
Design of Modular Fault Tolerant Manipulators

Christiaan J. J. Paredis, Carnegie Mellon University, Pittsburgh, PA, USA

Pradeep K. Khosla, Carnegie Mellon University, Pittsburgh, PA, USA

In this paper, we deal with two important issues in re-

lation to modular recon�gurable manipulators, namely,

the determination of the modular assembly con�gura-

tion optimally suited to perform a speci�c task and

the synthesis of fault tolerant systems. We present a

numerical approach yielding an assembly con�guration

that satis�es four kinematic task requirements: reach-

ability, joint limits, obstacle avoidance and measure of

isotropy. Further, because critical missions may in-

volve high costs if the mission were to fail due to a fail-

ure in the manipulator system, we address the prop-

erty of fault tolerance in more detail. We prove the

existence of fault tolerant manipulators and develop an

analysis tool to determine the fault tolerant work space.

We also derive design templates for spatial fault toler-

ant manipulators. For general purpose manipulators

two redundant degrees-of-freedom are needed for every

order of fault tolerance. However, we show that only

one degree of redundancy is su�cient for task speci�c

fault tolerance.

1 Introduction

Conventional (serial or parallel link) manipulators are
often considered to be general-purpose and
exible sys-
tems. Unfortunately, these systems are not general
purpose. In order to understand this, consider a com-
puter which is a general purpose computing engine if it
can compute a computable function. Following a sim-
ilar logic, a manipulator will be general purpose if it
could do a `doable' task. In de�ning a general purpose
manipulator, one has, of course, to de�ne a `doable'
task �rst. For the time being, let us avoid this open
issue and consider two tasks that two di�erent manip-
ulators can perform, but that cannot be performed by
either manipulator separately. If this is the case, then
one may conclude that none of the above two manip-
ulators are general purpose. So if one has to de�ne a

general purpose manipulator, then one has �rst to de-
�ne a criterion for `doable' tasks (like `doability'). Such
a de�nition may lead to the development of models of
`doability' (like computability) and maybe to Turing-
like machine models of manipulators. While such a de-
velopment would certainly do a lot for advancing the
state-of-the-art in manipulators, it is not our intention
to address this general problem.

In order to make the problem tractable, let us de-
�ne a set of tasks that we would like to perform with a
manipulator. Let us also de�ne a set of basic modules
(consisting of joints and links) that we may combine to
create various manipulators. Finally, let us assume the
existence of a methodology that will accept a task (in
the form of a program or as a set of requirements) as
input and �nd a manipulator that can be created from
the given set of modules to perform the task. This
scenario is described in Fig. 1, and it allows us to put
forth one possible de�nition of a general-purpose ma-
nipulator.

General-purpose Manipulator: If for every task in
the set of tasks, it is possible to �nd a manipulator
that can be created from the given set of modules to do
the task, then we de�ne the system of modules (or the
system of all possible manipulators) as general purpose
with respect to the set of tasks. We will call such a
system a Recon�gurable Modular Manipulator System
(RMMS).

Note that the above de�nition does not require us to
de�ne a set of all possible `doable' tasks nor does it re-
quire us to de�ne the criteria for determining `doability'
even though that is the ultimate goal of our research.

Our past work has addressed the development of the
modules and the technology for the RMMS [21]. The
RMMS has many potential applications in both haz-
ardous and industrial environments. It puts forth the
idea of designing a speci�c manipulator for a task and

C. Paredis and P. Khosla

Task Program

Manipulators Modules

Abstract Task Requirements

input

output

Reconfigurable Modular Manipulator Systems

Reconfigurable Modular Manipulator System?
Is Task Program executable by

− VAL II

− C code

−

− D−H parameters
− Material specifications
− Motor speicifications

− Module specifications

− positions/orientations
− force application
− accuracy
− dexterity
− obstacles
−

Figure 1: De�nition of a general purpose manipulator.

also the notion of the user writing device (or manip-
ulator) independent code. The RMMS raises several
theoretical issues and it is our aim to address one of
these in this paper. Speci�cally, we describe a design
methodology that accepts a task speci�cation as its
input, determines a kinematic con�guration of the de-
sired manipulator and selects the modules to create
this manipulator.

In order to support the current practice of picking
the best con�guration amongst available robots, sev-
eral expert systems have been built to aid the user or
the applications development engineer [15]. A straight-
forward extension of this selection process has been the
inclusion of the design of new manipulators, optimally
suited for a speci�c application [1, 16]. A totally di�er-
ent approach to the robot design problem �nds its roots
in simulation. A variety of commercial robot simula-
tion packages are currently available [5, 22], providing
designers with convenient tools to quickly check the
implications of di�erent design decisions. In general,
however, these simulation packages still require a hu-
man to make the design decisions. Finally, a third way
of dealing with the problem of robot design, has grown
out of the �eld of mechanism design [13, 19]. Unlike
the rule based expert systems, these programs are al-

gorithmic in nature. Commonly, the design process is
subdivided in two stages: form synthesis and dimen-
sional synthesis. The �rst stage is usually performed
by searching over the set of feasible mechanism types,
while the second stage consists of optimizing the set of
dimensional parameters.

The approach we propose in this paper di�ers from
the methods listed above, because we are speci�cally
interested in modular manipulators. The interest in
modular manipulators has grown steadily over the last
decade [6, 24], and several related research issues have
been addressed [2, 3, 7, 10, 14, 18]. However, the
problem of determining the modular con�guration op-
timally suited for one speci�c task, has never been ad-
dressed before to the best of our knowledge. In this
paper, we investigate modular design from kinematic
task requirements. These requirements a�ect only the
kinematic structure of the manipulator, while dynamic
requirements a�ect both its kinematic and dynamic
structure. Examples of kinematic requirements are
work space volume, maximum reach, and maximum
positional error. Examples of dynamic requirements
are maximum pay-load, maximum joint velocities, and
maximum joint accelerations. Just as task require-
ments can be classi�ed as kinematic or dynamic re-
quirements, the design procedure can also be split into
two parts: kinematic design and dynamic design [10].
Kinematic design determines the kinematic structure
of the manipulator, while dynamic design determines
the dynamic con�guration. However, the dynamic de-
sign may require a change in kinematic structure, and
thus a few iterations may be necessary to �nd a ma-
nipulator that satis�es both kinematic and dynamic
requirements.

In the �rst part of this paper, we only consider reach-
ability, joint limit, obstacle avoidance, and measure of
isotropy requirements. A numerical procedure is pro-
posed which determines a modular assembly con�gu-
ration that meets all the requirements. In the second
part, we focus our attention on one additional require-
ment, namely, fault tolerance. Recently, fault tolerant
(or failure tolerant) robotics has been the subject of
several publications [11, 23], in which di�erent aspects
of the problem are addressed. Visinsky et al. [23] pro-
pose a framework to include failure detection in fault
tolerant robot systems. Lewis and Maciejewski [11],
on the other hand, discuss the importance of the con-
troller and the redundancy resolution. In this paper,

Design of Modular Fault Tolerant Manipulators

we focus our attention on the design of fault tolerant
manipulators. We de�ne fault tolerance as the abil-
ity to continue the performance of a task even after
immobilization of a joint due to failure. Several prop-
erties of fault tolerant manipulators are discussed and
are illustrated with examples.

2 Kinematic Design: Preliminary Re-

sults

2.1 Problem Statement

The problem solved in this section is the determination
of a modular assembly con�guration, that satis�es all
the kinematic task requirements. These requirements
are that the manipulator must be able to reach a spec-
i�ed set of positions/orientations, pj, (reachability re-
quirement), without violating the motion constraints of
the joint modules (joint limit requirement), and with-
out colliding with any parallelepiped-shaped obstacles
in the work space (obstacle avoidance requirement).
Moreover, at the positions/orientations, pj, the mea-
sure of isotropy, must be larger than a user speci�ed
minimum (measure of isotropy requirement).

In Section 2.2 and 2.3, we develop a numerical pro-
cedure to solve this design problem. To facilitate the
implementation of our approach, we consider six types
of modules, as shown in Fig. 2. The choice of these spe-
ci�c modules guarantees a simple conversion from the
module dimensions and orientations into the Denavit-
Hartenberg (D-H) parameters of the resulting manipu-
lator (a set of 3 D-H parameters per degree-of-freedom,
determines unambiguously the kinematic structure of
any serial link manipulator). It has been shown by Kel-
mar and Khosla [7] that this conversion can be achieved
for modules of arbitrary geometry. The actual number
of di�erent modules considered for the design can be
far larger than six, due to variations in the parame-
terized dimensions, and our design method is general
enough to allow for this.

We also require that the robot base be �xed and
known, that the �rst joint module be of type 0 or 1 (i.e.
the �rst joint axis is vertical), and that the last mod-
ule be a wrist with three axes intersecting at a point.
These restrictions result from our implementation of
the inverse kinematics and can be relaxed by using it-
erative solutions to the inverse kinematics problem, as
proposed in [2]. Also, the requirement that the robot

Joint 2:

Joint 1:

L2

L1

d

d

L2

d

Joint 0:

d

L1

Joint 3:

Links:

L
L2

L1

Straight link totally determined by its length. Three roll wrist.

Four types of joints

Figure 2: The types of manipulator modules that are con-

sidered in the design procedure.

base be �xed and known, can be relaxed as was shown
by Kim [8], who addressed the problem of kinematic
synthesis and base position synthesis simultaneously.

Finally, we would like to point out that this design
problem can possibly have more than one solution.
Consider the design of a 2-DOF planar manipulator,
with link lengths L1 and L2, satisfying the task require-
ment that the manipulator should be able to reach a
point located behind an obstacle without violating the
joint limits, as is illustrated in Fig. 3. The region of the
(L1;L2)-plane containing the solutions is bounded by
the curves labeled c, d and e. All the manipulators in-
side this region satisfy all the design requirements and,
therefore, are all equally good with respect to these
requirements.

2.2 Solution Approach

In this section, we evaluate di�erent approaches to
the problem of determining the modular con�guration,
given some kinematic task speci�cations. The prob-
lem can be interpreted as a mapping from task speci-
�cations into constraints in the modular con�guration
space, as is shown in Fig. 1. This mapping is nontrivial
due to the highly nonlinear character of the kinematic

Figure 3: A two-DOF planar design example with solution.

relations and due to the complexity of the task speci-
�cations. Krishnan [10], therefore, suggested to solve
the inverse problem �rst, namely, to analyze which task
requirements are satis�ed by a given modular con�g-
uration. This information is stored in lookup tables,
which can then be used in a search procedure. One
obvious disadvantage to this approach is the combina-
torial explosion in the number of di�erent con�gura-
tions. Let the number of di�erent modules available
be N , and let R be the number of relative orientations
in which one module can be mounted on the previous
module. The total number of con�gurations that can
be obtained from this set of modules is:

Num =
NX
i=1

R(i�1) N !

(N � i)!
(1)

This approach would therefore require a very large
amount of memory storage for the lookup tables. Also,
adding a new module requires that all the lookup tables
be updated.

A di�erent approach is to �rst design a manipulator
de�ned by a set of continuously varying D-H parame-
ters, as proposed in [17], and then transform this design
into a modular con�guration. The main problem here
is the discretization of the continuous solution. As is
known from integer programming, simply taking the
discrete con�guration nearest to the continuous solu-
tion might result in an infeasible solution. Therefore,
we suggest working directly in the modular con�gu-
ration space. Of course, an exhaustive search in this
space su�ers from combinatorial explosion in much the
same way the look up table approach does. However,
the e�ciency of the search procedure can be improved
drastically by `guiding' the search to the most promis-
ing regions of the search space. Instead of answering
the question whether a certain modular design meets
all the task requirements with a simple `yes' or `no',
we estimate the `goodness' or `badness' of the design,
i.e., \How far are we away from a solution?" Guid-
ing the search then means focusing the search e�ort
on directions of decreasing `badness'. This approach
is usually referred to as a heuristic search technique
[20], because in general, it is impossible to compute
the `badness', or the distance to the nearest solution,
exactly. The heuristic function only estimates this dis-
tance so that it is possible that, locally, the heuristic
decreases even though the actual distance to a solution
increases. This corresponds to a local minimum in op-
timization terminology. To overcome this inadequacy,
we have to employ a search method, such as simulated
annealing, that allows for local hill climbing.

Simulated annealing was �rst proposed by Kirk-
patrick [9] as a combinatorial optimization algorithm.
The method is a random iterative improvement algo-
rithm with the modi�cation that, under certain condi-
tions, an increase in the heuristic function is accepted
(In order to be compatible with the standard termi-
nology in discussions of simulated annealing, we use
the term objective function instead of heuristic func-
tion, henceforth). A new trial con�guration is gener-

Design of Modular Fault Tolerant Manipulators

ated randomly in the neighborhood of the current con-
�guration. The condition for acceptance of this trial
con�guration is:

�
�Fobj � 0) accept

exp(��Fobj=T) > random[0;1)) accept
(2)

which depends on a control variable, T , the tempera-
ture. The algorithm is started at a high temperature
for which most new con�gurations are accepted. Af-
ter each iteration the temperature is decreased until
no new acceptable con�guration can be found. The
search is then frozen. We adapted this basic algorithm
to include the special properties of our objective func-
tion. In particular, the algorithm is stopped when a
new trial con�guration has an objective function value
equal to zero, even if the search is not yet frozen. We
know that a con�guration with a `badness' of zero sat-
is�es all the design requirements.

2.3 Computation of the Objective Function

The goal in this section is to �nd an objective func-
tion which is zero when all the design speci�cations
are satis�ed and which is otherwise proportional to
the amount of violation of these speci�cations. Min-
imizing the objective function by simulated annealing
corresponds then to a search, guided towards the most
promising regions of the search space. For a given mod-
ular con�guration, the corresponding objective func-
tion can also be interpreted as a penalty for violating
certain task speci�cations. The goal of the search is
then to �nd a con�guration with zero penalty.

We now propose a methodology for constructing a
penalty function. Let us �rst de�ne some terminology.
A con�guration is the set of D-H parameters which de-
termines unambiguously the kinematic structure of a
modular manipulator con�guration. A posture is the
position of a manipulator corresponding to a speci�c
set of joint angles. A task point is a speci�ed posi-
tion/orientation of the end e�ector that the manipula-
tor must be able to reach without violating the other
task requirements.

By taking a closer look at the task requirements,
one notices that all the requirements are de�ned for a
speci�c con�guration in a speci�c posture reaching for
a speci�c task point. The penalty for such a posture
should be de�ned such that, if any single requirement

is not satis�ed, the penalty for the posture is positive.
This can be achieved by de�ning a nonnegative penalty
for each task requirement, as described in [17], and
summing these penalties for a posture:

Ppost =
X

requirements

Preq (3)

The task penalty is now de�ned as the minimum over
all the posture penalties, so that it is zero when all the
task requirements are satis�ed for at least one posture:

Ptask = min
post

Ppost = min
post

(
X
req

Preq) (4)

Finally, the total penalty of a manipulator con�gura-
tion is given by the sum of all the task penalties:

Pconf =
X
tasks

Ptask =
X
tasks

(min
post

(
X
req

Preq)) (5)

2.4 Example

The example solved in this section is the design of a
seven degree-of-freedom manipulator that is able to
reach eight di�erent task points, located in an environ-
ment which includes �ve obstacles. The joint modules
have a limited motion range and the task points must
be reached in a posture with a measure of isotropy
of at least 0.6. It is also required that the manipula-
tor consists of a subset of the twenty di�erent modules
(4 joints, 1 wrist, 16 links: we also consider a link of
length zero). It is assumed, at this point, that an un-
limited number of each type of module is available, so
that a design which includes the same module type sev-
eral times is acceptable. All the task requirements are
summarized in the input �le in Fig. 4.

A quick calculation gives us an idea of the extent
of the search space. A 7-DOF manipulator consists
of �ve links, four joints and one wrist, and is further
determined by �ve angles, specifying the relative orien-
tations of the joint modules. Taking into account the
restrictions, that the �rst joint module must be of type
zero or one and the last module must be a wrist, the
number of con�gurations in the search space equals:

(#links)5(#joints)3(#joints of type 0 or 1)
(#wrists)(#relative orientations)5

= 165 � 43 � 2 � 1 � 85 � 4:4� 1012
(6)

C. Paredis and P. Khosla

7 # number of degrees of freedom
3 # number of dimensions

8 # number of relative orientations
16 # number of link modules
#number |length
#---------------------
0 0.0
1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.6
7 0.7
8 0.8
9 0.9
10 1.0
11 1.1
12 1.2
13 1.3
14 1.4
15 1.5

4 # number of joint modules
#number|type |l1 |d |l2 |th_min |th_max
#---
0 0 0.0 0.1 0.0 -150.0 150.0
1 1 0.1 0.1 0.0 -150.0 150.0
2 2 0.1 0.1 0.1 -150.0 150.0
3 3 0.1 0.1 0.1 -150.0 150.0

1 # number of wrist modules
#number|l1 |l2 |min1 |max1 |min2 |max2 |min3 |max3
#---
0 0.1 0.05 -100.0 100.0 -150.0 150.0 -266.0 266.0

0.6 # mi_min: min measure of isotropy.
8 # num_points: number of points
#xpos |ypos |zpos |Xrot |Yrot |Zrot
#---
0.5 0.5 1.0 0. 0. 90.
0.5 0.0 0.5 0. 90. 0.
0.5 0.0 1.5 0. -90. 0.
0.5 -0.5 1.0 0. 0. -90.
1.5 0.5 1.0 0. 0. 90.
1.5 0.0 0.5 0. 90. 0.
1.5 0.0 1.5 0. -90. 0.
1.5 -0.5 1.0 0. 0. -90.

5 # num_obst: number of obstacles.
#xpos |ypos |zpos |Xrot |Yrot |Zrot |xdim |ydim |zdim
#---
2. -2. 0.425 0. 0. 0. 3.7 3.7 0.85
2. 2. 0.425 0. 0. 0. 3.7 3.7 0.85
2. -2. 1.425 0. 0. 0. 3.7 3.7 0.85
2. 2. 1.425 0. 0. 0. 3.7 3.7 0.85
-1. 0. 1. 0. 0. 0. 1.9 4. 2.

Figure 4: The input �le of the 7-DOF example.

link# angle# joint#

1 10 4 1
2 14 4 3
3 3 3 0
4 12 6 3
5 14 0 |

Table 1: Module number of 7-DOF design.

Starting from a random initial guess, the simulated
annealing algorithm evaluated on the average only
about 2700 con�gurations before �nding a solution.
One of these solutions is tabulated in Table 1 and Ta-
ble 2. It is a SCARA-like manipulator with a nearly
spherical joint at the end of the second link. The o�set

DOF di ai �i

1 1.1 1.6 180o

2 0.1 0.0 90o

3 1.8 0.0 �90o
4 0.1 0.0 90o

5 1.6 0.0 90o

6 0.0 0.0 �90o
7 0.05 0.0 |

Table 2: D-H parameters of 7-DOF design.

Figure 5: The manipulator reaching point two while avoid-

ing all the obstacles.

along the �rst axis is 1 meter and the �rst twist an-
gle is 180o, so that the �rst and second link move in
a horizontal plane exactly between the four obstacles.
Because of the spherical joint, link 3 can move either
in a horizontal or a vertical plane, so that all the task
points can be reached without hitting any obstacles, as
shown in Fig. 5.

3 General Purpose Fault Tolerant Ma-

nipulators

In the rest of this paper, we focus our attention on one
additional task requirement, namely, fault tolerance.
To set the stage for our development, we de�ne the
following properties of fault tolerant manipulators [2]:

� General Purpose Fault Tolerant Manipula-
tor: An n-DOF manipulator that will still be able
to meet the task speci�cations, even if any one or
more of its joints fail and are frozen at any arbi-
trary joint angles.

Design of Modular Fault Tolerant Manipulators

� k-Reduced Order Derivative (k-ROD):
When k joints of an n-DOF manipulator fail, the
e�ective number of joints is (n � k). The result-
ing faulty manipulator is called a k-reduced order
derivative.

� Order of Fault Tolerance: An n-DOF manip-
ulator is fault tolerant of the k-th order, if and
only if all k-reduced order derivatives can still per-
form the speci�ed task. We call the manipulator
k-fault-tolerant.

� Fault Tolerant Work Space (FTWS): The
fault tolerant work space of a k-fault tolerant ma-
nipulator is the set of points reachable by all pos-
sible k-reduced order derivatives.

These de�nitions di�er from the concept of fault tol-
erance as proposed by Maciejewski [12]. Instead of at-
tributing the property of fault tolerance to a manipu-

lator, he quanti�es a measure of fault tolerance for a
manipulator posture and describes a technique to deter-
mine the optimal fault tolerant posture, based on the
singular value decomposition of the Jacobian matrix.
If a joint fails in this optimal posture, the resulting
reduced order derivative will have maximum possible
dexterity. However, a failure at a di�erent angle may
make the execution of the task impossible.

In the rest of this section, if no speci�c task is men-
tioned, it is assumed that the task consists of reach-
ing a nonzero volume of points in the task space, i.e.,
an m-dimensional manifold in the m-dimensional task
space. A manipulator that can only reach a manifold
of dimension lower than m in a fault tolerant way, is
considered not to be fault tolerant.

4 Properties of General Purpose Fault

Tolerant Manipulators

4.1 Existence

A general purpose manipulator has six DOFs which
allow it to position its end e�ector in an arbitrary po-
sition and orientation anywhere in its work space. An
obvious way to make this manipulator fault tolerant is
to design every joint with a redundant actuator. If one
of the actuators of the resulting 2n-DOF fault tolerant
manipulator were to fail, the redundant actuator could
take over and the manipulatorwould still be functional.

Similarly, a k-fault tolerant manipulator can be con-
structed by duplicating every DOF k times, resulting
in a (k + 1)n-DOF manipulator.

4.2 Boundary of the Fault Tolerant Work
Space

In this section, we show that a boundary point of the
FTWS is a critical value. Consider a k-fault tolerant
planar manipulator,M. A boundary point, pb, of the
FTWS has to be an element of the boundary of the
work space of at least one ROD,M�, obtained by freez-
ing k joints of M. Indeed, if pb were an interior point
of the work spaces of all RODs, then it would by de�ni-
tion be an interior point of the FTWS and not a bound-
ary point. The Jacobian ofM�, JM� , can be obtained
from the Jacobian of M, JM , by deleting the columns
corresponding to the frozen DOFs. Because pb is a
boundary point of the work space ofM�, the Jacobian
ofM� at pb is singular. We prove now that JM is sin-
gular too. Suppose that JM were non-singular, then
at least one of the columns corresponding to a frozen
DOF would be outside the column space of the singu-
lar matrix, JM� . Physically this means that a small
change in the angle of that frozen DOF would cause
the end e�ector of M to move in a direction with a
component perpendicular to the boundary of the work
space of the ROD, M�, as illustrated in Fig. 6. The
ROD with this new frozen angle would be unable to
reach the point, pb. As a result, pb would be outside
the FTWS, contradicting the fact that pb is a bound-
ary point of the FTWS. Thus, JM is singular and pb
is a critical value.

Consequently, the FTWS is bounded by critical
value manifolds. For planar positional manipulators,
the critical value manifolds are concentric circles, and
the FTWS is an annulus with inner radius RFTWS

min and
outer radius RFTWS

max .

4.3 Required Degree of Redundancy

In Section 4.1, it is shown that, in general, kn redun-
dant DOFs|i.e. (k+1)n DOFs in total|are su�cient
to achieve k-th order fault tolerance. For planar posi-
tional manipulators, however, we prove that 2k DOFs
are also necessary for k-th order fault tolerance.

The proof shows that (2k+1) DOFs (or 2k�1 redun-
dant DOFs) are insu�cient, by �nding a lower bound
for RFTWS

min and an upper bound for RFTWS
max that are

Figure 7: An upper bound for RFTWS
max and a lower bound

for RFTWS

min .

From Equation (7) and Equation (9), it follows that at
best

RFTWS
max = RFTWS

min (10)

resulting in a one-dimensional FTWS. Therefore, a
(2k + 1)-DOF manipulator cannot be fault tolerant

4.4 Including Orientation

Thus far, we have only considered planar positional
manipulators. The results for positional manipulators
can be easily extended to the case in which orienta-
tion is considered also, by converting the orientational
problem into an equivalent positional problem:

An n-DOF manipulator,M, is k-fault tol-
erant with respect to a set of points, W =
f(xi; yi; 'i)g, if and only if:

1. the positional manipulator, M0, ob-
tained from M by deleting its last link,
ln , is k-th order fault tolerant with re-
spect to the set of points W 0 = f(xi �
ln cos'i; yi � ln sin'i)g

Design of Modular Fault Tolerant Manipulators

DOF di ai �i

1 0 1 90o

2 a 1 0o

3 {a 1 90o

4 b 1 0o

5 {b 1 |

Table 3: D-H parameters of a 5-DOF �rst order fault tol-

erant spatial manipulator without orientation

2. M0 is (k�1)-fault tolerant while reaching
the points in W 0 in any direction.

The positional manipulator,M0, needs at least (2k+
2) DOFs to be k-fault tolerant with respect to W 0;
therefore, the manipulator M needs at least (2k + 3)
DOFs. Now, consider a (2k+3)-DOFmanipulatorwith
the �rst links having length, l, and the last link having
length zero. It is easy to verify that this manipulator's
k-th order FTWS is:

W = f(x; y; ') j
p
x2 + y2 � 2l and ' 2 [0;2�)g (11)

Thus, (2k + 3) DOFs are necessary and su�cient for
k-th order fault tolerance of planar manipulators when
orientation is included

This result and the result obtained in Section 4.3 can
be summarized in the following theorem:

Theorem:
For planar manipulators, 2k redundant DOFs
are necessary and su�cient for k-th order
fault tolerance.

4.5 Spatial Fault Tolerant Manipulators

For planar fault tolerant manipulators, we were able
to prove that 2k is the required degree of redundancy.
The proof was based on geometric work space analysis.
However, the geometric analysis becomes too complex
for spatial manipulators, especially since we are deal-
ing with redundant manipulators. Therefore, we will
demonstrate some properties of spatial fault tolerant
manipulators using two examples.

As a �rst example, consider a 5-DOF spatial posi-
tional manipulator. Its D-H parameters are listed in
Table 3. This manipulator is �rst order fault tolerant,
and because of its simple kinematic structure, an ana-
lytic expression for the boundary of the FTWS can be

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

z

Figure 8: A cross section of the boundary of the FTWS

of a 5-DOF spatial manipulator (bold) as part of its critical

value manifolds.

derived. The FTWS is symmetric with respect to the
�rst axis. A cross section (the X-Z plane), as shown in
Fig. 8, can be described by two segments of a circle with
radius 2 and center at (x = 1; z = 0), and a straight
line from (x = 2; z =

p
3) to (x = 2; z = �p3). An

important property of this FTWS is that it does not
have any holes or a central void, so that the FTWS
of the same manipulator scaled by any factor, � > 1,
contains the original FTWS. As a result, this fault tol-
erant manipulator can be used as a design template.
Any speci�ed set of points can be reached in a �rst
order fault tolerant way by a scaled version of the tem-
plate.

In Section 4.2, it is shown that the boundary of the
FTWS of a planar manipulator coincides with its criti-
cal value manifolds. Fig. 8 demonstrates that this prop-
erty also holds for the 5-DOF spatial manipulator con-
sidered in this example. The critical value manifolds
are computed using the algorithm described in [4] and
are depicted in a solid line. The bold part of the critical
value manifolds is the boundary of the FTWS.

As a second example, consider an 8-DOF manipu-
lator, with D-H parameters listed in Table 4. It is

C. Paredis and P. Khosla

DOF di ai �i

1 0 1 90o

2 a 1 0o

3 {a 1 90o

4 b 1 0o

5 {b 0 90o

6 1 0 90o

7 0 0 90o

8 0 0 |

Table 4: D-H parameters of an 8-DOF �rst order fault

tolerant spatial manipulator with orientation

the same manipulator as in example one, with a zero-
length 3-roll-wrist added at the end. Using a Monte-
Carlo method, it has been determined that this ma-
nipulator is �rst order fault tolerant while reaching all
the points in the FTWS of example one, in any di-

rection. This property can be demonstrated with the
following arguments. When one of the �rst �ve DOFs
fails, the manipulator can still reach any position in
the FTWS (because the 5-DOF positional manipula-
tor is fault tolerant) and can take any orientation at
this position using the intact 3-roll-wrist. When one of
the DOFs in the wrist fails, we are left with a 7-DOF
manipulator which has enough orientational capabili-
ties to reach any point in the FTWS in any orientation.
Consequently, one could call this the dextrous FTWS.
Since there are again no holes or voids in the FTWS,
this manipulator can also be used as a design template.

Finally, one should notice that both examples have
only two redundant DOFs, which seems to indicate
that the theorem in Section 4.4 is extendible to spa-
tial manipulators.

5 Task Speci�c Fault Tolerant Manip-

ulators

In the previous section, we considered the design of
fault tolerant manipulators for general use. We proved
that two redundant DOFs are necessary for �rst order
fault tolerance. However, as we will show in this sec-
tion, a simpler kinematic structure is often su�cient
when one speci�c task is considered. This implies, of
course, that a di�erent kinematic structure might be
needed for every task|a disadvantage that can be al-
leviated by the use of a recon�gurable modular manip-

ulator system.

We modify the de�nition of fault tolerance to include
task speci�city:

� Task Speci�c Fault Tolerant Manipulator:
A manipulator is 1-fault-tolerant with respect to
the task of following the Cartesian trajectory, p(t),
if there exists a fault tolerant trajectory in joint
space, �(t), that maps into p(t), and which is such
that when an arbitrary joint, j, were frozen at
an instant, f t, an alternate trajectory, �(t; j;f t),
could be followed to complete the task.

The di�erence between this de�nition and the one
for general purpose fault tolerance, is that we no longer
require that a point be reachable when a joint fails at
an arbitrary angle, but only at an angle that occurred
previously in the fault tolerant trajectory. Under this
assumption, k-fault tolerance can be achieved with only
k redundant DOFs.

Consider the task of reaching all the points in an
�-neighborhood, B(p; �), of the point p 2 <m. Suppose
that p can be reached by an n-DOF manipulator in a
posture � 2 Tn. If the posture, �, is non-singular,
then there exists an � > 0, such that the manipulator
can reach any point in B(p; �). However, for k-fault-
tolerance, any point in B(p; �) needs to be reachable
even when k of the joints of the manipulator are frozen.
This is possible if and only if the Jacobians of all k-
ROD in the posture � have at least rank m. We call
such a posture, �, locally fault tolerant. The Jacobian
of a k-ROD can be obtained by deleting the columns
of the fault-free Jacobian corresponding to the frozen
DOFs; its dimensions are m � (n � k). In order for
the rank to be at least m, n has to be larger than or
equal to (m+k), i.e., the manipulator needs to have at
least k redundant DOFs. When the rank of a k-ROD
Jacobian is less than m, the robot is in an internal
singularity; otherwise, it is in a locally fault tolerant
posture. The locus of internal singularities is a set of
(m + k � 1)-dimensional surfaces in Tn; or (n � 1)-
dimensional surfaces, when n = m + k. Thus, nearly
all postures of a manipulator with k redundant DOFs
are locally k-fault tolerant.

We now extend this result to larger trajectories for
which a global condition has to be satis�ed. This can
best be illustrated with an example. Consider a 3-
DOF planar manipulator with normalized link lengths

Design of Modular Fault Tolerant Manipulators

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

x

y

15 deg

p(0)=p(1)

Figure 9: The trajectory of the example of task speci�c

fault tolerance.

of 1. We want to determine whether this manipulator
is able to execute the task of following the trajectory
shown in Fig. 9, in a 1-fault tolerant way. The trajec-
tory can be parameterized as p(�) with 0 � � � 1.
We assume for this example that p(0) = p(1), and
that the task is repeated from the beginning as soon
as the end is reached. For every �, one can compute
the preimage of p(�). Since the manipulator has one
degree of redundancy, the preimage of every p(�) is a
one-dimensional subset of Tn, and can be parameter-
ized as � = f(p(�); �) with � 2 T 1. The continuous
function, f , describes a 2-dimensional surface in T 3,
as is shown in Fig. 10. Any joint trajectory that fol-
lows the speci�ed Cartesian trajectory, p(�), can be
formulated as �(�), or �(�) = f (p(�); �(�). Accord-
ing to the de�nition of task speci�c fault tolerance,
the manipulator is fault tolerant if and only if a fault
tolerant trajectory, �(�), can be found. It is clear that
every posture of a fault tolerant trajectory, �(�), has to
be locally fault tolerant. However, this requirement is
not su�cient because a fault at a point, p(�1), might
make another point, p(�2), unreachable, even when
the posture �(�1) is locally fault tolerant. Therefore,
one should exclude as possible postures for a fault tol-
erant trajectory not only internally singular postures,
but also postures that, in the case of failure, would
cause an internal singularity elsewhere along the tra-
jectory. For our example, the set of acceptable postures
is shown in Fig. 11.

A fault tolerant trajectory exists when a continu-
ous function, �(�) with 0 � � � 1, can be found for

-100

-50

0

50

100

-150-100-50050100150

-150

-100

-50

0

50

100

150

theta 1
theta 2

th
et

a
3

Figure 10: The preimage of a trajectory.

-100

-50

0

50

100

-150-100-50050100150

-150

-100

-50

0

50

100

150

theta 1
theta 2

th
et

a
3

Figure 11: The set of acceptable points for a fault tolerant

trajectory.

which all postures, � = f(p(�); �(�)), are acceptable,
i.e., satisfy the global fault tolerance condition. That
such a trajectory exists for our example can be con-
cluded from Fig. 11. The same conclusion follows more
clearly fromFig. 12, in which only the postures of the 2-
dimensional preimage of the trajectory are represented.

C. Paredis and P. Khosla

0 0.2 0.4 0.6 0.8 1
 0

 pi/2

 pi

3*pi/2

 2*pi

path parameter alpha

se
lfm

ot
io

n
pa

ra
m

et
er

 b
et

a

possible fault tolerant trajectory

Figure 12: A possible fault tolerant trajectory. Regions of

unacceptable postures, (�;�), are marked in gray.

The gray area is the set of postures that, in the case
of a fault, would cause an internal singularity some-
where along the trajectory; these are the unacceptable
postures. The manipulator is fault tolerant if a con-
tinuous trajectory, �(�), can be found that does not
pass through any gray areas. One possible trajectory
is shown in dashed line.

The conclusion of this section is that, if a fault-free
trajectory is chosen carefully, one can possibly achieve
�rst order fault tolerance with only one redundant
DOF.

Our current research deals with the problem of trans-
lating the results of the analysis of task speci�c fault
tolerance into speci�c design rules for kinematic struc-
tures of manipulators.

6 Summary

In this paper, we developed an approach for determin-
ing a con�guration for a recon�gurable modular ma-
nipulator able to ful�ll a speci�c task. We consid-
ered tasks that included four kinematic requirements:
reachability, joint limits, obstacle avoidance and mea-
sure of isotropy. The attribution of a penalty to each
manipulator con�guration, enabled us to reduce the

search e�ort drastically, by guiding the search to the
most promising regions of the assembly con�guration
space. Local minima in the penalty were avoided by
using simulated annealing as a search algorithm. We
also de�ned a property of a small class of redundant
manipulators, called fault tolerance. We proved the ex-
istence of general purpose fault tolerant manipulators,
obtained through joint duplication. When no joint lim-
its are considered, we proved analytically that, 2k re-
dundant DOFs are necessary and su�cient for general
purpose fault tolerance of planar manipulators, and
that the boundary of the FTWS consists of critical
values. Also, 8- and 5-DOF design templates were in-
troduced, for spatial general purpose fault tolerant ma-
nipulators with and without orientational capabilities,
respectively. Finally, we demonstrated that a task spe-
ci�c 1-fault tolerant manipulator possibly only needs
one degree of redundancy, versus the two needed for
general purpose manipulators. This simpli�cation of
the kinematic structure can be achieved at the cost of
having to recon�gure the manipulator for every task.

Acknowledgment

This research was funded in part by DOE under grant
DE-F902-89ER14042, by Sandia under contract AC-
3752-A, by the Department of Electrical and Computer
Engineering, and by The Robotics Institute, Carnegie
Mellon University.

References

[1] V. P. Agrawal, V. Kohli, and S. Gupta. Computer
aided robot selection: the `multiple attribute de-
cision making' approach. International Journal of
Production Research, 29(8):1629{1644, 1991.

[2] W. K. F. Au, C. J. J. Paredis, and P. K. Khosla.
Kinematic design of fault tolerant manipula-
tors. In Proceedings of the Allerton Conference,
Urbana-Champagne, Illinois, October 2 1992.

[3] B. Benhabib, G. Zak, and M. G. Lipton. A gen-
eralized kinematic modeling method for modular
robots. Journal of Robotic Systems, 6(5):545{571,
1989.

[4] J. W. Burdick. Kinematic analysis and design
of redundant robot manipulators. Stanford Com-
puter Science Report STAN-CS-88-1207, Stanford
University, 1989.

Design of Modular Fault Tolerant Manipulators

[5] P. Fanghella, C. Gellatti, and E. Giannotti.
Computer-aided modeling and simulation of
mechanisms and manipulators. Computer Aided
Design, 21(9):577{583, 1989.

[6] T. Fukuda, G. Xue, F. Arai, H. Asama, H. Omori,
I. Endo, and H. Kaetsu. A study on dynami-
cally recon�gurable robotic systems. assembling,
disassembling and recon�guration of cellular ma-
nipulator by cooperation of two robot manipula-
tors. In Proceedings of the IEEE/RSJ Interna-
tional Workshop on Intelligent Robots and Sys-
tems (IROS '91), pages 1184{1189, Osaka, Japan,
November 3-5, 1991.

[7] L. Kelmar and Pradeep K. Khosla. Automatic
generation of forward and inverse kinematics for a
recon�gurable modular manipulator system. Jour-
nal of Robotic Systems, 7(4):599{619, 1990.

[8] J.-O. Kim. Task Based Kinematic Design of Robot
Manipulators. PhD thesis, Carnegie Mellon Uni-
versity, The Robotics Institute, Pittsburgh, PA,
August 1992.

[9] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vec-
chi. Optimization by simulated annealing. Sci-
ence, 220(4598):671{680, 1983.

[10] A. Krishnan and P. K. Khosla. A methodology
for determining the dynamic con�guration of a re-
con�gurable manipulator system. In Proceedings
of the 5th Annual Aerospace Applications of AI
Conference, Dayton, Ohio, October 23-27, 1989.

[11] C. L. Lewis and A. A. Maciejewski. Dexterity op-
timization of kinematically redundant manipula-
tors in the presence of joint failures. Computers
and Electrical Engineering, 20(3):273{288, 1994.

[12] A. A. Maciejewski. Fault tolerant properties of
kinematically redundant manipulators. In Pro-
ceedings of the 1990 IEEE International Confer-
ence on Robotics and Automation, pages 638{642,
Cincinnati, Ohio, May 1990.

[13] S. Manoochehri and A. A. Seireg. A computer-
based methodology for the form synthesis and op-
timal design of robot manipulators. Journal of
Mechanical Design, 112:501{508, December 1990.

[14] S. Murthy, P. K. Khosla, and S. Talukdar. De-
signing manipulators from task requirements: An
asynchronous team approach. In Proceedings of

the 1st WWW Workshop on Multiple Distributed
Robotic Systems, Nagoya, Japan, July 1993.

[15] O. F. O�odile, B. K. Lambert, and R. A. Dudek.
Development of a computer aided robot selection
procedure (carsp). International Journal of Pro-
duction Research, 25:1109{1121, 1987.

[16] O. F. O�odile, W. M. Marcy, and S. L. John-
son. Knowledge base design for
exible assembly
robots. International Journal of Production Re-
search, 29(2):317{328, 1991.

[17] C. J. J. Paredis. An approach for mapping kine-
matic task speci�cations into a manipulator de-
sign. Master's thesis, Carnegie Mellon Univer-
sity, Electrical and Computer Engineering Depart-
ment, Pittsburgh, PA, September 1990.

[18] C. J. J. Paredis and P. K. Khosla. Kinematic de-
sign of serial link manipulators from task speci-
�cations. The International Journal of Robotics
Research, 12(3):274{287, June 1993.

[19] V. Potkonjak and M. Vukobratovic. Computer-
aided design of manipulation robots via multi-
parameter optimization.Mechanism and Machine
Theory, 18(6):431{438, 1983.

[20] E. Rich and K. Knight. Arti�cial Intelligence. se-
ries in arti�cial intelligence. Mc Graw-Hill Inc.,
New York, second edition edition, 1989.

[21] D. E. Schmitz, P. K. Khosla, and T. Kanade. The
CMU recon�gurable modular manipulator system.
In Proceedings of the 19-th International Sympo-
sium and Exposition on Robots (ISIR), Australia,
1988.

[22] A. A. Tseng. Software for robotic simulation. Ad-
vances in Engineering Software, 11(1):26{36, Jan-
uary 1989.

[23] M. L. Visinsky, I. D. Walker, and J. R. Cavallaro.
Layered dynamic fault detection and tolerance for
robots. In Proceedings of the 1993 IEEE Inter-
national Conference on Robotics and Automation,
pages 180{187, Atlanta, GA, May 1993.

[24] R. H. Weston, R. Harrison, A. H. Booth, and
P. R. Moore. Universal machine control system
primitives for modular distributed manipulator
systems. International Journal of Production Re-
search, 27(3):395{410, 1989.

