parameters.  The instantiation 
parameters completely specify the information needed to 
model the component, while the  configuration ports define 
the intended interactions between a component and its 
environment.  For instance, the configuration interface of 
the AC motor in Figure 2 has ports for the fastener holes in 
the stator, the shaft of the rotor, and the electrical connector.  
It is through its ports that a component is connected to and 
interacts with other components. In our system, a user will 
use a configuration interface to represent a component in a 
system specification and to gain access to the associated 
behavior models. 
 
    The behavioral models in the component objects are also 
characterized by port-based interfaces.  However, here, the 
ports model the exchange of energy, mass, or signals 
between a component and its environment.  Often there is a 
one-to-one mapping between the ports of the configuration 
interface and the ports in the behavioral interface but not 
always.  For instance, the shaft of the AC motor 
corresponds to a mechanical energy port. But the AC plug is 
modeled as two electrical ports, one for each pin, and there 
is no configuration port corresponding to the thermal port in 
the behavior model, since thermal loss is not intended for an 
AC motor. Port-based behavioral models are further 
decomposed into interfaces (behavior ports and model 
parameters) and implementations (in the form of 
mathematical equations or composition of the behavior 
models). The port-based models are re-configurable, so that 
the same component can be simulated at different levels of 
details without having to modify the system-level model 
description. More information on our behavior models can 
be found in [20, 29, 30, 32]. 

 
    The CAD models in component objects serve a dual role.  
On one hand, a default CAD model can be used as a 
specification of the form of a component: it provides 
nominal dimensions, tolerances, and material 
specifications—enough information for a third party 
manufacturer to manufacture the object.  On the other hand, 
a CAD model is a mathematical representation of the 
geometry of an object.  In this role, it can be used for 
visualization purposes, or as part of behavioral models[31], 
e.g. in collision check.  Depending on the required accuracy 
of the analysis, multiple CAD models may be used to 
describe the component at different levels of detail.   
 
    The configuration of a component specifies 
subcomponents and their interconnections. In other words, 
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Figure 2: Primitive component objects consist of a 

configuration interface, CAD and behavior model(s). 



  

it reflects the physical decomposition of the component and 
can be viewed as an implementation of a configuration 
interface. A configuration interface may be associated with 
multiple configurations to reflect different physical 
decompositions. 
 
    A primitive component is a component that does not 
include configuration information. The AC motor in  Figure 
2 is treated as a primitive component without elaborating its 
physical subcomponents, while the motor-pulley component 
shown in Figure 3 is a compound component. Notice that a 
compound component can derive its models from the 
composition of the models of its subcomponents, as shown 
in Figure 3. Therefore, it is allowed for a compound 
component not to include CAD and behavior models in its 
definition, which is not the case for a primitive component.  
 
3.2 Use Case Scenario: Use Component 
Objects in Simulation 
 
    Assume that a user has  created a design alternative 
through a composition of component objects. Then the 
following steps will be performed to create and simulate a 
behavior model of the design. 

 
1. Connect the configuration ports of the component 

objects as dictated by the design alternative. 

2. For each component object, choose a behavior 
model. 

3. Connect the behavior models and choose 
interaction behavior models. 

4. Simulate the overall system behavior model to see 
if the design alternative satisfies the design 
requirements.   

 
    In a first step, the compatibility of the connecting 
configuration ports is checked. Mismatches such as 
connecting a DC electrical port to a mechanical port will be 
caught and reported to the user. We use a configuration port 
hierarchy and port compatibility map to determine if two 
configuration ports can be connected [30].  
 
    Model selection, as performed in a second step, is a 
difficult research topic on its own[33-35]. The main concern 
is to choose a model that is accurate and efficient enough to 
meet the simulation requirements. Our reconfigurable model 
structure and the inheritance mechanisms introduced in the 
next section will provide a variety of behavior models with 
different levels of details from which a user  can choose. 
We are studying various ways to assist users in the selection 
of models and even automate the model selection process. 
 
    The correspondence between configuration ports and 
behavior ports provides default behavior port connections, 
based on the configuration port connections specified in the 
first step. However, the user may still need to specify 
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Figure 3: Compound components have configuration(s) associated with their configuration 
interface. Their CAD and behavior models can be derived from those of their sub-components. 



  

connections for behavior ports that do not have a one-to-one 
mapping to configuration ports. Furthermore, the user needs 
to choose interaction models appropriate for simulation 
requirements[30]. 

 
4 COMPONENT LIBRARIES IN 
SIMULATION AND DESIGN 
 
4.1 Data Schema for Component Libraries 
 
    For the success of composable modeling and simulation, 
it is imperative to develop a component library scheme, that 
stores components and their models in an organized fashion, 
that facilitates component indexing, search and reuse, and 
that accommodates the modeling of systems evolving 
throughout the design process.   
 
    To address these issues and to take advantage of the 
object-oriented modeling paradigm, we propose a 
hierarchical component library structure based on a function 
taxonomy, as illustrated in Figure 4. When moving from the 
top to the bottom of the hierarchy, the component objects 
become more specific.  At the top, the objects are abstract 
and represent families of components sharing some 
functionality, such as the family of all motors which has the 
function of converting electrical energy to mechanical 
energy; at the bottom, the leaf nodes of the hierarchy 
represent completely specified physical components, such 
as AC motor XYZ manufactured by company ABC.  
 
    A single component may appear in multiple locations in 
the taxonomy, depending on the viewpoint for its 
classification.  For example, an AC rotational motor is an 

energy conversion component, but can also be considered as 
a structural element that implements a rotary joint.   
 
    As a refinement of its parent component, a child will 
have a configuration interface that is a subtype of the 
configuration interface of its parent. In other words, a child 
will have more configuration ports and instantiation 
parameters, or have configuration ports and instantiation 
parameters that are subtypes of the parent ports and 
parameters.   
 
    Furthermore, we notice that models of a component 
object should be applicable to all of its child objects, due to 
the abstraction-refinement relationship between a parent and 
its children. To facilitate model reuse and model 
consistency between a child object and its parents, we 
introduce an object-oriented mechanism that would allow a 
child to inherit its parents’ models, and recursively, to 
inherit all of its ancestors’ models. With such an inheritance 
mechanism available, the modeling of a new component 
only needs to be focused on its specific properties that are 
not reflected by its ancestors.  
 
    In particular, we will establish the correspondence 
between the configuration interfaces of each child and 
parent pair, so that a child component may have access to 
the configuration interface of it parents, and thus, gain 
access to the behavior models of its parents. Figure 5 shows 
the correspondence of the configuration interfaces of a 
motor and an AC motor. In particular, the aggregated port 
of the stator port and the rotor port, and the AC port of the 
AC motor correspond to the mechanical port and the 
electrical port of the motor.  
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Figure 4: An example schema for a component library 



  

  
    In addition to the access to the models inherited from its 
ancestors or created for its own, a component object in a 
system virtual prototype can be replaced by its descendants 
with more detailed models. This allows the virtual prototype 
to evolve throughout the whole design process and to 
achieve the accuracy and efficiency required for the 
simulation experiments at each design stage. 
 
4.2 Use Case Scenarios 
 
Support Design and Simulation Evolution with 
Hierarchical Component Objects  
 
    Assume that component P is a parent of component C. 
Then the configuration interface of component C is a 
subtype of that of component P.  
 

1. For design evolution: assume that component P is 
used in a design alternative specification and 
simulation, and that a designer wants to move to a 
more detailed design by replacing it with 
component C.  Then the conventional subtyping 
mechanism would allow the replacement of the 
configuration interface of component P with that 
of component C. As a result, the behavior models 
of component C may be used in generation of a 
more detailed system model.   

2. For the usage of a high-level model in simulation: 
assume that component C is used in a design 
alternative specification and simulation, and that a 
designer wants to use its high level model in the 
system simulation. (This requirement may happen 
in many situations, for example when component 
C is not the major concern of the simulation study 

and the designer wants to reduce the overall 
simulation time.) Then with the established 
correspondence between the configuration 
interfaces of components P and C, component C 
may get access to the configuration interface of P 
and use the high-level behavior models of P in the 
overall system simulation. 

 
Add a New Component Object to a Library 
 
    Consider a library (possibly empty) and a component 
object that needs to be added to the library. To take 
advantage of the inheritance mechanism and maintain the 
functional hierarchical structure, the component can be 
modeled and inserted into the library in the following way. 
 

1. Identify all of its parents and the appropriate 
position for it in the function hierarchy. 

2. Establish the relationship between its configuration 
interface and those of its parents. 

3. Model its specific behaviors that have not been 
reflected by its parents and ancestors. 

4. Check if the newly added component can serve as 
a parent for other components. If so, establish the 
relationship between its configuration interface and 
those of its children, and possibly, simplify the 
behavior models of the children by removing the 
models included in the new component. 

 
    The first step will put the new component as a leaf node 
in the hierarchy. However, it is possible that a more specific 
component that can be its child has already been stored in 
the library. Step 4 is used to capture this kind of 
relationship.  
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Figure 5: Correspondence of the configuration interfaces of a parent-child pair of component objects 



  

5 SUMMARY 
 
    To support simulation-based design of mechatronic 
systems, our group has developed a simulation and design 
environment in which design and modeling are tightly 
integrated.  This integration is based on component objects 
that combine descriptions of both form and behavior of 
system components.  By composing component objects into 
systems, the design team simultaneously designs and 
models new artifacts. 
 
    To facilitate component reuse and organization, and to 
accommodate modeling of systems evolving throughout the 
design process, we have developed a hierarchical 
component library structure based on a function taxonomy. 
When moving from the top to the bottom of the hierarchy, 
the component objects become more specific. A single 
component may appear in multiple locations in the 
taxonomy, depending on the viewpoint for its classification.   
 
    We have also developed a mechanism that allows a 
component object to gain access to the high-level behavior 
models of its parents and to be replaced by its children with 
more detailed behavior models. This allows the virtual 
prototype to evolve throughout the whole design process 
and to achieve the accuracy and efficiency required for the 
simulation experiments at each design stage. 
 
    The research presented in this article is only an initial 
step towards an integrated framework for simulation-based 
design.  Our current implementation is limited to component 
models with lumped interactions.  To allow very detailed 
analyses and to more accurately model some physical 
phenomena, finite-element models need to be included in 
our framework. In addition, our current system only 
includes deterministic behavior models and needs to be 
generalized to deal with stochastic models. Furthermore, 
refined design strategies for component object and model 
libraries will be developed so that the libraries will have 
appropriate sizes and structures that will facilitate 
component selection and system level modeling. 
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