

Object-Oriented Libraries of Physical Components in Simulation and Design

Li Han Christiaan J. J. Paredis Pradeep K. Khosla
Institute for Complex Engineered Systems and

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
{lihan,cjp,pkk}@cs.cmu.edu

Keywords: Composable modeling, design evolution,
object-oriented libraries, simulation-based design, virtual
prototyping.

Abstract

 Our competitive global business environment promotes
faster, better and cheaper product design. With the rapid
advancing computational technology, virtual prototyping
and simulation-based design have great potential to reduce
design cost and improve design quality.

 To support simulation-based design of mechatronic
systems, our group has developed a simulation and design
environment in which design and modeling are tightly
integrated. This integration is based on component objects
that combine descriptions of both form and behavior of
system components. By composing component objects into
systems, the design team simultaneously specifies design
alternatives and creates their models.

 To facilitate component reuse and organization, and to
accommodate modeling of systems evolving throughout the
design process, we have developed a hierarchical
component library structure based on a function taxonomy.
When moving from the top to the bottom of the hierarchy,
the component objects become more specific. A single
component may appear in multiple locations in the
taxonomy, depending on the viewpoint for its classification.

 We have also developed a mechanism that allows a
component object to gain access to the high-level behavior
models of its ancestors and to be replaced by its descendants
with more detailed behavior models. This allows the virtual
prototype to evolve throughout the whole design process
and to achieve the accuracy and efficiency required for the
simulation experiments at each design stage.

1 INTRODUCTION

 Our competitive global business environment promotes
faster, better and cheaper product design. In general, design
is an iterative procedure with design alternatives evolving
from abstract to specific. In order to verify proper
functioning and provide design feedback, design
alternatives need to be tested with physical mock-ups or
virtual prototypes. With the rapid advancing computational
technology, it becomes relatively fast and cheap to create,
modify and test computer models. This renders substantial
potential to virtual prototyping over physical prototyping in
terms of improved design quality and reduced temporal and
monetary design cost.

 The design process is iterative and hierarchical in nature.
To solve complex design problems, a design team typically
considers the problem at different levels of abstraction,
ranging from very high-level system decompositions to very
low-level detailed specification of components.
Accordingly, in the early stages of the design process,
simulation models can capture the high-level, intended
behavior of sub-systems, allowing one to use simulation to
make important conceptual trade-offs. As more details of
the actual embodiment are included in design artifacts, more
detailed models of the physical components will gradually
replace these high-level models. This indicates a need for a
modeling paradigm to accommodate the modeling of
systems evolving throughout the design process.

 To support virtual-prototyping and simulation-based
design, component objects and their models need to be
organized in a fashion that facilitates their retrieval and
subsequent reuse in evolutionary design and modeling
process. This paper will present our component and
component library schemata designed to address these
issues. Section 2 discusses related work. Sections 3 and 4
introduce respectively our component object and component

object library schemata, and discuss their usage in
simulation and design. Section 5 concludes the paper with a
summary and a brief discussion on future research.

2 RELATED WORK

 A physical component is typically characterized by its
form, function, and behavior[1, 2]. The form is a
description of the physical embodiment of an artifact, while
function is the purpose of the artifact—the behavior that is
intended for the artifact. As is illustrated in Figure 1, the
actual behavior does not depend on the function, but only
on the form. While design or synthesis needs to determine a
form to satisfy a given function, design verification needs to
derive the behavior from the form and verify whether this
behavior matches the function. In the context of virtual
prototyping, the behavior is described by mathematical
models and design verification is achieved by performing
simulation experiments with these models.

 In general, one can think of design as a process that
consists of decomposition and composition. High-level
functions are hierarchically decomposed into functions for
subsystems; these sub-functions are then mapped to
physical components that are in turn recomposed into a
complete system. This is the so-called configuration design
process, which leads to designs specified in terms of
components and their interconnections with each other.
Such a design representation parallels the hierarchical
modeling paradigm of a system: models of components are
connected to each other via interaction models (describing
the dynamics of the component interactions) to reach a
model of the system. Both representations are based on
hierarchical composition: composition of form in design
and behavioral models in simulation [3, 4].

 By taking advantage of the parallelism between
composition in configuration design and composition in
system modeling, a designer may simultaneously specify
designs and create their models. This is already common
practice in several single-domain simulations such as
electrical systems[5-7] and mechanical systems[8, 9]. The
current trend is to extend this approach to multi-domain
simulation [10, 11].

 One mechanism to facilitate model composition is
equation-based modeling[7, 12], which uses a set of
equations to establish relations between the states, their
derivatives, and time. Declarative or equation-based
modeling does not impose a fixed causality on the model, as
in the case of procedural modeling that uses assignments to
express a dependent variable as a function of independent
variables (fixed causality). The simulation engine for
declarative modeling is responsible for converting the
equations into software procedures that can be evaluated by
the computer. The advantage of declarative languages is
that users do not have to define the mathematical causality
of the equations, so that the same model can be used for any
causality imposed by other system components

 The software design methodology of object-oriented
programming has been applied to systems modeling as well,
with the benefits of simplified model creation and
maintenance [13-15] [16-18]. An important principle of
object-oriented programming is that of information hiding
or encapsulation: only the public interface of an object
affects its interconnections with other objects. The same
principle can be applied to modeling by making a clear
distinction between the physical interactions of an object
with its environment (interface) and its internal behavior
(implementation) [19, 20]. The advantage of encapsulation
is that a system can be modeled by composing (connecting)
the interfaces of its sub-systems, independently of the future
implementations of these subsystems [4, 20, 21].

 A second important principle of object-oriented
programming is inheritance: objects that are derived from a
parent class inherit its interface and data members.
Similarly, in modeling, a model that derives from a parent
model inherits the parent’s interface and equations. The
child model can be extended by including additional
physical interactions (ports and parameters) in the interface
or additional equations in the implementation [13, 14, 16].
Object oriented model design results in a hierarchical
organization of component objects and simplifies the tasks
of component and model reuse, maintenance, and
organization.

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Figure 1: The relation between form, function, and

behavior in the context of virtual prototyping

 The current design databases used in industry mainly
contain geometry CAD information. It has been recognized
that more information on design, such as functional
descriptions, design rationales, manufacturing processes,
mathematical models and animations, is needed to facilitate
design knowledge exchange and reuse. This issue has been
addressed in the study of several research groups[22-24]. A
very comprehensive effort to organize and store design
knowledge is part of the ongoing NIST design repository
project [25, 26].

3 COMPONENTS IN COMPOSABLE
SIMULATION AND DESIGN

 To facilitate virtual prototyping and simulation-based
design of mechatronic systems, our group has been working
on a composable simulation and design paradigm, which is
based on model composition from sub-components[27-31].
Our research so far has focused on developing mechanisms
for component and model reuse, evolution and organization.
In the following two sections, we will introduce the
schemata for component objects and component object
libraries. We will discuss their usages in simulation and
design, and point out related technical issues.

3.1 Data Schema for Components

 For the efficiency of system design and modeling, a
component object needs to include information that reflects
the characteristics of the modeled physical component. In
our current implementation, a component object, as shown
in Figure 2, consists of a configuration interface,

configuration(s), CAD model(s), behavioral model(s), and
relationships between them.

 The configuration interface of a component consists of
ports and instantiation parameters. The instantiation
parameters completely specify the information needed to
model the component, while the configuration ports define
the intended interactions between a component and its
environment. For instance, the configuration interface of
the AC motor in Figure 2 has ports for the fastener holes in
the stator, the shaft of the rotor, and the electrical connector.
It is through its ports that a component is connected to and
interacts with other components. In our system, a user will
use a configuration interface to represent a component in a
system specification and to gain access to the associated
behavior models.

 The behavioral models in the component objects are also
characterized by port-based interfaces. However, here, the
ports model the exchange of energy, mass, or signals
between a component and its environment. Often there is a
one-to-one mapping between the ports of the configuration
interface and the ports in the behavioral interface but not
always. For instance, the shaft of the AC motor
corresponds to a mechanical energy port. But the AC plug is
modeled as two electrical ports, one for each pin, and there
is no configuration port corresponding to the thermal port in
the behavior model, since thermal loss is not intended for an
AC motor. Port-based behavioral models are further
decomposed into interfaces (behavior ports and model
parameters) and implementations (in the form of
mathematical equations or composition of the behavior
models). The port-based models are re-configurable, so that
the same component can be simulated at different levels of
details without having to modify the system-level model
description. More information on our behavior models can
be found in [20, 29, 30, 32].

 The CAD models in component objects serve a dual role.
On one hand, a default CAD model can be used as a
specification of the form of a component: it provides
nominal dimensions, tolerances, and material
specifications—enough information for a third party
manufacturer to manufacture the object. On the other hand,
a CAD model is a mathematical representation of the
geometry of an object. In this role, it can be used for
visualization purposes, or as part of behavioral models[31],
e.g. in collision check. Depending on the required accuracy
of the analysis, multiple CAD models may be used to
describe the component at different levels of detail.

 The configuration of a component specifies
subcomponents and their interconnections. In other words,

Model 1

Behavioral Models CAD Models

C
o

n
fi

g
u

ra
ti

o
n

M
o

d
el

s

Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models CAD ModelsCAD Models

AC Motor

Rotor
Port

Stator Port

AC
Port

Model 1

Behavioral Models CAD Models

C
o

n
fi

g
u

ra
ti

o
n

M
o

d
el

s

Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models CAD ModelsCAD Models

AC Motor

Rotor
Port

Stator Port

AC
Port

Figure 2: Primitive component objects consist of a

configuration interface, CAD and behavior model(s).

it reflects the physical decomposition of the component and
can be viewed as an implementation of a configuration
interface. A configuration interface may be associated with
multiple configurations to reflect different physical
decompositions.

 A primitive component is a component that does not
include configuration information. The AC motor in Figure
2 is treated as a primitive component without elaborating its
physical subcomponents, while the motor-pulley component
shown in Figure 3 is a compound component. Notice that a
compound component can derive its models from the
composition of the models of its subcomponents, as shown
in Figure 3. Therefore, it is allowed for a compound
component not to include CAD and behavior models in its
definition, which is not the case for a primitive component.

3.2 Use Case Scenario: Use Component
Objects in Simulation

 Assume that a user has created a design alternative
through a composition of component objects. Then the
following steps will be performed to create and simulate a
behavior model of the design.

1. Connect the configuration ports of the component

objects as dictated by the design alternative.

2. For each component object, choose a behavior
model.

3. Connect the behavior models and choose
interaction behavior models.

4. Simulate the overall system behavior model to see
if the design alternative satisfies the design
requirements.

 In a first step, the compatibility of the connecting
configuration ports is checked. Mismatches such as
connecting a DC electrical port to a mechanical port will be
caught and reported to the user. We use a configuration port
hierarchy and port compatibility map to determine if two
configuration ports can be connected [30].

 Model selection, as performed in a second step, is a
difficult research topic on its own[33-35]. The main concern
is to choose a model that is accurate and efficient enough to
meet the simulation requirements. Our reconfigurable model
structure and the inheritance mechanisms introduced in the
next section will provide a variety of behavior models with
different levels of details from which a user can choose.
We are studying various ways to assist users in the selection
of models and even automate the model selection process.

 The correspondence between configuration ports and
behavior ports provides default behavior port connections,
based on the configuration port connections specified in the
first step. However, the user may still need to specify

Stator Port

Component Configuration

C
o

n
fi

g
u

ra
ti

o
n

Stator PortStator Port

Shaft
Port

Pulley
Rotor

Port

AC Motor
Shaft
Port

Pulley
Rotor

Port

AC Motor
Shaft
Port

Pulley
Rotor

Port

AC Motor

Interface

Motor-Pulley Compound Component

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Pulley

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Wire_1

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Pulley

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Wire_1

B
olt_4

B
olt_1

B
olt_3

B
olt_2

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Pulley

Shaft-Pulley
Interaction

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

D
er

iv
ed

 M
o

d
el

s
AC
Port

Belt
Port
Belt
Port
Belt
Port
Belt
Port
Belt
Port
Belt
PortBelt

Port
Belt
Port
Belt
Port
Belt
Port
Belt
Port
Belt
Port

AC
Port

Figure 3: Compound components have configuration(s) associated with their configuration
interface. Their CAD and behavior models can be derived from those of their sub-components.

connections for behavior ports that do not have a one-to-one
mapping to configuration ports. Furthermore, the user needs
to choose interaction models appropriate for simulation
requirements[30].

4 COMPONENT LIBRARIES IN
SIMULATION AND DESIGN

4.1 Data Schema for Component Libraries

 For the success of composable modeling and simulation,
it is imperative to develop a component library scheme, that
stores components and their models in an organized fashion,
that facilitates component indexing, search and reuse, and
that accommodates the modeling of systems evolving
throughout the design process.

 To address these issues and to take advantage of the
object-oriented modeling paradigm, we propose a
hierarchical component library structure based on a function
taxonomy, as illustrated in Figure 4. When moving from the
top to the bottom of the hierarchy, the component objects
become more specific. At the top, the objects are abstract
and represent families of components sharing some
functionality, such as the family of all motors which has the
function of converting electrical energy to mechanical
energy; at the bottom, the leaf nodes of the hierarchy
represent completely specified physical components, such
as AC motor XYZ manufactured by company ABC.

 A single component may appear in multiple locations in
the taxonomy, depending on the viewpoint for its
classification. For example, an AC rotational motor is an

energy conversion component, but can also be considered as
a structural element that implements a rotary joint.

 As a refinement of its parent component, a child will
have a configuration interface that is a subtype of the
configuration interface of its parent. In other words, a child
will have more configuration ports and instantiation
parameters, or have configuration ports and instantiation
parameters that are subtypes of the parent ports and
parameters.

 Furthermore, we notice that models of a component
object should be applicable to all of its child objects, due to
the abstraction-refinement relationship between a parent and
its children. To facilitate model reuse and model
consistency between a child object and its parents, we
introduce an object-oriented mechanism that would allow a
child to inherit its parents’ models, and recursively, to
inherit all of its ancestors’ models. With such an inheritance
mechanism available, the modeling of a new component
only needs to be focused on its specific properties that are
not reflected by its ancestors.

 In particular, we will establish the correspondence
between the configuration interfaces of each child and
parent pair, so that a child component may have access to
the configuration interface of it parents, and thus, gain
access to the behavior models of its parents. Figure 5 shows
the correspondence of the configuration interfaces of a
motor and an AC motor. In particular, the aggregated port
of the stator port and the rotor port, and the AC port of the
AC motor correspond to the mechanical port and the
electrical port of the motor.

Component Mechanical
Component

Translational
Joint

Rotational
Joint

Transducer Motor AC Rot. MotorAC Motor

DC Motor

Sensor

Motor XYZ

Component Mechanical
Component

Translational
Joint

Rotational
Joint

Transducer Motor AC Rot. MotorAC Motor

DC Motor

Sensor

Motor XYZ

Figure 4: An example schema for a component library

 In addition to the access to the models inherited from its
ancestors or created for its own, a component object in a
system virtual prototype can be replaced by its descendants
with more detailed models. This allows the virtual prototype
to evolve throughout the whole design process and to
achieve the accuracy and efficiency required for the
simulation experiments at each design stage.

4.2 Use Case Scenarios

Support Design and Simulation Evolution with
Hierarchical Component Objects

 Assume that component P is a parent of component C.
Then the configuration interface of component C is a
subtype of that of component P.

1. For design evolution: assume that component P is
used in a design alternative specification and
simulation, and that a designer wants to move to a
more detailed design by replacing it with
component C. Then the conventional subtyping
mechanism would allow the replacement of the
configuration interface of component P with that
of component C. As a result, the behavior models
of component C may be used in generation of a
more detailed system model.

2. For the usage of a high-level model in simulation:
assume that component C is used in a design
alternative specification and simulation, and that a
designer wants to use its high level model in the
system simulation. (This requirement may happen
in many situations, for example when component
C is not the major concern of the simulation study

and the designer wants to reduce the overall
simulation time.) Then with the established
correspondence between the configuration
interfaces of components P and C, component C
may get access to the configuration interface of P
and use the high-level behavior models of P in the
overall system simulation.

Add a New Component Object to a Library

 Consider a library (possibly empty) and a component
object that needs to be added to the library. To take
advantage of the inheritance mechanism and maintain the
functional hierarchical structure, the component can be
modeled and inserted into the library in the following way.

1. Identify all of its parents and the appropriate
position for it in the function hierarchy.

2. Establish the relationship between its configuration
interface and those of its parents.

3. Model its specific behaviors that have not been
reflected by its parents and ancestors.

4. Check if the newly added component can serve as
a parent for other components. If so, establish the
relationship between its configuration interface and
those of its children, and possibly, simplify the
behavior models of the children by removing the
models included in the new component.

 The first step will put the new component as a leaf node
in the hierarchy. However, it is possible that a more specific
component that can be its child has already been stored in
the library. Step 4 is used to capture this kind of
relationship.

Configuration Interface

Model 1

Behavioral Models CAD Models

Configuration InterfaceConfiguration Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models CAD ModelsCAD Models

AC Motor

Rotor
Port

Stator Port

AC
Port

Model 1

Behavioral Models

Configuration Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models

Generic Motor

Mechanical
Port

Electrical
Port

Configuration Interface

Model 1

Behavioral Models CAD Models

Configuration InterfaceConfiguration Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models CAD ModelsCAD Models

AC Motor

Rotor
Port

Stator Port

AC
Port

Model 1

Behavioral Models

Configuration Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models

Generic Motor

Mechanical
Port

Electrical
Port

Figure 5: Correspondence of the configuration interfaces of a parent-child pair of component objects

5 SUMMARY

 To support simulation-based design of mechatronic
systems, our group has developed a simulation and design
environment in which design and modeling are tightly
integrated. This integration is based on component objects
that combine descriptions of both form and behavior of
system components. By composing component objects into
systems, the design team simultaneously designs and
models new artifacts.

 To facilitate component reuse and organization, and to
accommodate modeling of systems evolving throughout the
design process, we have developed a hierarchical
component library structure based on a function taxonomy.
When moving from the top to the bottom of the hierarchy,
the component objects become more specific. A single
component may appear in multiple locations in the
taxonomy, depending on the viewpoint for its classification.

 We have also developed a mechanism that allows a
component object to gain access to the high-level behavior
models of its parents and to be replaced by its children with
more detailed behavior models. This allows the virtual
prototype to evolve throughout the whole design process
and to achieve the accuracy and efficiency required for the
simulation experiments at each design stage.

 The research presented in this article is only an initial
step towards an integrated framework for simulation-based
design. Our current implementation is limited to component
models with lumped interactions. To allow very detailed
analyses and to more accurately model some physical
phenomena, finite-element models need to be included in
our framework. In addition, our current system only
includes deterministic behavior models and needs to be
generalized to deal with stochastic models. Furthermore,
refined design strategies for component object and model
libraries will be developed so that the libraries will have
appropriate sizes and structures that will facilitate
component selection and system level modeling.

ACKNOWLEDGEMENTS
 We would like to thank other members of the
Composable Simulation Group at Carnegie Mellon
University, especially, Rajarishi Sinha, Vei-Chung Liang
and Khaled H. Al-Ajmi, for sharing their insights in
simulation-based design and virtual prototyping.
 This research was funded in part by DARPA under
contract ONR # N00014-96-1-0854, by the National
Institute of Standards and Technology, by the National

Science Foundation under grants # CISE/115/KDI 98 73005
and # EIA-97 29827, by the Pennsylvania Infrastructure
Technology Alliance, and by the Institute for Complex
Engineered Systems at Carnegie Mellon University.

REFERENCES

[1] G. Pahl and W. Beitz, Engineering design: A systematic

approach, 2nd ed. London, U.K.: Springer-Verlag,
1996.

[2] S. B. Shooter, W. Keirouz, S. Szykman, and S. J.
Fenves, "A model for the flow of design information,"
presented at ASME DETC 2000, 12th International
Conference on Design Theory and Methodology,
Baltimore, MD, 2000.

[3] A. Sydow, "Hierarchical Concepts in Modeling and
Simulation," in Progress in Modeling and Simulation,
F. E. Cellier, Ed. London: Academic Press, 1982.

[4] G. Zhang and B. P. Zeigler, "The system entity
structure: Knowledge representation for simulation
modeling and design," in Artificial Intelligence,
Simulation and Modeling, L. E. Widman, K. A.
Loparo, and N. R. Nielsen, Eds. New york: Wiley,
1989, pp. 47-73.

[5] J. Keown, Orcad Pspice and Circuit Analysis, 4th ed:
Prentice Hall, 2000.

[6] IEEE, 1076-1993 IEEE Standard VHDL Language
Reference Manual: IEEE, 1993.

[7] IEEE, 1076.1 Working Group: Analog and mixed-
signal extensions for VHDL: IEEE, 1999.

[8] A. Shabana, "Flexible multibody dynamics: review of
past and recent developments," Multibody System
Dynamics, vol. 1, pp. 189-222, 1997.

[9] W. Schiehlen, "Multibody system dynamics: roots and
perspectives," Multibody System Dynamics, vol. 1, pp.
149-188, 1997.

[10] Aubert and Garcia-Sabiro, "VHDL-AMS, an unified
language to describe multi-domain, mixed-signal
designs, mechatronic applications," presented at FDL
1999: 2nd Forum on Design Languages, France, 1999.

[11] R. Lutz, R. Scrudder, and J. Graffagnini, "High Level
Architecture Object Model Development and
Supporting Tools," Simulation, vol. 71, pp. 401-409,
1998.

[12] H. Elmqvist, F. Boudaud, J. Broenink, D. Brück, T.
Ernst, P. Fritzon, A. Jeandel, K. Juslin, M. Klose, S. E.
Mattsson, M. Otter, P. Sahlin, H. Tummescheit, and H.
Vangheluwe, Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling, 1997.

[13] H. Elmqvist, S. E. Mattsson, and M. Otter, "Modelica:
The new object-oriented modeling language," presented

at The 12th European Simulation Multiconference,
Manchester, UK, 1998.

[14] B. P. Zeigler, Object-oriented simulation with
hierarchical, modular models: Academic Press, 1990.

[15] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, 2nd ed:
Academic Press, 2000.

[16] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A.
W. Westerberg, "ASCEND: An object oriented
computer environment for modeling and analysis. 1 -
The modeling language," Computers and Chemical
Engineering, vol. 15, pp. 53-72, 1991.

[17] P. A. Fishwick, "Integrating Continuous And Discrete
Models With Object Oriented Physical Modeling,"
presented at 1997 Western Simulation Multiconference,
Phoenix, Arizona, 1997.

[18] M. Anderson, "Object-oriented modeling and
simulation of hybrid systems," in Department of
Automatic Control. Lund, Sweden: Lund Institute of
Technology, 1994.

[19] F. E. Cellier, "Object-oriented modeling: means for
dealing with system complexity," presented at 15th
Benelux Meeting on Systems and Control, Mierlo,
Netherlands, 1996.

[20] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla,
"Reconfigurable Models: A Modeling Paradigm to
Support Simulation-Based Design," presented at 2000
Summer Computer Simulation Conference, Vancouver,
Canada, 2000.

[21] B. P. Zeigler and C.-J. Luh, "Model based management
for multifacetted systems," ACM Transactions on
Modeling and Computer Simulation, vol. 1, pp. 195-
218, 1991.

[22] H. C. Park and T. G. Kim, "A relational algebraic
framework for VHDL models management,"
Transactions of the Society for Computer Simulation
International, vol. 15, pp. 43-55, 1998.

[23] A. P. J. Breunese, J. L. Top, J. F. Broenink, and J. M.
Akkermans, "Library of Reusable models: Theory and
Application," Simulation, vol. 71, pp. 7-22, 1998.

[24] V. Devedzic, "A survey of modern knowledge
modeling techniques," Expert systems with
applications, vol. 17, pp. 275-294, 1999.

[25] S. Szykman, "Design Respositories: Engineering
Design’s New Knowledge Base," IEEE Intelligent
Systems, vol. 15, pp. 48-55, 2000.

[26] S. Szykman, S. J. Fenves, S. B. Shooter, and W.
Keirouz, "A foundation for interoperability in next-
generation product development systems," presented at
2000 ASME Design Engineering Technical
Conferences (20th Computers and Information in

Engineering Conference), paper No. DETC2000/CIE-
14622, Baltimore, MD, 2000.

[27] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla,
"A composable simulation environment for
mechatronic systems," presented at SCS 1999 European
Simulation Symposium, Erlangen, Germany, 1999.

[28] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla,
"Automatic generation of system-level dynamic
equations for mechatronic systems," Journal of
Computer-Aided Design, vol. 32, pp. 339-354, 2000.

[29] C. J. J. Paredis, A. Diaz-Calderon, R. Sinha, and P. K.
Khosla, "Composable Models for Simulation-Based
Design," Engineering with Computers, vol. in press,
2001.

[30] R. Sinha, C. J. J. Paredis, and P. K. Khosla, "Modeling
of Component Interactions in Configuration Design,"
Carnegie Mellon University, Pittsburgh, PA, Technical
Report 2001.

[31] R. Sinha, C. J. J. Paredis, and P. K. Khosla,
"Integration of mechanical CAD and behavioral
modeling," presented at Proceedings 2000 IEEE/ACM
International Workshop on Behavioral Modeling and
Simulation, Orlando, FL, USA, 2000.

[32] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla,
"Organization and selection of reconfigurable models,"
presented at Proceedings of WSC 2000, Winter
Simulation Conference, Orlando, FL, USA, 2000.

[33] C. Brodley, "Dynamic Automatic Model Selection,"
University of Massachusetts, Amherst, Technical
Report 92-30, February 1992.

[34] Levy, Iwasaki, and Fikes, "Automated Model Selection
for Simulation Based on Relevance Reasoning,"
Artificial Intelligence, vol. 96, pp. 351-394, 1997.

[35] N. Meade and T. Islam, "Technological Forecasting-
Model Selection, Model Stability, and Combining
Models," Management Science, vol. 44, pp. 1115-1130,
1998.

