An Agent-Based Approach to the Design of
Rapidly Deployable Fault Tolerant Manipulators

Christiaan J. J. Paredis

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
in Electrical and Computer Engineering

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

August 1996.

Copyright © 1996 by Christiaan J.J. Paredis. All rights reserved.

This Research was supported in part by the Department of Energy under grant DE-F902-
89ER14042, by Sandia National Laboratories under contract AL—3020, by the Department of Elec-
trical and Computer Engineering, and by The Robotics Institute at Carnegie Mellon University.
The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the funding agencies.

Abstract

There exists a need for manipulators that are more flexible and reliable than the current fixed
configuration manipulators. Indeed, robot manipulators can be easily reprogrammed to per-
form different tasks, yet the range of tasks that can be performed by a manipulator is limited
by its mechanical structure. In remote and hazardous environments, such as a nuclear facil-
ity or a space station, the range of tasks that may need to be performed often exceeds the
capabilities of a single manipulator. Moreover, it is essential that critical tasks be executed

reliably in these environments.

To address this need for a more flexible and reliable manipulator, we propose the concept of
arapidly deployable fault tolerant manipulator systédnich a system combines a Reconfig-
urable Modular Manipulator System (RMMS) with support software for rapid program-
ming, trajectory planning, and control. This allows the user to rapidly configure a fault
tolerant manipulator custom-tailored for a given task. This thesis investigates all aspects
involved in such a system. It describes an RMMS prototype which consists of seven manip-
ulator modules with a total of four degrees-of-freedom. The reconfigurability of the hard-
ware is made transparent to the user by the supporting control software that automatically
adapts itself to the current manipulator configuration. To achieve high reliability, a global
fault tolerant trajectory planning algorithm is introduced. This algorithm guarantees that a

manipulator can continue its task even when one of the manipulator joints fails and is immo-

bilized. Finally, all these aspects are considered simultaneously taskéased design
software, that determines the manipulator configuration, its base position, and the fault tol-

erant joint space trajectory that are optimally suited to perform a given task.

The most important contribution of this thesis isoael agent-based approatt solve the

task based design problem. The approach is based on a genetic algorithm for which the
modification and evaluation operations are implemented as autonomous asynchronous
agents. Specific design knowledge about the task based design problem has been included in
the agents, resulting in a significant reduction of the size of the design space and of the cost
of evaluating a candidate design. Furthermore, thanks to their autonomous and asynchro-
nous nature, these agents can be easily executed distributedly on a network of workstations.
The flexibility and performance of the agent-based implementation, combined with the
problem specific knowledge included in the modification and evaluation agents results in a
powerful new approach to task based design of rapidly deployable fault tolerant manipula-

tors.

Finally, the thesis presents a performance analysis of the agent-based design framework by
comparing its results with those of exhaustive search, random search, and multiple restart
statistical hill-climbing. This analysis is performed for three examples, including a compre-
hensive example of a satellite docking operation with a fault tolerant modular manipulator

mounted in the cargo bay of the space shuttle.

Acknowledgments

| am very grateful to my advisor, Professor Pradeep Khosla. His vision and guidance played
an important role in the realization of this work. Even though he was on a leave of absence
during most of my doctoral studies, he managed to make time for regular meetings and pro-
vided constant encouragement and support. | also wish to thank the members of my thesis
committee, Professors Takeo Kanade, Matt Mason, and Harry Asada, for their valuable and

constructive comments.

| have been very fortunate to be part of the Advanced Manipulators Laboratory. The many
people that have passed through the lab while | was a graduate student (too many to list
here) have always been a source of friendship and support. During our weekly meetings, |
often received much appreciated feedback on my research. In particular, 1 would like to
thank C.J. Taylor, David LaRose, Dan Morrow, John Dolan, and Frank Dellaert for taking
the time to read over the drafts of this thesis, and Debbie Scappatura for always offering a

helping hand and a listening ear.

Many thanks also to Ben Brown, Randy Casciola, and Jim Moody for their contribution to
the realization of the Reconfigurable Modular Manipulator System. Thanks to their efforts,
this thesis consists not just of a theoretical exposition, but also includes experimental results
in support of the theory. Equally important have been the contributions of the maintainers of

the VASC computing facilities (Kate Fissell, Jim Moody, and Bill Ross) and the developers

of the A-teams toolkit (Philip Chang, John Dolan, Jim Hemmerle, Sarosh Talukdar, and
Mike Terk).

Finally, | would like to express my gratitude to all my family members. My parents always
strongly supported my efforts to reach this goal, even though it meant that we would be far
apart geographically.

Most of all | would like to thank my wife, Jan Jernigan, for her loving support and encour-

agement throughout my years at Carnegie Mellon University. | dedicate this thesis to her.

Table of Contents

ADSTIIBCT ...t rn e e e e eeeees [
ACKNOWIBAGMENTS.... ..ottt e et e e e e e et e e e e e et e e e TR
Table Of CONENTS.......uiiiiiiiiiiiie e e e e e e e e mmmeee M

S 0 T TS IX..

LISt Of TADIES ... s Xiii...

Chapter 1: INTOTUCTIONciiiiiiiieie ettt e e e e e e e e e e e aeeeeeas 1

00 R |V (o 117 Ui (o] [P PP PP PRSP 1.

1.2 CONDULIONS ..o r e e e aaeeas 7.

1.3 OVBIVIBW ...ttt ettt ettt ettt ettt e e e e e e e e e e e e e e e e e e nnnnnns 9...

Chapter 2: RMMS: A Reconfigurable Modular Manipulator System..............cccevvvvinnee. 11

2.1 INEFOTUCTION ...ttt e et e e e e e e e e e e mmmnne 11...

2.2 Self-Contained Hardware MOAUIES...............ccoooiiiiiiiiiiiii e 12
2.2.1 MeChaNICal DESIGN....uuuuiiii i e e e e e e e aaaas 12
2.2.2 ElECIIONIC DESION ...t ittt e e et s s e e e e e e e e e e e e eeeeearaaaaaaa 15
2.2.3 Integrated Quick-Coupling CONNECIOISuuuuiiiiiiiiiee e 15
2.2.4 ARMbus CommuNICatioN SYSTEIM ...ttt 17

2.3 Modular and Reconfigurable Control Software............ccoooviiiiiiiiiiiiiii e 18
2.3.1 The Chimera Real-Time Operating SYSIEM..........cccccuurimmiiiiiiiiiiieeeeeeeee e 18
2.3.2 The Onika Visual Programming Languagecoooviiiiiiimiiiiiiiiiiieeeeeee e 20

2.3.3 RMMS CONIOl SO WA ... e 21

2.3.4 Seamless Integration of SIMulationccooiviiiiii i 23

P d o =T 110 4= | £ PR 24......

2.5 SUMMIATY ittt ettt e e e e e e et et e e e s e e n e e e e e e e e e e e e e e 26.....

Chapter 3: Fault Tolerant Manipulators................uueeiiiiiiiiiiiiieee e 29

I % R [o1 (oo [F Tox 1 o] o DO POP PP PPPPPPPP 29...

I N o] o] o = Tox o F PP PPUPPPPPPPP 30...

3.3 Fault Tolerance and Reliability..............iiiiiiiiiiiie e 33

3.4 General Purpose Fault Tolerant Manipulators..........cccoeeeeeeeeiiiiiiecceeeee e 36
3.4.1 Properties of General Purpose Fault Tolerant Manipulatorsccccoeevee. 37

4. 1L EXISEENCE ..ot 37
3.4.1.2 Boundary of the Fault Tolerant Workspace...............ouuuuuiiiiiiiiiiinieeeeeeeee, 37
3.4.1.3 Required Degree of ReAUNAANCYccooiiiiiiiiiiiiiiiiiiiieeeee e 38
3.4.1.4 InCluding OrENTAtiONccoeiiiiiiiiiiiib bttt 40
3.4.2 Spatial Fault Tolerant Manipulatorsccueeviiiiiiiiiiiinieee e 41

3.5 Task Specific Fault Tolerant Manipulators..............uuuuiieiiiiiiiie e 44

3.6 SUMMAIY ..ottt e et e e et e s een s e s easnesesnnnesennnsesesnnssmmmmnilennns

Chapter 4: Global Fault Tolerant Trajectory Planningoiviiiiiiiiiei e, 49

ot R [11 fo o (8 ox 1 o] o FO PP PP PPPP 49...

4.2 DEFINITIONS. ...t e e e e e e e e 50..

4.3 The AlQOItNmM. ... e e e e e e e e e e e e e e e e e s 53.....

4.4 IMPIEMENLAtIONAI ISSUES.......oiiiiiiiiiiie et e e e e e e e e 57
4.4.1 Computation of the PreimMageoooiiiiiiiiiiii et 57
4.4.2 Computational COMPIEXITYuuuuiiiiiiiiiiiiiiiieee e 59
4.4.3 SeleCtion Of TraJECIONYttt e e e e e e e e e e e e 59

4.5 (ustrative EXAmMPIEvuueeeiiiiee e e e e 60........

4.6 Comprenensive EXAMPIEuuiiieiiiiii e 64

o A @70 .41 o T= T 1T] o [P POSPPPPR 68......

4.8 SUMMAIY cotuiiiii et e e e et e e e s s e aas e e easseeeasnseeessnseeessnsesessneesssnnsesssmmmmmdaleeees

Chapter 5: Task Based Design: An Agent-Based Approachccccceeevieeviviiiiiiieeeeennnnn, 73

Vi

Lo TR I 1 011 0 Yo (U3 (] o DT URTURTY 4 W

5.2 The Task Based Design Problem............coooiiiiiiii e 74
5.2.1 TaSK DEFINITION ...uveiiiiiiiiiiiiii ettt 75
5.2.2 INVeNntory Of MOGUIES.........oooi i 77
5.2.3 Manipulator ConfigurationsS...........ooouiiiiiiiiiiiiiiiiiii e 77
5.2.4 Desired JOiNt SPACE TIaJECIONY ...uuuriiiiiiiiiieeeeeee et e e e e e e e e e e e e e 78

5.3 Problem CharaCteriStCSouiiiiiiiiiiiiiiiiiie ettt e e e e e e e e 79

5.4 Previous Solution APPrOACRES..........uuu i 85

5.5 An Integrated Solution APProachcceeeiiiiii i 88

5.6 Problem Specific Design Knowledge and Genetic Algorithms.................ccevvviiinnnnee. 89
5.6.1 Search Space ReTUCHION..........ccivuiiiiie i e e e eeeae 90
5.6.2 Progressive EValUAtioN............coooiiiiiiuiiiiiiiiiee et eeeeeeeees 92

5.7 An Agent-Based DesSign FrameWOIKueeieiiiiiiiiiiiiaiaiaaaa e 93

5.8 IMPIEMENTALIONuiiiiiiiiiiiiiie e e e e e e e e e e ar.......
5.8.1 The Asynchronous Team TOOIKItccuuuuiiiiiiiiiiiiiiie e 97
5.8.2 The Evaluation FUNCHION........uuuiiiiiiiiiiiiiieee e e e e e e e e e e e e e 99
5.8.3 The Modification OPEratOrS..........uuuuuuiiiiiiieeeeeeeeeeeeeeeeeirisirrseeaeeeeeeaeaaeeeeenennnne 104
TS T N I 1= N0 1= o | £ PPPPURPSP 106
5.8.5 EMErgent BENaVior ... 108

5.9 SUIMMIAIY ..ot e e e e e e e e e e e et e e e et e e e et e e e eann e e s 109.....

Chapter 6: Analysis of the Task Based Design Problemccccooiii i, 111

6.1 INEFOTUCTION ...t r e e e e e e e e e e e e mmne 111...

6.2 Set-up Of the EXPEIIMENTS.uuiiiiiiiiiiiiiii e e e e e e e e e e 112
6.2.1 TeSEPIODIEMS. ..o 112
6.2.2 Search AlQOrtNMSooiiiiiiie e 113
6.2.3 COMPULING RESOUITES ...ttt ettt e e e e e e e aaeeeas 115

6.3 ANAIYSIS TOOIS ...t e e e e e e e e 115.....
6.3.1 Problem Characterization..............cuueeiieeiiiiiiiiie et 115
6.3.2 Performance CrILEIION.........uuiiiieiiiiiie e e e e s e e e e e 119
6.3.3 FISNEr SIgN TeST ...ttt 121

6.4 Non-Redundant Manipulator DeSIgN..........coiiiiiiiiiiiiieeieiie e 124

6.4.1 Problem DeSCHIPLONuuiii e e e e e e e 124
6.4.2 Problem CharaCterization.............ooouiiiiiiiiiiiiie e 124
6.4.3 Performance EValUAION.............oooiiiiiiiiiiiii e 129

6.5 Fault Tolerant Manipulator DESIgN..........couuuiiiiiiiiiii e 133
6.5.1 Problem DeSCHIPUONuuiii i e e e e e e e 133
6.5.2 Problem CharaCterization.............ooouiiiiiiiiiiiii e 133
6.5.3 Performance ANAIYSIS ... 139

6.6 SUIMIMIAIY . .iiiiiiiiiie ettt e e e e et e e e et e e e et e e e et e e e et e e eetn e e eenn s 141.....

Chapter 7: A Fault Tolerant Manipulator for a Satellite Docking Operation.................. 145

7.1 INETOTUCTION ...ttt e e e e e e e e e e e e e e e e e s nnes 145...

7.2 Problem DESCHIPLIONcooiiiiii ittt e e e r e e e e e e aaaeaeas 146

7.3 Results and INterpretationoiee i e e e e 149
7.3.1 Problem CharaCterization............cuuviiieiiiiiiiiiii e 149
7.3.2 Performance Analysis of the Statistical Search Algorithms.................cccvveeee. 153
7.3.3 Interpretation of the Optimal DeSIgNccooiiiiiiiiiiiiii e 156

T4 SUIMIMAIY ..iiiiiieiie e e e e e et e e e et e e e et e e e eaa e e e et e e eat s eeeatn s eeeenn s 160.....

Chapter 8: CONCIUSIONSccoiiiiiiieeeees et e s s 161

S0 R @] 11] 018 1] o S PP R TP TTTPPPP 161.....

8.2 FULUIE DIFECHIONSueiiiiiiiiiiieie ettt e e e e e 163.......
8.2.1 The RMMS Hardware and CoNntrollercooooiiiiiiiiiiiieeee 163
8.2.2 FAUIE TOIBIANCE ...ttt e e 164
8.2.3 TaSK BASEU DBSIGN......uuuiiiiiiiiiiiiiiiiieit e e e e et e e e e e e e e e e e e e e e e e e e 166

8.3 CONCIUSIONS ...ttt ettt e e e e e e e e e e e e e 168.....

Appendix A: Module DesCription FIleS.........ccouuiiiiiiiiiiee e 171

Al The RMMS MOUIESccciiiiiiiiiiiie ettt e e e 171

A.2 The Space Shuttle MOUIES. ...ttt 176

BIDIOGIaPNY ... 193..

viii

List of Figures

Figure 1-1.
Figure 1-2.
Figure 2-2.
Figure 2-1.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.

Figure 2-7.

Figure 2-8.
Figure 2-9.
Figure 2-10.

Figure 2-11.

Figure 3-1.

The concept of a rapidly deployable fault tolerant manipulator system......3
Mappings between task space and manipulator space.............cccccevvvevevvnnnnns 6
An RMMS pivot joint and link module.ccceeviiiiiiie 12
Diagram of a self-contained RMMS module..............ccccciiiiiiiiiiiiiienceeen. 13
Assembly drawing of a pivot joint module.cocooviiiiiiiiiiiiiiie 14

A male and female RMMS CONNECLOT...........ccooeiiiiiiiiiiieiiiiiiieee e 16
The RMMS computing hardwareccccceeeeeiiiiiieeeeiceece e, 17
Framework for software assembly.ooooeiiiiiiiiii 19

An object configuration for joint space control, created at the middle

l€VEl Of ONIKA. ... 21
AN ONika appliCatioN.oovviiiiiiieie e 21
An RMMS configuration: simulation and hardware.................ccccccevvvvnins 23
The second configuration used in the experiments.cccccceeeeeeiinnninns 25

Comparison of the same task executed by two different manipulator

(o0] 0110 [UT=1 (0] 1S PSSO 27

System reliability of an 8-DOF fault tolerant manipulator and

a 6-DOF non-fault-tolerant manipulator.c.cccvveeiiiiiiiiiiiiiiees 35

iX

Figure 3-2. Relative system reliability of an 8-DOF fault tolerant manipulator

versus a 6-DOF non-fault-tolerant manipulator.cccooeeeiiiiiiiiinnnee, 35
Figure 3-3. A ROD unable to reach a point outside the FTWS...........coooevviiiiiiivieinnns 38
FTWS FTWS

Figure 3-4. An upper bound fd&® and a lower boundRQ[,, ~ e 39

max
Figure 3-5. A cross-section of the boundary of the FTWS of a 5-DOF spatial
manipulator (bold) as part of its critical value manifolds. 43
Figure 3-6. The kinematic structure of an 8-DOF fault tolerant manipulator
TEIMIPIATE. .. 44
Figure 3-7. Examples of locally fault tolerant, internally singular, and singular

postures of a 3-DOF planar manipulator............ccccoeveviiiiiiiieecccee e, 46
Figure 4-1. Two possible failures resulting in the same alternate trajectory. 54

Figure 4-2. The projection onto tt{8,, 6,, 65) -space of a polygonal approximation

of a 2-dimensional preimage for a 5-DOF manipulator............ccccceeeeeeenn... 58
Figure 4-3. The Cartesian path and obstacle poSition..............cccuuiiiiiiiiiiiiiiiin 61
Figure 4-4. The preimage of the trajeCtory.ccuuuuiiiiiiiiiiiiiieee e 62
Figure 4-5. Planning a fault tolerant trajectory: an illustrative example 63
Figure 4-6. Connectivity graph for the disjoint regions of acceptable postures........... 64
Figure 4-7. Fault tolerant trajectories for the individual joints...............ocooiiiiiiiinnnnee. 64

Figure 4-8. A simulation of the Reconfigurable Modular Manipulator System

executing a fault tolerant traJeCtory..........ccouiiii i 65
Figure 4-9. Joint trajectories theta 1 through theta 4............ccooooiiiiiiiiiiiii e, 66
Figure 4-10. The end effector position error does not increase after failure. 67

Figure 4-11. A case in which the method described by Lewis and Maciejewski

(1994b) cannot guarantee fault tolerant path following.............ccccccceeee. 70
Figure 5-1. Task Based Design problem definition.cccccooeiiiiiiniiiiiiiiiiiiiiiiee 75
Figure 5-2. The control structure of the RMMS ... 78
Figure 5-3. Initial design approach for the RMMS. ... 85
Figure 5-4. Efficiency vs. problem spectrum for Evolution Programs. 90

X

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.

Figure 6-7.

Figure 6-8.

Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.

Figure 6-14.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.

Figure 7-7.

Layout of a generic agent-based design framework.ccccceeeeiieieens 95

An overview of the Ateams toolKit GUI. ..o, 98
A CAD-model of the manipulator used for collision detection............... 103
Topology of the agent-based design SYStem.ccccceeeveieeieeeeeeeeieeeeeeiinnnns 107
The effect of progressive evaluation on the fitness evaluation time......... 117
Inventory of MOAUIEScooviiiiiii e 125
Different module orders for 3-DOF manipulators.oevvvviiiinnennnn. 126
Fitness evaluations for all 3-DOF manipulators.ccccccevviiiiiiiiiiinnns 127
The optimal SOIULION.uuiiiiiiiiiiiiiieece e 128
Percentage of runs that attained the global optimum............................... 130

The probability that the agent-based genetic algorithm

outperforms other statistical algorithms.............ccccvviiiiis 131
Results of the Fisher Sign teSt. ... 132
The different module orders for 4-DOF manipulators...............ccceeeee. 134
Fitness evaluations for all 4-DOF manipulators.ccccoeeeevvviiiiiieeeeennnn, 135
The six types of fault tolerant SOIULIONS. ... 137
Percentage of runs attaining the global optimum.ccccccociinn. 139
Relative comparison between statistical algorithms.ccccceeeeeeenn. 140
Results of the Fisher Sign test.cceiiiiiiiii e, 142
The Cartesian trajeCtOrY.uuii i 148
The number of fitness evaluations as a function of time.......................... 150
Probability density function of the fitness value............cccccovvvviiviiciinnnn. 151
Percentage of the runs attaining a feasible solution.............cccccceeeeeeeee. 154
Relative comparison between GA and MRSH.ccoovviiiciieeeeeeee. 155
Results of the Fisher Sign test. ..o, 156
The optimal design found by the agent-based design system.................. 157

Xii

List of Tables

Table 2-1.
Table 3-1.

Table 3-2.

Table 4-1.
Table 6-1.
Table 7-1.
Table 7-2.

Chimera software module descCription.ccooorviiiiiiiiiiirrr e 22
D-H parameters of a 5-DOF first order fault tolerant spatial
manipulator, without orientation...............ccoovviiiiieiiiiicr e 42

D-H parameters of an 8-DOF first order fault tolerant spatial

=TT] 01U = o R UESRPPSRRRRN 42
The coordinates for each of the postures labeled a—f in Figure 4-4.............. 62
The six different 4-DOF fault tolerant manipulator designs....................... 136
The module configuration of the optimal design.coovvrviiiiiiiiicinnnn. 158
Denavit Hartenberg parameters of the optimal manipulator design. 159

Xiii

Xiv

Chapter 1

Introduction

1.1 Motivation

Robot manipulators can be easily reprogrammed to perform different tasks, yet the range of
tasks that can be performed by a manipulator is limited by its mechanical structure. For
example, horizontal SCARA-configuration manipulators, such as the Adept One and the
CMU Direct Drive Arm Il, are well suited for delicate table-top assembly operations requir-
ing accuracy and selective stiffness, but have very limited vertical reach. On the other hand,
vertical elbow-configuration manipulators, such as the Puma family, have a relatively long
reach in all directions and are suitable for painting, welding, and parts handling, but do not
have the accuracy and stiffness required for precise assembly. Therefore, to perform a given
task, one needs to choose a manipulator with an appropriate mechanical structure—kine-

matical as well as dynamical.

Applying a manipulator with an optimal configuration to a particular task is only possible if

the task is known in advance. This is often not the case in unpredictable environments such

CHAPTER 1: INTRODUCTION

as a nuclear environment or a space station. To be able to address these unknown tasks, one
would need a manipulator with a wide range of capabilities—probably beyond the limita-
tions of a single manipulator. To solve this problem, one could deploy a large number of
manipulators, each with different kinematic and/or dynamic characteristics. However, this is
often prohibitively expensive, for instance, because the robots become contaminated by
radiation, or because the total mass of all manipulator combined is too large to be trans-

ported into space.

In addition to having a wide range of kinematic and dynamic capabilities, it is important that
manipulators in remote and hazardous environments be extrestiable. Recently, with

the Hubble telescope and the Mars Observer, NASA has experienced first hand how devas-
tating the consequences can be when a critical component fails during a multi-billion-dollar
mission. Space applications are particularly vulnerable to failure, because of the adverse
environment (cosmic rays, solar particles etc.) and the demand for long term operation. In
this context, NASA has started to incorporate fault tolerance in their robot designs (Wu et al.
1995). Reliability is also important in robotic applications for Environmental Restoration
and Waste Management (ER&WM) program of the Department of Energy. Consider, for
instance, the use of a manipulator in a nuclear environment where equipment has to be
repaired or space has to be searched for radioactive contamination. The manipulator system
deployed in these kinds of critical tasks must be reliable, so that the successful completion
of the task or the safe removal of the robot system is assured. A third domain in which reli-
ability is a major issue is medical robotics, because of the risk of the loss of human life.
Although medical staff will probably always be on standby to take over in the case of a
manipulator failure, the robot should at least be fail-safe, meaning it should fail into a safe

configuration.

The goal of this thesis is to develop a system that overcomes the above mentioned shortcom-

ings. We propose the concept ofapidly deployable fault tolerant manipulator systeas

1.1 MOTIVATION

Task Definition

Y

Task Based Design and Verification

Reconfigurable Fault Tolerant
Modular <«— Trajectory
Hardware Planning

~

Control
Software

Figure 1-1. The concept of a rapidly deployable fault tolerant manipulator system.

illustrated in Figure 1-1. A rapidly deployable fault tolerant manipulator system consists of
hardware and software that allow the user to rapidly build and program a manipulator which

is custom-tailored for a given task and which can execute this task fault tolerantly.

The central building block of a rapidly deployable fault tolerant systenRescanfigurable
Modular Manipulator SystetRMMS). The RMMS utilizes a stock of interchangeable link

and joint modules of various sizes and performance specifications. By combining these gen-
eral purpose modules, a wide range of special purpose manipulators can be assembled.
Recently, there has been considerable interest in the idea of modular manipulators for
research as well as for industrial applications (Benhabib and Dai 1991; Cohen et al. 1992;
Fukuda et al. 1992; Hui et al. 1993; Kotosaka et al. 1992; Matsumaru 1995; Paredis, Brown,
and Khosla 1996). However, most of these systems lack the property of reconfigurability,
which is key to the concept of rapidly deployable systems. The RMMS is particularly easy

to reconfigure thanks to its integrated quick-coupling connectors.

Besides the ability to be quickly adaptable to a task, the RMMS has the advantage of being

3

CHAPTER 1: INTRODUCTION

easily maintainable, and possibly inexpensive and reliable through high volume production.
Furthermore, our approach could form the basis for the next generation of autonomous
manipulators, in which the traditional notion of sensor-based autonomy is exterubed to
figuration-based autonomindeed, although a deployed system can have all the sensory and
planning information it needs, it may still not be able to accomplish its task because the task
is beyond the system’s physical capabilities. A rapidly deployable system, on the other
hand, could adapt its physical capabilities based on task specifications and, with advanced

sensing, control, and planning strategies, accomplish the task autonomously.

A second important building block of a rapidly deployable manipulator system is a frame-
work for the generation of control software. To reduce the complexity of software genera-
tion for real-time sensor-based control systems, a software paradigm saftedre
assembhhas been proposed in the Advanced Manipulators Laboratory at CMU. This para-
digm combines the concept of reusable and reconfigurable software components, as is sup-
ported by the Chimera real-time operating system (Stewart and Khosla 1995), with a
graphical user interface and a visual programming language, implemented in Onika (Gertz
and Khosla 1994). This software framework and its application to the control of the RMMS
are described in Chapter 2, in which we also discuss the electro-mechanical structure of the
RMMS.

Although the software assembly paradigm provides the software infrastructure for rapidly
programming manipulator systems, it does not solve the programming problem itself.
Explicit programming of sensor-based manipulator systems is cumbersome due to the
extensive amount of detail which must be specified for the robot to perform the task. The
software synthesis problem for sensor-based robots can be simplified dramatically, by pro-
viding robustrobotic skills that is, encapsulated strategies for accomplishing common tasks

in the robots task domain (Morrow and Khosla 1995). Such robotic skills can then be used at
the task level planning stage without having to consider any of the low-level details. The
issue of high-level planning and programming of rapidly deployable systems is not
addressed in this thesis. We refer the interested reader to Carriker (1995), who presents a

high-level robot planner for flexible assembly, and Morrow et al. (1995), who introduces

4

1.1 MOTIVATION

sensorimotor primitives for robotic skill generation.

The third component of a rapidly deployable fault tolerant manipulator system is a an algo-
rithm for planning fault tolerant trajectories. In this thesis, we focusualhtoleranceas a
technique to achieve reliability in manipulator systems. The traditional approach to reliabil-
ity has been that of fauhtolerance, where the reliability of the system is assured by the use

of high quality components. However, increasing system complexity and the necessity for
long term operation have proven this approach inadequate. The system reliability can be fur-
ther improved through redundancy. This design approach was already advocated in the early
fifties by von Neumann in connection with the design of reliable computers: “The complete
system must be organized in such a manner, that a malfunction of the whole automaton can-
not be caused by the malfunctioning of a single component, ... , but only by the malfunction-
ing of a large number of them” (von Neumann 1956, p. 70). This is the basic principle of
fault toleranceadd redundancy to compensate for possible failures of compotows

ever, this does not mean that any kind of redundancy added to a system results in fault toler-
ance. Therefore, in Chapter 3, we will shed some light on the redundancy requirements for
fault tolerant manipulators. That is, how much redundancy is needed and how should this

redundancy be distributed over the manipulator structure?

The analysis of fault tolerant manipulators indicates that whether a task can be completed
after a joint failure depends strongly on the joint angle at which the failure occurs. This
observation is the basis for the global fault tolerant trajectory planning algorithm presented
in Chapter 4. The idea is to avoid unfavorable joint angéésrea failure occurs by care-

fully planning a fault tolerant joint space trajectory. If the manipulator follows this trajectory
before failure, it is guaranteed that it can complete the task regardless of which joint fails

and regardless of the time at which the failure occurs.

The redundancy provisions needed for fault tolerance can be incorporated only at a price of
increased complexity. This drawback is partly overcome by the modular and structured
design philosophy embodied in the RMMS project. Modularity in hardware and software
has the advantage of facilitating testing during the design phase and therefore reducing the

chances for unanticipated faults. Modules also constitute natural boundaries to which faults

5

CHAPTER 1: INTRODUCTION

can be confined. By including fault detection and recovery mechanisms in critical modules,
the effect of local faults remains internal to the modules, totally transparent to the higher

levels of the manipulator system.

Finally, the most important component of the rapidly deployable fault tolerant manipulator
system is the Task Based Design (TBD) software. The TBD problem can be illustrated by
considering theéask spaceand themanipulator spaceshown in Figure 1-2. The task space

is the multi-dimensional space of all possible tasks. Every point in this space defines a spe-
cific task. Similarly, consider the space of manipulator designs (the manipulator space), in
which every point corresponds to one specific manipulator configuration. Every manipulator
can execute a large number of tasks, and thus, every point in the manipulator space maps to
a set of points in the task space. Finding this set of points in task space is the problem
addressed by manipulator analysis. Because each configuration of the Reconfigurable Mod-
ular Manipulator System constitutes a different manipulator, the RMMS corresponds to a set
of points in the manipulator space, each of which maps to a set of tasks in the task space.

The RMMS as a whole maps onto the union of all these sets in the task space, which corre-

Manipulator Analysis

L4 FE

Task Space Manipulator Space Task Space Manipulator Space
RMMS Task Based Design
Task Space Manipulator Space Task Space Manipulator Space

Figure 1-2. Mappings between task space and manipulator space.

1.2 CONTRIBUTIONS

sponds to a set of tasks that is larger than the task set of each individual configuration. This
illustrates the increased flexibility and autonomy of the RMMS over traditional fixed config-
uration manipulators. In order to use the RMMS effectively, it is important to address the
problem of finding the opposite mapping, that is, the mapping from task space to manipula-
tor space. This is the problem addresseddsk Based DesigfT BD): which manipulator
configurations are optimally suited to perform a given task? The inputs to the TBD problem
are the descriptions of the task and of the available manipulator modules; the output is a
modular manipulator configuration, its base position, and the joint space trajectory opti-
mally suited to perform the given task. In Chapter 5 of this thesis, we introduce a novel
agent-based framework that provides a very comprehensive and fully integrated approach to
the TBD problem. We will further demonstrate the power of this approach through an exten-

sive performance analysis and a comprehensive example in Chapters 6 and 7.

1.2 Contributions

This thesis combines research efforts in three different areas: reconfigurable modular manip-
ulators systems, manipulator fault tolerance, and task based design. The result is the realiza-
tion of a rapidly deployable fault tolerant manipulator system. To achieve this goal we make

the following contributions:

Rapidly Deployable Systems:

* We develop the hardware of a reconfigurable modular manipulator system: the
RMMS.

« We implement and test a distributed reconfigurable control system that automat-
ically adapts itself to the current manipulator configuration by building configu-

ration independent kinematic and dynamic manipulator models.

* We seamlessly integrate RMMS simulation software with the real-time control

software and hardware.

CHAPTER 1: INTRODUCTION

Manipulator Fault Tolerance:

* We formulate a simple yet comprehensive scenario for fault tolerance; it can
handle a large variety of faults with one single recovery mechanism: immobilize
the failing degree-of-freedom (DOF) by enabling its brake, and continue the
task with the remaining DOFs.

* We prove that two degrees-of-redundancy are necessary and sufficient for gen-
eral purpose fault tolerance.

» We provide an 8-DOF template for general purpose fault tolerant manipulator.

* We prove that, under certain conditions, one degree-of-redundancy is necessary
and sufficient for task specific fault tolerance.

» Based on the idea that one can achieve fault tolerance by avoiding unfavorable
joint anglesbeforefailure, we develop a global fault tolerant trajectory planning
algorithm.

* We developed an efficient implementation of the global fault tolerant trajectory
planning algorithm, which is used to evaluate the fault tolerant properties of
candidate manipulator designs in an agent-based design framework.

* We implemented a fault tolerant recovery mechanism that allows a manipulator
to continue its task uninterruptedly when a simulated joint failure occurs. We

demonstrated this controller on the RMMS.
Task Based Design:

* We consider a very complete definition of the TBD problem, including energy
consumption as an optimality criterion, and all of the following task constraints:
trajectory reachability, joint position limits, joint velocity limits, joint torque
limits, singularity avoidance, obstacle collision, and self-collision.

* We formulate an integrated solution approach to the TBD problem, based on
Genetic Algorithms. This approach considers simultaneously the manipulator
kinematics and dynamics, trajectory planning, and control.

* We include problem specific knowledge in the genetic algorithm to reduce the

size of the search space.

1.3 OVERVIEW

« We introduce the concept of “progressive evaluation,” which drastically reduces
the average computation cost of fithess evaluations.

* We introduce an agent-based implementation of the genetic algorithm, which
increases the computational power through distributed computing, and provides
a modular composable framework for adapting the design system to the design
task at hand.

« We perform a detailed performance analysis of the agent-based design frame-
work, by comparing it to exhaustive search, random search, and multiple restart
statistical hill-climbing.

* We propose the Fisher sign test, to compare the performance of statistical search
algorithms.

* We solve a comprehensive TBD problem, which consists of designing a modu-
lar fault tolerant manipulator for a satellite docking operation with the space
shuttle. The design task includes the determination of the optimal position and
orientation of the space shuttle with respect to the satellite, and the determina-

tion of the corresponding fault tolerant trajectory.

1.3 Overview

We conclude this introduction with an overview of the organization of the remainder of this

thesis:

» Chapter 2 provides an overview of the development of the RMMS hardware and
corresponding control software.

» Chapter 3 introduces the concept of manipulator fault tolerance and investigates
how many redundant degrees-of-freedom are necessary and sufficient to achieve
fault tolerance.

« Chapter 4 develops a global fault tolerant trajectory planning algorithm, which
is an essential component of a task specific fault tolerant manipulator system.

» Chapter 5 is the most important chapter of this thesis. It combines the concept of

9

CHAPTER 1: INTRODUCTION

10

rapidly deployable systems with the global fault tolerant trajectory planning
algorithm, to create amagent-based Task Based Design framewnk the
design of rapidly deployable fault tolerant manipulators.

Chapter 6 presents an extensive analysis of the TBD problem, including a per-
formance analysis of the agent-based design system, and several criteria for
characterizing the TBD problem itself.

Chapter 7 illustrates the power of the agent-based design system with a compre-
hensive example of a manipulator design for a satellite docking operation.
Chapter 8 summarizes the achievements and conclusions presented in this the-
Sis.

Appendix A lists the module specifications of all the RMMS modules that are

used in the TBD examples in this thesis.

Chapter 2

RMMS: A Reconfigurable
Modular Manipulator System

2.1 Introduction

The central building block of a rapidly deployable fault tolerant manipulator system is the
RMMS, a Reconfigurable Modular Manipulator System. The RMMS consists of a set of
modules of different sizes and performance specifications that can be quickly configured
into a manipulator that is optimally suited to perform a given task. To achieve this important

property ofreconfigurability the system requires special hardware and software provisions.

The first part of this chapter focuses on the mechanical and electrical hardware development
of the RMMS. Special quick-coupling connectors combined with a modular communication
interface guarantee the rapid reconfigurability of the RMMS hardware. The second part of
this chapter describes the modular and reconfigurable control software, as implemented with
the Chimera real-time operating system and the Onika visual programming language. An

experiment illustrates the manipulator configuration independent programming and control

CHAPTER2: RMMS: A RECONFIGURABLE MODULAR MANIPULATOR SYSTEM

capabilities of the implementation.

2.2 Self-Contained Hardware Modules

In most industrial manipulators, the controller is a separate unit housing the sensor inter-
faces, power amplifiers, and control processors for all the joints of the manipulator. A large
number of wires is necessary to connect this control unit with the sensors, actuators and
brakes located in each of the joints of the manipulator. The large number of electrical con-
nections and the non-extensible nature of such a system layout make it infeasible for modu-
lar manipulators. The solution we propose is to distribute the control hardware to each
individual module of the manipulator. These modules become then self-contained units
which include sensors, an actuator, a brake, a transmission, a sensor interface, a motor
amplifier, and a communication interface, as is illustrated in Figure 2-1. As a result, only six

wires are required for power distribution and data communication.

2.2.1 Mechanical Design

The goal of the RMMS project is to have a wide variety of hardware modules available. So

far, we have built four kinds of modules (two of which are shown in Figure 2-2): the manip-

Figure 2-2. An RMMS pivot joint and link module.

12

2.2 FLF-CONTAINED HARDWARE MODULES

c
Ccﬁ % DC Tach H i
acho- armonig
8 < 1 votor Brake meter Drive Resolvel]
S I
<
Brake o
Switch 12bit | 12 bit | 16 bit| &
Motor D/A | AD RD |5
8 Amplifier =
Q= o
> O LN
;oj § Bus Drivers 'CEG
-~ DC/DC | | o
LU Converterf | CPU ﬁ% RAM %
= O e
o Q =
ARCNET 38| ROM 12
RS-485 RS-232
Diagnostics
o [0 v]
> S =
o] & 3]
= g 48V g
e Q twisted pair Q
< O O

Figure 2-1. Diagram of a self-contained RMMS module.

ulator base, a link module, three pivot joint modules, and one rotate joint module. The base
module and the link module have no degrees-of-freedom; the joint modules have one
degree-of-freedom each. The mechanical design of the joint modules compactly fits a DC-

motor, a fail-safe brake, a tachometer, a harmonic drive, and a resolver.

The pivot and rotate joint modules use different outside housings to provide the right-angle
or in-line configuration, respectively, but are identical internally. Figure 2-3 shows in cross-
section the internal structure of a pivot joint. Each joint module includes a DC torque motor

and a 100:1 harmonic-drive speed reducer; the modules are rated at a maximum speed of

13

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

14

X-bearing

Motor bearings

/]

Tachometer-—-_] Ak ke 2222277777 AN =]
‘Hollow
motor shaft—
Motor—~—””’4"’

¢

Y4 Resolver
Motor
Lifi H T e

amplifier H Hl | Brake

Harmonic drive

Locking collar

Locking ring

Figure 2-3. Assembly drawing of a pivot joint module.

2.2 FLF-CONTAINED HARDWARE MODULES

0.9rad/s and maximum torque of 290Nm. Each module has a mass of approximately 10.7kg.
A single, compact, X-type bearing connects the two joint halves and provides the needed
overturning rigidity. A hollow motor shaft passes through all the rotary components, and

provides a channel for passage of cabling with minimal flexing.

2.2.2 Electronic Design

The custom-designed on-board electronics are also designed according to the principle of
modularity. Each RMMS module contains a motherboard which provides the basic func-
tionality. Onto the motherboard, one can stack daughtercards to add module specific func-

tionality.

The motherboard consists of a Siemens 80C166 microcontroller, 64K of ROM, 64K of
RAM, an SMC COM20020 universal local area network controller with an RS-485 driver,

and an RS-232 driver. The function of the motherboard is to establish communication with
the host interface and to perform the low-level control of the module, as is explained in more
detail in Section 2.2.4. The RS-232 serial bus driver allows for simple diagnostics and soft-

ware prototyping.

A stacking connector permits the addition of an indefinite number of daughtercards with
various functions, such as sensor interfaces, motor controllers, and RAM expansion. In our
current implementation, only modules with actuators include a daughtercard. This card con-
tains a 16 bit resolver to digital converter, a 12 bit A/D converter to interface with the
tachometer, and a 12 bit D/A converter to control the motor amplifier; we have used an of-
the-shelf motor amplifier (Galil Motion Control model SSA-8/80) to drive the DC-motor.
For modules with more than one degree-of-freedom, for instance a wrist module, more than

one such daughtercard can be stacked onto the same motherboard.

2.2.3 Integrated Quick-Coupling Connectors

To make a modular manipulator be reconfigurable, it is necessary that the modules can be
easily connected with each other. We have developed a quick-coupling mechanism with
which a secure mechanical connection between modules can be achieved by simply turning

a ring hand-tight; no tools are required. As shown in Figure 2-4, keyed flanges provide pre-

15

CHAPTER2: RMMS: A RECONFIGURABLE MODULAR MANIPULATOR SYSTEM

Figure 2-4. A male and female RMMS connector.

cise registration of the two modules. Turning of the locking collar on the male end produces
two distinct motions: first the fingers of the locking ring rotate (with the collar) about 22.5
degrees and capture the fingers on the flanges; second, the collar rotates relative to the lock-
ing ring, while a cam mechanism forces the fingers inward to securely grip the mating
flanges. A ball-transfer mechanism between the collar and locking ring automatically pro-

duces this sequence of motions.

At the same time the mechanical connection is made, pneumatic and electronic connections
are also established. Inside the locking ring is a modular connector that has 30 male electri-
cal pins plus a pneumatic coupler in the middle. These correspond to matching female com-
ponents on the mating connector. Sets of pins are wired in parallel to carry the 72V-25A
power for motors and brakes, and 48V—6A power for the electronics. Additional pins carry
signals for two RS-485 serial communication busses and four video busses. A plastic guide
collar plus six alignment pins prevent damage to the connector pins and assure proper align-
ment. The plastic block holding the female pins can rotate in the housing to accommodate
the eight different possible connection orientations (8@45 degrees). The relative orientation
is automatically registered by means of an infrared LED in the female connector and eight

photodetectors in the male connector.

16

2.2 FLF-CONTAINED HARDWARE MODULES

2.2.4 ARMbus Communication System

Each of the modules of the RMMS communicates with the host interface over a local area
network called the ARMbus; each module is a node of the network. The communication is
done in a serial fashion over an RS-485 bus which runs through the length of the manipula-
tor. We use the ARCNET protocol (ARCNET Trade Association 1992) implemented on a
dedicated IC (SMC COM20020). ARCNET is a deterministic token-passing network
scheme which avoids network collisions and guarantees each node its time to access the net-
work. Blocks of information called packets may be sent from any node on the network to
any one of the other nodes, or to all nodes simultaneously (broadcast). Each node may send

one packet each time it gets the token. The maximum network throughput is 5Mb/s.

The first node of the network resides on the host interface card, as is depicted in Figure 2-5.
In addition to a VME address decoder, this card contains essentially the same hardware one
can find on a module motherboard. The communication between the VME side of the card
and the ARCNET side occurs through dual-port RAM.

There are two kinds of data passed over the local area network. During the manipulator ini-
tialization phase, the modules connect to the network one by one, starting at the base and

ending at the end-effector. On joining the network, each module sends a data-packet to the

SGl Sun 4
Crimson Host

o (9p]

& s

Ironics ARMbus RS485
RTPU Host card

Node 1 pe= NOJE 2 [—

Figure 2-5. The RMMS computing hardware

17

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

host interface containing its serial number and its relative orientation with respect to the pre-
vious module. This information allows the controller to determine automatically the current

manipulator configuration.

During the operation phase, the host interface communicates with each of the nodes at
400Hz. The data that is exchanged depends on the control mode—centralized or distributed.
In centralized control mode, the torques for all the joints are computed on the VME-based

real-time processing unit (RTPU), assembled into a data-packet by the microcontroller on

the host interface card, and broadcast over the ARMbus to all the nodes of the network. Each
node extracts its torque value from the packet and replies by sending a data-packet contain-
ing the resolver and tachometer readings. In distributed control mode, on the other hand, the
host computer broadcasts the desired joint values and feed-forward torques. Locally, in each
module, the control loop can then be closed at a frequency much higher than 400Hz. The
modules still send sensor readings back to the host interface to be used in the computation of

the subsequent feed-forward torque.

2.3 Modular and Reconfigurable Control Software

As we have shown in Section 2.2, the keys to rapidly deployable hardware are modularity
and reconfigurability. The same concepts apply also to the software aspect of rapidly
deployable systems. The development of real-time control software for sensor-based robotic
systems is complicated and time-consuming. To reduce this complexity, a software para-
digm, calledsoftware assembhlyas been proposed in the Advanced Manipulators Labora-

tory at Carnegie Mellon University. This paradigm combines the concept of reusable and
reconfigurable software components with a graphical user interface and visual programming

language, as is shown in Figure 2-6.

2.3.1 The Chimera Real-Time Operating System

Chimera is a real-time operating system that supports the use of reconfigurable and reusable

software components. It is founded upon the notion of port-based objects, in which the port

18

2.3 MODULAR AND RECONFIGURABLE CONTROL SOFTWARE

e

iconic
programming

language ;

RIS
O %% % %S
configuration

No ‘.A SAVAVAVA
m programmer

Q
\ Subsystem w

IV,

C, math,
and utility

subroutine
libraries

to/?rom othe
subsystem

special pur
processo

EOS

typed data in typed data in
interfacex nteracay || interiacez
interface interface
A_/ _ y Y
raw data in raw data ip raw data out
i/o device i/o device i/o device :
driverx driver driverz Ch|mera
from sensoiX from sensoly to act‘flatoz

& iconic programs (jobs) D real-ime tasks
@ graphical interfaces X subroutine calls

Figure 2-6. Framework for software assembly, as implemented in Chimera and Onika.
(from Stewart 1994)

19

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

automaton computation model of concurrent processes is combined with object based
design of software. The internal methods of a port-based object are hidden (as in object ori-
ented programming), while communication is achieved through input, output, and resource
ports (as in automata). Each object executes as a separate task on one of the processors in a
distributed environment. Communication between objects is performed through a global
state variable table that is stored in shared memory. The variables in this table are a union of
the input port and output port variables of all the objects. The port names are used to per-
form the binding between the objects. Instead of accessing the global state variable table
directly, each objects uses a local copy of the table, in which only the variables used by the
object are kept up-to-date. Because the global table is locked during updates, the data is
always transferred between global and local state variable tables as a complete set. The
result of the global state variable table mechanism is that each of the objects can execute
autonomously, without blocking when another task is using a shared resource. More details
about Chimera can be found in Stewart and Khosla (1995) and Stewart (1994).

2.3.2 The Onika Visual Programming Language

Onika is a high-level graphical interface that facilitates the use of the port-based objects cre-
ated within Chimera. Onika provides manipulation, encapsulation, and sequencing capabili-
ties for the objects at two distinct levels: high level and middle level (the low level is defined

to be the coding of specific objects within Chimera).

The middle-level interface allows a system designer to combine low-level software objects
into objectconfigurations such as the one shown in Figure 2-7. This level provides a “can-
vas” on which the user can drag-and-drop object icons to interactively assemble the real-
time software while it is running on the real time processing units. No knowledge of textual
coding is required, but merely a good working knowledge of control theory and familiarity
with control block diagrams. The configurations specified at the middle level represent par-
ticular tasks that the system designer requires to complete some highepjaiedtion

For instance, “move the robot to a point in space” could be a task accomplished by a single
configuration, while making a series of moves to complete an assembly could be an applica-

tion. Entire object configurations can be iconified and exported to the dictionary in the high

20

2.3 MODULAR AND RECONFIGURABLE CONTROL SOFTWARE

L
trjjiline
Fruas HF
HEP u_RFF B_REF

NI:IFI_TPH

T_GRAU P_TH
f_HEZ " _REF =8
HEZ
— ERAKES
— T_REF

100410 —— |
| | 1000

Ar-An _Comp

HF

W_REF

el

Figure 2-7. An object configuration for joint space control, created at the
middle level of Onika.

level interface.

At the high level, which is intended for non-programmers and unskilled users, a storyboard
Is presented with a dictionary of puzzle-piece-like task icons. The task icons are shape and
color coded for proper connection. They are the building blocks for the visual programming
language of the high level of Onika. A user can drag-and-drop the icons onto the storyboard
to create various applications. Figure 2-8 illustrates the program used to execute the task in

the experiments of Section 2.4.

Figure 2-8. An Onika application.

2.3.3 RMMS Control Software

The port-based Chimera objects used to control the RMMS are listed in Table 2ujj- The
gen, disandgrav_compcomponents require the knowledge of certain configuration depen-

dent parameters of the RMMS, such as the number of degrees-of-freedom, and the Denavit-

21

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

[92)

a_

atic

|®N

|

name function description
rmms RMMS interface Initializes RMMS; Computes and sends raw
joint positions to the joint modules; Receives
and converts raw sensor readings.
grav_comp| gravity compensationl Computes the gravity compensation torque
based on the kinematic and dynamic manipu
tor models.
fkjac forward kinematics | Computes the forward kinematics and Jacobian,
and Jacobian based on the kinematic manipulator model.
dis damped least-squaresComputes the desired joint space position
kinematic controller | according to the damped least-squares kinem
control algorithm.
trjjgen joint trajectory Generates a 5th order polynomial interpolate
generator joint space trajectory.
trjcgen Cartesian trajectory | Generates a 5th order polynomial interpolate
generator Cartesian space trajectory.

Table 2-1. Chimera software module description.

Hartenberg parameters. During the initialization phase, the RMMS interface establishes

contact with each of the hardware modules to determine automatically which modules are

being used and in which order and orientation they have been assembled. For each module,

a data file with a parametric model is read. By combining this information for all the mod-

ules, kinematic and dynamic models of the entire manipulator are built.

After the initialization, the rmms object operates in a distributed control mode in which the

microcontrollers of each of the RMMS modules perform PID control locally at 1900Hz. The

communication between the modules and the host interface is at 400Hz, which can differ

from the cycle frequency of threnmsChimera object. Since we use a triple buffer mecha-

nism (Stewart 1994) for the communication through the dual-port RAM on the ARMbus

22

2.3 MODULAR AND RECONFIGURABLE CONTROL SOFTWARE

Figure 2-9. An RMMS configuration: simulation and hardware

host interface, no synchronization or handshaking is necessary.

Because closed form inverse kinematics do not exist for all possible RMMS configurations,
we have to use iterative inverse kinematics. We have implemented a damped least-squares
kinematic controller that can automatically adjust itself to sudden joint immobilization. This

Is important for fault recovery of fault tolerant manipulators. A more detailed description of

the fault tolerant kinematic controller can be found in Chapter 4, Section 4.6.

2.3.4 Seamless Integration of Simulation

To assist the user in evaluating whether an RMMS configuration can successfully complete
a given task, we have built a simulator. The simulator is based on the TeleGrip robot simula-

tion software from Deneb Inc., and runs on an SGI Crimson which is connected with the

23

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

real-time processing unit through a Bit3 VME-to-VME adaptor, as is shown in Figure 2-5. A
graphical user interface allows the user to assemble simulated RMMS configurations very
much like assembling the real hardware. Completed configurations can be tested and pro-
grammed using the TeleGrip functions for robot devices. The configurations can also be
interfaced with the Chimera real-time software running on the same RTPUs used to control
the actual hardware. As a result, it is possible to evaluate not only the movements of the
manipulator but also the real-time CPU usage. Figure 2-9 shows an RMMS simulation com-

pared with the actual task execution.

2.4 Experiments

In this section, we compare two different RMMS configurations executing the same task to
demonstrate the configuration independence of the RMMS controller and the Onika high
level programming language. The task consists of writing “RMMS” on a white board, as is
shown in Figure 2-9. The white board is positioned 0.65m from the manipulator base and
the word “RMMS” measures 0.2m by 0.553m (see Figure 2-11). The whole path is 3.166m

long and is traversed in 35.62 seconds.

The first of the two manipulator configurations used in this experiment is shown in Figure
2-9. It has 3 rotational degrees-of-freedom. The first two rotation axes are horizontal and
parallel to the writing surface. The third rotation axis is perpendicular to the first two. The
second configuration depicted in Figure 2-10 has also three rotational degrees-of-freedom.
The first rotation axis is again horizontal but this time perpendicular to the writing surface.
The second and third rotation axes are parallel to each other and perpendicular to the first

axis.

These configurations are only two of the many configurations that one can build with the
five RMMS modules currently available. Taking into account the axial symmetry of the link
and rotate joint module, and the functional equivalence of the three pivot modules, one can
build 3,520 different 3-DOF freedom manipulators and 12,288 different 4-DOF manipula-

24

2.4 EXPERIMENTS

MMS

Figure 2-10. The second configuration used in the experiments.

tors. In Chapter 6, we will apply the agent-based design framework, developed in Chapter 5,
to the same task that we consider in this section, and determine which of the 3,520 3-DOF

manipulators is optimally suited to perform this task.

This section focuses on the actual task execution. Even though the two manipulator configu-
rations are totally different in their kinematic and dynamic structure, they can both execute

the task with the exact same Chimera and Onika programs.

The Onika program shown in Figure 2-8, consists of three sub-tasks: move under joint space
control to the starting point; then, switch to Cartesian control and follow the Cartesian path
defined in the file “RMMS.traj”; finally, switch back to joint space control and move to the
home position. At the beginning of the task execution, Onika spawns all the Chimera mod-
ules listed in Table 2-1, but commands only iimens grav_comp andtrjjgen modules to

start cycling. These three modules constitute the joint space control configuration. At the

25

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

end of the joint space controlled sub-task, tifjgen module turns itself off, and Onika
switches to Cartesian control by commanding fifjac, dIs, andtrjcgen modules to start
cycling. Since themmsandgrav_compmodules appear in both the joint space control con-
figuration and Cartesian control configuration, they continue uninterruptedly. Similarly, at
the end of the “RMMS” Cartesian trajectory, thegenmodule turns itself off, after which
Onika turns theékjac anddls modules also off, and thigjgen module back on for the next

sub-task.

Figure 2-11 illustrates the performance of the damped least squares kinematic controller in
combination with the distributed PID controller. The end point error is similar for both con-
figurations—Iless than 2.5mm at any time. There are three sources of error: the damped
least-squares kinematic controller, the distributed PID controller, and the incorrectly cali-
brated kinematic parameters. The error shown in Figure 2-11b is based on the measured
joint angles, so that it includes the controller errors but not the calibration errors. As a result,

the actual end-point error will be slightly larger.

2.5 Summary

This chapter provided an overview of the development of the RMMS hardware and control
software. The fully self-contained RMMS modules owe their rapid reconfigurability to two
important innovations: the quick-coupling connectors, and the ARMbus modular communi-
cation and control system. The control software has also been implemented in a modular
and reconfigurable framework, using the Chimera real-time operating system and the Onika
visual programming language. This control implementation allows for manipulator configu-

ration independent programming and control, as has been illustrated with a final example.

26

Configuraton1

2.5 SUIMMARY

Configuraton 2

0.85 0.85
0.8 0.8
0.751 0.751
E 0.7+ E 0.7+
S =
0.65F 0.651
0.6 ‘—1 0.6 —
0'5-8.3 -0.2 -0.1 0 0.1 0.2 0.l 0'5-8.3 -0.1 0 0.1 0.2 0.3
y [m] y [m]
Figure 2-11a. measured path (solid) and desired path (dotted).
x10° x10°
25 25
2r 2F
E E
— N
S15f 15
8 E
g g
2 2
€ €
8 8
5 1f 5 1t
s s
@ @
0.5 0.5
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
time [sec] time [sec]
Figure 2-11b. End point position error.
140 80
1200 i A N , 601 N A VAN
[otz N Y AT AN joint 2 A N A
AN P N ot . v AR
1001 \\ N \\ // \J(N /’ \\ // k \ o 408 - 7 v
L 7) \ _ joint 1
80 20
T T
k=3 k=7
= 60 = OfF
2 S
oy 401 b oy -20F
£ s
s M)
20 i _a0F
or] 60}
-20r -80[joint 3
joint 3
-40 L L L L L L L L -100 L L L L L L L L
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
time [sec] time [sec]

Figure 2-11c. Joint angles.

Figure 2-11. Comparison of the same task executed by two different manipulator
configurations.

27

CHAPTER 2: RMMS: A RECONFIGURABLEMODULAR MANIPULATOR SYSTEM

28

Chapter 3

Fault Tolerant Manipulators

3.1 Introduction

As we mentioned in Chapter 1, an important requirement for rapidly deployable manipula-
tors in hazardous and remote environments is that they be extremely reliable. We propose to
achieve a high level of reliability through fault tolerance, that is, by including redundancy to
compensate for possible failures of components. Yet, one can add redundancy to a manipu-
lator in many different ways, not all of which are equally effective at increasing the system’s
reliability. In this chapter, we present a simple but comprehensive scenario for fault toler-
ance and describe how our approach relates to the past work on manipulator fault tolerance.
We then focus on an important question with respect to the design of fault tolerant manipu-
lators: how many degrees-of-redundancy are necessary and sufficient to achieve fault toler-
ance? The answer to this question depends on the assumptions that are made about the task
and about the manipulator’s redundancy resolution algorithm. We consider twogeases:

eral purpose fault tolerancandtask specific fault tolerance

CHAPTER 3: FAULT TOLERANT MANIPULATORS

3.2 Approach

Over the past decade, a lot of research has been done in fault tolerance for computer systems
(refer to Johnson (1989) for an overview), but only recently has the concept been applied in
robotics. Most of the work in fault tolerant robotics is directly based on the results from

computer science, and can be classified in three categories:

1. Design of fault tolerant robots,
2. Fault detection and identification (FDI),

3. Fault recovery and intelligent control.

When designing a fault tolerant manipulator, one should decide where to include redun-
dancy so that the overall reliability is maximum. One should distinguish between hardware,
software, analytical, information, and time redundancy (Johnson 1989). Our focus will be
on hardware redundancy, which consists of actuation, sensor, communication and comput-
ing redundancy. Each of these types of redundancies can still be implemented at different
levels. In Sreevijayan (1992), for instance, a four-level subsumptive architecture for actua-

tion redundancy is proposed:

1. Dual actuators—extra actuators per joint,
2. Parallel structures—extra joints per DOF,
3. Redundant manipulators—extra DOFs per manipulator arm,

4. Multiple arms—extra arms per manipulator system.

A system can possibly be designed with redundancies at all four levels, resulting in the abil-

ity to sustain multiple simultaneous faults.

An example of a fault tolerant design for the space shuttle manipulator is described in Wu et
al. (1995). Fault tolerance is here guaranteed by using a differential gear train with dual
input actuators for every DOF—an implementation of the first level of the four-level sub-

sumptive architecture. In this thesis, we are more interested in achieving fault tolerance

using redundant DOFs (Level 3), and, accordingly, propose an alternative space shuttle

30

3.2 APPROACH

manipulator design in Chapter 7. We envision the following scenario for level three fault tol-

erance:

A fault detection and identification algorithm monitors the proper functioning of
each DOF of a redundant manipulator. As soon as it detects a failure of a subcom-
ponent, an intelligent controller immobilizes the corresponding DOF by activating
its fail-safe brake. Automatically, the controller also adapts the joint trajectory to
the new manipulator structure, so that the task can be continued without interrup-

tion.

The strength of this scenario resides in the fact that it is simple and, yet, can handle a large
variety of possible faults, ranging from sensor failures to transmission and actuation fail-
ures. All these failures can be treated in the same manner, namely, by eliminating the whole

DOF through immobilization.

English and Maciejewski (1996) consider a different scenario, nafmedyswinging fail-

ures which corresponds to a hardware or software failure that causes the loss of torque (or
force) on a joint. They define several criteria that can be used for null-space optimization of

a redundant manipulator to reduce the effect of an anticipated free swinging failure. The cri-
teria are designed to minimize torque, acceleration, or swing angle after failure. In this the-
sis, we do not consider this free-swinging scenario as a separate case, because the failures
that cause free-swinging can be handled equally well with the joint locking scenario if one

turns on the brakes of failing joints.

Although fault detection and identification (FDI) is an important part of our scenario for
fault tolerance, we will not cover this subject in this thesis. Instead we refer to the following
references: Chow and Willsky (1984), Stengel (1988), Ting, Tosunoglu, and Tesar (1993),
and Visinsky, Walker, and Cavallaro (1993 and 1994). Visinsky, Walker, and Cavallaro
(1993) present an FDI algorithm along the lines of Chow and Willsky (1984)—based on the
concept of analytical redundancy. The result is a set of four simple equations which test for
consistency between the measured position and velocity and the expected acceleration and

jerk. This FDI algorithm fits into a three-layer intelligent control framework, consisting of a

31

CHAPTER 3: FAULT TOLERANT MANIPULATORS

servo layer, and interface layer and a supervisory layer. The main problem presented to the
intelligent controller is to distinguish between failures, disturbances and modeling errors,
and to respond to each in the proper way. An overview of intelligent fault tolerant control is
given by Stengel (1988). He reported a range of approaches beginning with robust control,
progressing through parallel and analytical redundancy, and ending with rule-based systems
and artificial neural networks. The task of the robotics researcher is to apply and modify

these approaches to the highly non-linear dynamics of robot manipulators.

After a fault has been detected, the failing DOF is immobilized by activating its brake. In
Pradeep et al. (1988), the authors analyze the effect of the immobilization of one of the
DOFs of three commercial manipulators. They conclude that the robots with decoupled
DOFs are more severely “crippled” by the loss of a joint than the ones with strongly coupled
DOFs. This can be translated into the guideline that, for the design of fault tolerant manipu-
lators, strong coupling between the DOFs is highly desirable. The results presented by Rob-
erts and Maciejewski (1996) and Lewis and Maciejewski (1994a) can be interpreted in a
similar way. A kinematic fault tolerance measure is defined as the minimum kinematic dex-
terity after joint failure. The maximum kinematic fault tolerance is achieved in a manipula-
tor posture in which each joint contributes equally to the null-space motion—a posture with
strong coupling between the DOFs. For a manipulator with at least one decoupled DOF, the
kinematic fault tolerance measure is always minimal, that is, zero. The same measure can be
used as a criterion for the redundancy resolution of the fault-free manipulator. It is shown
that the chances for task completion, after immobilization of one joint due to failure, are
much better than when traditional pseudo-inverse control is used. However, due to the local
nature of the fault tolerance measure, completion of the task cannot be guaranteed on a glo-

bal scale (Lewis and Maciejewski 1994b).

An important conclusion is that the ability to recover from a fault depends strongly on the
joint trajectory followed by the fault-free manipulator system. This conclusion led us to
explore two approaches to the problem of manipulator fault tolerance. The two approaches
differ in the assumptions that are made with regard to the task and with regard to the choice

of redundancy resolution algorithm. In a first approach, the goal is to degeyreeal pur-

32

3.3 FAULT TOLERANCE AND RELIABILITY

pose fault tolerant manipulato¥We assume that the task is only characterized by the size
and position of théask spaceavhich is the portion of the Cartesian output space in which the
task will take place. No assumptions are made about the path that needs to be followed
within the task space or about the redundancy resolution algorithm used to execute the task.
Such a general purpose fault tolerant manipulator can fault tolerantly execute any task of
which the task space lies inside the fault tolerant workspace of the manipulator. This

approach to fault tolerance is further explored in Section 3.4.

In a second approach, the goal is to desitasla specific fault tolerant manipulatdn this
approach, we assume that the Cartesian path to be followed is known a priori and that the
corresponding set of possible joint trajectories can be limited by an appropriate choice of a
redundancy resolution algorithm. In Section 3.5 and in more detail in the next chapter, we
show how these additional assumptions allow us to design a fault tolerant manipulator with

fewer DOFs than a general purpose fault tolerant manipulator.

For both approaches, we will answer the question: How many degrees-of-redundancy are
necessary and sufficient for fault tolerance? However, before we address this design prob-
lem, we want to make sure that fault tolerance is indeed a good mechanism for achieving
high reliability. In the next section, we investigate under which conditions fault tolerance

improves the overall system reliability the most.

3.3 Fault Tolerance and Reliability

The basic idea presented in this chapter is to use a manipulator’s redundant DOFs to com-
pensate for a possible failure of one of the joints. The underlying assumption is that a
manipulator that can sustain a joint failure is more reliable than one that cannot. The ques-
tion is: “Does fault tolerance always result in an increase in reliability?” The answer is given
by reliability theory (Johnson 1989).

The reliability, R(t) , of a component or a system is the conditional probability that the com-

ponent operates correctly throughout the intef¥glt] , given that it was operating cor-

33

CHAPTER 3: FAULT TOLERANT MANIPULATORS

rectly at the time . For non-fault-tolerant serial link manipulators, the system fails when
any single subsystem—a DOF or joint module for modular manipulators—fails. The system

reliability can then be computed as the product of the module reliabiiRi@}p,
Ryt) = Ri(DR,(1)...R(1). (3-1)

Or, in the case that every module is equally reliable with relialBlity (t)

R(t) = R D) (3-2)

If there aren modules and onfy of those are required for the system to function prop-
erly—the system can tolerate — m) module failures—then the system reliability is the
sum of the reliabilities of all systems wilhn—m) or fewer faults. Since ther%%e dif-

ferent systems with faults, the system reliability of a fault tolerant system with equal mod-

ule reliabilities can be written concisely as

R((t) = 'Zo g‘gq”mgg(t)(l—Rmoo(t))‘. (3-3)

We can apply this formula to the example of an 8-DOF fault tolerant manipulator, which
needs only seven DOFs to function properly. The system reliability of the fault tolerant sys-

tem is:

R(t) = R (1) +8R. (1-R (1) = RT _(D(B-7R (1), (3-4)

compared tdRy(t) R?noo(t) for an equivalent 6-DOF non-fault-tolerant system. Both reli-
abilities are plotted as a function of the module reliability in Figure 3-1, while Figure 3-2
shows theelative system reliabilityf R/Rs :

f
% = Ry0d8=7Rmod) - (3-5)

which equals 1 foR_, =1 an®

mod

1/7 . These graphs should be interpreted as fol-

mod ~

34

3.3 FAULT TOLERANCE AND RELIABILITY

[
[N
o

o
©

o
©

o
3

o
o

8-DOF

System Reliability
o o
» [
Relative System Reliability

o
w

6-DOF

o

[N}
=
o,

o
-

i i i 10'3 i i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Module Reliability Module Reliability
Figure 3-1. System reliability of an Figure 3-2. Relative system
8-DOF fault tolerant manipulator and reliability of an 8-DOF fault tolerant
a 6-DOF non-fault-tolerant manipulator versus a 6-DOF non-fault-
manipulator. tolerant manipulator.

lows:

* whenR, () =0, thenfRS = Ry = 0 . The system reliability is zero in both
cases, i.e., both systems are guaranteed to fail.

* whenR, () = 1, thenfRS = R, = 1 . That is, both systems are 100% reli-
able.

* when % <R <1, thenfRS> R, , meaning that the fault tolerant system is
more reliable than the non-fault-tolerant one.

* whenR (1) <:—7L , thenfRs< R, . The modules are so unreliable that the added

complexity of the fault tolerant system reduces the overall performance.

Preferably, one would like to operate a system at a reliability close to one, for which the
fault tolerant system is the more reliable. To compare both alternatives for modules with a
high reliability, it is more instructive to rewrite Equation (3-4) as an expression for the sys-

tem’sunreliability, Q(t) = 1-R(Y):

"Qq(t) = 28Q% (1) —112Q7 (1), (3-6)

35

CHAPTER 3: FAULT TOLERANT MANIPULATORS

whenQ,,,,q — 0 . The unreliability for the non-fault-tolerant system is

Q) = 6Q, o {t) — 15Q% . 1) - (3-7)

In general, the unreliability of B -fault tolerant system—one that can sustain faults—is
of the orderO(erfnzé) . This means that the reliability of a fault tolerant system increases
more significantly when the reliability of the individual modules is high. Best results are
thus obtained when fault tolerance is combined with high component reliability, or fault

intolerance.

3.4 General Purpose Fault Tolerant Manipulators

In this section, we discuss the kinematic design of a general purpose fault tolerant manipula-
tor without joint limits. Just like for non-fault-tolerant manipulators, the kinematic capabili-

ties are mainly characterized by the shape and size of the workspace or rather the fault
tolerant workspace (FTWS) in this case. We identify several properties of general purpose

fault tolerant manipulators and their workspaces, and propose an 8-DOF design template.

To set the stage for our development, we define the following concepts relating to general

purpose fault tolerant manipulators:

* General Purpose Fault Tolerant Manipulator. A manipulator that will still
be able to meet the task specifications, even if any one or more of its joints fail
and are frozen at any arbitrary joint angles.

* k-Reduced Order Derivative k-ROD): Whenk joints of am -DOF manipu-
lator fail, the effective number of joints g — k) . The resulting faulty manipu-
lator is called & -reduced order derivative.

» Order of Fault Tolerance: A manipulator is fault tolerant of the -th order, if

and only if all possibl& -reduced order derivatives can still perform the speci-

(1) This section is based on Paredis and Khosla (1994).

36

3.4 GENERAL PURPOSEFAULT TOLERANT MANIPULATORS

fied task. We call the manipulatkr -fault tolerant.
» Fault Tolerant Workspace (FTWS). The fault tolerant workspace ofka -fault
tolerant manipulator is the set of points reachable by all poskible -reduced

order derivatives.

Notice that our definition of a general purpose fault tolerant manipulator reflects the
assumption that the redundancy resolution algorithm is not known a priori: a joint failure

can occur at an arbitrary angle.

In the remainder of this section, if no specific task is mentioned, it is assumed that the task is
to reach a nonzero volume of points. That is, the task spacens an -dimensional manifold in
the m -dimensional output space of the manipulator. A manipulator with a FTWS of dimen-

sion less tham is considered not to be fault tolerant.

3.4.1 Properties of General Purpose Fault Tolerant Manipulators
3.4.1.1 Existence

A general purpose manipulator has six DOFs which allow it to position its end effector in an
arbitrary position and orientation anywhere in its workspace. An obvious way to make this
manipulator fault tolerant is to design every joint with a redundant actuator. If one of the
actuators of the resultingn -DOF fault tolerant manipulator were to fail, the redundant
actuator could take over and the manipulator would still be functional. Similskly, a -fault

tolerant manipulator can be constructed by duplicating every KOF times, resulting in a
(k+1)n-DOF manipulator. This argument illustrates tflat- 1)n DOFs are sulfficient for

k-th order fault tolerance. In the remainder of this section, we determine the number of

DOFsnecessaryo achieve general purpose fault tolerance.

3.4.1.2 Boundary of the Fault Tolerant Workspace

In this section, we show that a boundary point of the FTWS is a critical (Gamensider a

k-fault tolerant planar manipulato¥) . A boundary poip, , of the FTWS has to be an

(2) A critical value is an end-effector position that can be reached in a singular configuration, i.e., that
is the image of a critical point (Burdick 1988).

37

CHAPTER 3: FAULT TOLERANT MANIPULATORS

element of the boundary of the workspace of at least one RQD, , Obtained by fieezing
joints of M . Indeed, ifp, were an interior point of the workspaces of all RODs, then it
would by definition be an interior point of the FTWS and not a boundary point. The Jaco-
bian of MU, Jy,« , can be obtained from the Jacobiamofd,,, , by deleting the columns
corresponding to the frozen DOFs. Becayge is a boundary point of the workspace of
ML, the Jacobian oft Ll g, is singular. We prove now that IS singular too. Assume
thatJ,, were non-singular, then at least one of the columns corresponding to a frozen DOF
would be outside the column space of the singular makyjx, . Physically this means that a
small change in the angle of that frozen DOF would cause the end effebtor of to move in
a direction with a component perpendicular to the boundary of the workspace of the ROD,
M U, as illustrated in Figure 3-3. The ROD with this new frozen angle would be unable to
reach the pointp, .Asaresufy, would be outside the FTWS, contradicting the fact that
p, is a boundary point of the FTWS. Thulg, is singular ppd is a critical value.

Consequently, the FTWS is bounded by critical value manifolds. For planar positional
manipulators, the critical value manifolds are concentric circles, and the FTWS is an annu-

FTWS FTWS

lus with inner radiuRR;; ~ and outer radiBgg, .

3.4.1.3 Required Degree of Redundancy

In Section 3.4.1.1, it is shown that, in geneka, redundant DOFs{kiel)n DOFs in

total—are sufficient to achieve -th order fault tolerance. For planar positional manipula-

Py

frozen 0+ do

frozen
workspace boundary

ROD M [J of MU

workspace boundary

of M [

Figure 3-3. A ROD unable to reach a point outside the FTWS.

38

3.4 GENERAL PURPOSEFAULT TOLERANT MANIPULATORS

(k+1) joints k frozen joints
N Y O O O R O OOoOoOOOooOoon
N I O N I I Y
k frozen joints (k+1) joints
FTW FTW
2 Rax < Rhin

Figure 3-4. An upper bound f@max and a lower boundF{aTrr\]NS

tors, however, we prove thak redundant DOFs are necessary and sufficient for -th order

fault tolerance.

Necessary.The proof shows tha2k +1) DOFs (@k—1 redundant DOFs) are insuffi-

. o FTWS TWS . ,
cient, by finding a lower bound fd® ,;, and an upper boundQﬁ:? . First consider
the ROD obtained by freezing the fikst jointDat radians, as illustrated in Figure 3-4. The

maximum reach in the opposite direction is an upper bounﬂ&&vs

S 2k+1
RFTW
max s z l +|k+1+ Z (3'8)
i=1 i=k+2
FTWS . _
wherel; is the length of the -th link. In order fef, . to be positive, we must have that:
K 2k+1
zlislk+1+ z l; . (3-9)
i=1 i=k+2

Making this assumption, we find th TWS

is bounded below by the inner radius of the
workspace of the ROD obtained by freezing khe last join@s at radians, as illustrated in

Figure 3-4:

FTWS ket
Ruin 2 S li+hea- z| (3-10)
i=k+2 i=1

39

CHAPTER 3: FAULT TOLERANT MANIPULATORS

From Equation (3-8) and Equation (3-10), it follows that at best

FTWS FTWS
F‘)max = Rmin J (3'11)
resulting in a one-dimensional FTWS. Thereforé2la+ 1) -DOF planar manipulator can-

not bek -th order fault tolerant.

Sufficient: The proof shows that there exist$2k + 2) -DOF manipulator template that is
k-fault tolerant. Consider a manipulator witgk + 2) links of length . Because all the
links have the same length, it is possible to compensate for a fault in a DOF by choosing a
neighboring DOF to be at radians; that is, folded back onto the failing DOF. Even when
consecutive DOFs fail, this trace-back-mechanism can be used to compensate for failures.
The result is that, by sacrificing one DOF to compensate for every fau(@khe2) -DOF
manipulator withk faults is equivalent to a faultlé&ss -DOF manipulator. The FTWS of the
(2k + 2) DOF manipulator is then the workspace of the equiva2ent -DOF manipulator,
that is,

FTWS= {(x y|J/x2+y2<2l}. (3-12)

3.4.1.4 Including Orientation

Thus far, we have only considered planar positional manipulators. The results can be easily
extended to the case in which orientation is considered also, by converting the orientational

problem into an equivalent positional problem:

An n-DOF manipulator, M , isk -fault tolerant with respect to a set of points,
W = {(x,Y; 9;)}, if and only if:

1. The positional manipulatol] ' , obtained frstn by deleting its lastljpk, , is

k -fault tolerant with respect to the set of points
W' = {(x~1,co8;, ¥; ~I,sing))} ,
2. M' is(k—1) -fault tolerant while reaching the pointsWwh' in any direction.

NecessaryThe positional manipulatok ' , needs at g2+ 2) DOFs to be -th order

40

3.4 GENERAL PURPOSEFAULT TOLERANT MANIPULATORS

fault tolerant with respect toV ' ; therefore, the manipulator needs at([@ast3)
DOFs.

Sufficient: Again, we show that there exist2k +3) -DOF manipulator template that is
k-fault tolerant. Consider a template of which the fi&t + 2) links have ldngth and the
last link has length zero; it is the template described in the previous section with a zero-
length link added at the end. For this template, one can again use the trace-back-mechanism
to show that it is equivalent to a faultless 3-DOF manipulator with link lerigths , Q and

The FTWS is thus:

FTWS= [x yd) (VX +y* <2l and O[O, o b (3-13)
0 0

This result for planar manipulators with orientation and the result obtained in Section

3.4.1.3 can be summarized in the following theorem:

Theorem:

For planar manipulators without joint limit2k degrees-of-redundancy are neces-

sary and sufficient fok -th order general purpose fault tolerance.

3.4.2 Spatial Fault Tolerant Manipulators

For planar fault tolerant manipulators, we were able to prove2that is the required degree
of redundancy. The proof was based on geometric workspace analysis. For spatial manipula-
tors, however, the geometric analysis becomes too complex. Therefore, we will demonstrate

some properties of spatial general purpose fault tolerant manipulators using two examples.

As a first example, consider a 5-DOF spatial positional manipulator. Its Denavit-Hartenberg
(D-H) parameters are listed in Table 3-1. This manipulator is first order fault tolerant, and
because of its simple kinematic structure, an analytic expression for the boundary of the
FTWS can be derived. The FTWS is symmetric with respect to the first axis. A cross-section
(the X-Z plane), as shown in Figure 3-5, can be described by two segments of a circle with

radius 2 and center afx=1,z=0) , and a straight line frér= 2,z = ./3) to

41

CHAPTER 3: FAULT TOLERANT MANIPULATORS

DOFi | G a; a;

1 0 1 90°

DOFI d, a, of 2 a 1 0°

1 0 1 90° 3 a 1 90°

2 a 1 0° 4 b 1 0’

3 -a 1 90° 5 b 0 90°

4 b 1 0° 6 1 0 90°

5 b 1 — 7 0 0 90°

Table 3-1. D-H parameters of a 5-DOF 8 0 0 _
first order fault tolerant spatial Table 3-2. D-H parameters of an 8-DOF first

manipulator, without orientation. order fault tolerant spatial manipulator.

(x = 2, z= —./3) . An important property of this FTWS is that it does not have any holes or
a central void, so that the FTWS of the same manipulator scaled by anyXactor con-
tains the original FTWS. As a result, this fault tolerant manipulator can be usel¢sigra
template Any task space can be enclosed in the FTWS of a scaled version of the design

template.

In Section 3.4.1.2, it is shown that the boundary of the FTWS of a planar manipulator coin-
cides with its critical value manifolds. Figure 3-5 demonstrates that this property also holds
for the 5-DOF spatial manipulator considered in this example. The critical value manifolds
are computed using the algorithm described in Burdick (1992) and are depicted in a solid
line. The bold part of the critical value manifolds is the boundary of the FTWS. The prop-
erty that the FTWS is bounded by critical value manifolds can be effectively used for the
determination of the FTWS. Testing whether a point is an element of the FTWS is a compli-
cated procedure. One has to verify whether that point is reachable for all possible RODs,
i.e., for all manipulator structures resulting from a joint failure of every possible joint at
every possible joint angle. To find a good approximation of the FTWS, one would have to
execute this test for a large number of points. This would be prohibitively slow. However, to
improve the efficiency, one can compute the critical value manifolds of the manipulator first.

These manifolds partition the Cartesian output space of the manipulator in sectors that are

42

3.4 GENERAL PURPOSEFAULT TOLERANT MANIPULATORS

Figure 3-5. A cross-section of the boundary of the FTWS of a 5-DOF
spatial manipulator (bold) as part of its critical value manifolds.

either entirely inside the FTWS or entirely outside the FTWS. Thus, by checking whether
one pointof a sector is an element of the FTWS, one can check whethehdie sectors
in the FTWS. The number of FTWS-membership tests is so reduced to the number of sec-

tors in the partition of the output space.

As a second example of a spatial general purpose fault tolerant manipulator consider the 8-
DOF manipulator depicted in Figure 3-6 with D-H parameters listed in Table 3-2. It is the
same manipulator as in the previous example, with a zero-length 3-roll-wrist added at the
end. Using a Monte Carlo method, it has been determined that this manipulator is first order
fault tolerant while reaching all the points, in the FTWS of exampleioray direction

This property can be demonstrated with the following arguments. When one of the first five
DOFs fails, the manipulator can still reach any position in the FTWS (because the 5-DOF

positional manipulator is FT) and can take any orientation at this position using the intact 3-

43

CHAPTER 3: FAULT TOLERANT MANIPULATORS

N~

Figure 3-6. The kinematic structure of a 8-DOF fault tolerant manipulator template.

roll-wrist. When one of the DOFs in the wrist fails, we are left with a 7-DOF manipulator
which has enough orientational capabilities to reach any point in the FTWS in any orienta-
tion. Consequently, one could call this textrousFTWS. Since there are again no holes or

voids in the FTWS, this manipulator can also be used as a design template.

Finally, one should notice that both examples have only two redundant DOFs, which indi-
cates that two degrees-of-redundancy are also sufficient for 1-fault tolerance of spatial
manipulators. Whether the theorem in Section 3.4.1.4 also holds for higher orders of fault

tolerance of spatial manipulators requires further research.

3.5 Task Specific Fault Tolerant Manipulators

In the previous section, we considered the design of fault tolerant manipulators for general
use. We proved that two redundant DOFs are necessary and sufficient for first order fault tol-
erance. However, as we will show in this section, a simpler kinematic structure is often suf-

ficient when a specific task is considered.

The disadvantage of this approach is that a task specific fault tolerant manipulator is only
suited for a very limited set of similar end-effector paths. For each new Cartesian path, one
has to plan a fault tolerant joint space trajectory to be followed by the maniputédoe

failure in order to guarantee fault tolerance. Moreover, unlike general purpose fault toler-

44

3.5 TASK SPECIFICFAULT TOLERANT MANIPULATORS

ance, task specific fault tolerance might require a different manipulator structure for every

task.

However, these disadvantages can be overcome, by integrating task specific fault tolerance
into our framework for rapidly deployable manipulators. To achieve fault tolerance, one can
then plan an appropriate fault tolerant joint space trajectory with the algorithm developed in
Chapter 4, and one can easily choose a manipulator custom-tailored for the specific task
using the Task Based Design software that is described in Chapter 5. Once a manipulator
has been chosen, one can assemble the RMMS modules and execute the task fault tolerantly

with the resulting manipulator.

In this section, we prove that task specific fault tolerance can indeed be achieved with fewer

degrees-of-redundancy than required for a general purpose fault tolerant manipulator.

Consider the task of reaching all the points inean -neighborhBQu) , of the point
p O o™, Suppose thgyt can be reached bynan -DOF manipulator in a pcﬁBmF'en, Af
the posture® , is non-singular, then there existg ai® , such that the manipulator can
reach any point irB(p,€) when all its joints are functioning. Howeverkfor -fault-toler-
ance, any point i3(p, €) needs to be reachable even When of the joints of the manipula-
tor are frozen. This is possible if and only if the Jacobians & all -RODs in the p6sture

are non-singular, i.e., have at least ramk . We call such a pdstoeally fault tolerant

The Jacobian of & -RODz5p , can be obtained by deleting the columns of the fault-free
Jacobian that correspond to the frozen DOFs; the dimensiahgygf moaf@— K A

necessary condition falxo, to be of rank is that has to be larger than or equal to
(m+ K). Indeed, the manipulator needs to have at least functional DOFs, even after a
failure of k of them. That means that degrees-of-redundancy are necessary for local fault

tolerance.

Are k degrees-of-redundancy alsafficientfor local fault tolerance? Consider a manipula-
tor withn = m+ k DOFs; the Jacobian ofka -ROIy,p5 , is then a sqoaxem matrix.
A posture,6 [o" s locally fault tolerant if the Jacobians ofmall RODs are full rank.

When the rank of anyy o, isless than , the robot is im&mnal singularity.The differ-

45

CHAPTER 3: FAULT TOLERANT MANIPULATORS

Locally Fault Tolerant Internally Singular Singular
Rank(J) = 2 Rank(J) = 2 Rank(J) < 2
Rank(kop) = 2 Rank(kop) < 2 Rank(kop) < 2

Figure 3-7. Examples of locally fault tolerant, internally singular, and singular
postures of a 3-DOF planar manipulator.

ence between singular, locally fault tolerant and internally singular postures is illustrated in
Figure 3-7. The locus of internal singularities is a séhof k—1) -dimensional surfaces in
T or (n—=1) -dimensional surfaces, whem= m+ k . Thus, nearly all postures of a

manipulator withk degrees-of-redundancy are locklly -fault tolerant, s&that degrees-of-

redundancy are indeed sufficient. This can be summarized in the following theorem.

Theorem:
k degrees-of-redundancy are necessary and sufficiett for -th order local fault tol-

erance.

The fact that a posture is locaky -fault tolerant guarantees that the manipulator can reach
every point in a neighborhood of the end effector position, even after faillce of DOFs.
However, this neighborhood can be small, for instance, when the posture is close to an inter-

nal singularity.

To extend this result to larger trajectories, we have to formulgitebal fault tolerance con-
dition. This is the topic of the next chapter, in which we develop a global fault tolerant tra-

jectory planning algorithm.

46

3.6 SUMMARY

3.6 Summary

In this chapter, we have shown that making a manipulator fault tolerant by adding redundant
DOFs is an effective way to increase the reliability of a manipulator. However, not every
redundant manipulator is fault tolerant. Thus, an important problem for the design of fault
tolerant manipulators is: How many DOFs are necessary and sufficient for fault tolerance
and how should these DOFs be distributed along the length of the manipulator? We have
shown that, depending on the assumptions that are made about the task, the answer to this

question varies.

For general purpose fault tolerant manipulators without joint limits, two degrees-of-redun-
dancy are necessary and sufficient to sustain one fault. This conclusion was illustrated with
two spatial general purpose fault tolerant manipulator designs: a 5-DOF positional manipu-
lator and an 8-DOF positional and orientational manipulator. Both manipulators have a fault
tolerant workspace without any holes or voids so that one can scale the designs to fit any

task.

For task specific fault tolerant manipulators, only one degree-of-redundancy is necessary
and sufficient for 1-fault tolerance. However, one might have to use a different manipulator
and recompute a fault tolerant joint space trajectory, for every task. This drawback can be
partially overcome by using a modular manipulator system that can be quickly reconfigured
to suit a particular task. Computing a fault tolerant joint space trajectory, and determining a
task specific fault tolerant manipulator configuration are the two problem addressed in the

next two chapters.

47

CHAPTER 3: FAULT TOLERANT MANIPULATORS

48

Chapter 4

Global Fault Tolerant Trajectory Planning

4.1 Introduction

As we have shown in the previous chapter, whether a task can be completed after a joint fail-
ure depends not only on the structure of the manipulator, but, for task specific fault tolerant
manipulators, also on the specific joint angle at which the failure occurs. In general, failures
at a fully extended or folded back position of a joint are most detrimental to the remaining

capabilities of the manipulator.

The basic idea that we exploit in this chapter is to achieve fault tolerance by avoiding unfa-
vorable joint positions before failure. This idea was first proposed by Lewis and Maciejew-
ski (1994a) where the null-space component of a redundant manipulator was used to locally
minimize the kinematic fault tolerance measure (kfm). The authors showed that, for a partic-
ular test path, a manipulator with kfm minimization is more likely to be fault tolerant than a
manipulator with traditional pseudoinverse control. However, due to the local nature of the
kfm, fault tolerance could not be guaranteed on a global scale (Lewis and Maciejewski
1994Db).

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

In this chapter, we present a trajectory planning algorithmdib@$guarantee fault toler-

ance on a global scale, while, in addition, avoiding any violations of secondary kinematic
requirements such as joint limits and obstacles. To achieve this global result, we have to
consider the topology of the self-motion manifolds, as has been previously suggested by
Lick and Lee (1994).

4.2 Definitions

In this section, we introduce several concepts that are essential for the development of the
algorithm presented in the next section. We start by giving an exact definition of the prob-

lem.
Definition 1: Fault Tolerant Trajectory Planning Problem

Given: — a manipulator defined by its geometry, joint limits, and redundancy reso-

lution algorithm.

— a task description consisting of a Cartesian ppft),[J] O™ , and the

geometry of the obstacles.

Find: - a fault tolerant trajectory in joint spéi'éee(t) aTn.

A fault tolerant trajectory is defined as follows:
Definition 2: Fault Tolerant Trajectory

A trajectory,B(t) O T" , is 1-fault tolerant with respect to the task of following the
Cartesian pathp(t) O O™ , if for every DOF,= 1...n , and for every instdat,
there exists an alternate trajectddt, j, t0 , for which:

1) 6(t, j,tD maps ontg(t) under the forward kinematics

2) 6(tH = 6@t j,t0

3) 8t j,tD) = 6,0, 0Ot>tl

(1) We assume that the manipulator has only revolute joints. The joint space is therefore the -dimen-
sional torusT" .

50

4.2 DEFINITIONS

4) 6(t, j,tY) does not violate any secondary task requirements such as joint

limits, obstacles collision, or self collision.

This definition corresponds to our scenario for fault tolerance as described in the previous
chapter. Before any failures occur, the manipulator follows the fault tolerant joint trajectory

B(t) . After a failure in jointj at timell , joinf is immobilized and the joint trajectory is

adapted to keep tracking the patft) . The new trajedityj, tD) , Is eqbd) to at the
instant of failure and maintains a constant joint ar@llét,E) , for the frozen joint after the
failure.

There are an infinite number of alternate trajectofiés,, t1) , one for every possible com-

bination of a failing DOF and an instant of failure. This poses practical problems. While one
can explicitly store a discretized versionggf) , explicit storage d@¥(allj, t0) is impossi-
ble. Therefore, we assume that the alternate trajectories areistphedly in a redundancy
resolution algorithm that comput@ét, j,t) at run time once a failure has taken place. We
also assume that this redundancy resolution algorithm unambiguously determines
o(t, j,t0, giventd, 8(tD , andj ; that is, we only consider redundancy resolution algo-
rithms that determine the next joint vector based on the current joint vector, and not on past
joint vectors. This assumption is satisfied for commonly used Jacobian-based algorithms of

the form:
0 = J'x+(1-310)d. (4-1)

Readers unfamiliar with this kind of redundancy resolution algorithms are referred to
(Nenchev 1989) for a detailed overview; a detailed example is also given in Section 4.6 of

this chapter.

Because the choice of the redundancy resolution algorithm fully determines the alternate
trajectories, it also influences the solution of the trajectory planning problem. In this thesis,
we assume the redundancy resolution algorithm to be a given of the problem, i.e., a part of
the manipulator definition. Consequently, for a failure of jgint at podi(ifte , there

exists a unique alternate trajectd@fy, j, tD
In the fourth point of the definition of a fault tolerant trajectory, we refer to “secondary task

51

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

requirements.” The primary requirement is to follow the pa(tt . In the problem defini-
tion, we included joint limits, obstacle collision, and self collision as secondary require-
ments, but one can include any other kinematic requirement that only depends on the current
posture. For instance, all the dexterity measures enumerated by Kim and Khosla (1991)
depend only on the current joint position and could thus be included as secondary require-

ments. We call the set of postures that satisfy all the secondary task requirements the set

At each instantf , the manipulator postuB{s ac j, tD map onto theppéth
under the forward kinematics of the manipulatpr= f(0) . Consequently, we say that

these postures are elements of the preimage of
Definition 3: Preimage of a point p

The preimage of a poinp , is the s&p) = {6 0 T"| f(8) = p} , Wwhere is the

forward kinematic mapping of the manipulator.

This preimage is a set of -dimensional maniféfdsyherer = n—m is the degree-of-

redundancy of the manipulator.

Assume now that joint fails. We call the resulting manipulator, with joint immobilized, a

reduced order derivative (ROD).
Definition 4: k-Reduced Order Derivative

A manipulator with(n—k) DOFs, obtained by immobilizikg of the joints of an

n-DOF manipulator, is calledla -reduced order derivative.

Whether this ROD is able to complete the task, as is required for fault tolerance, depends on
the postured(tD) O Z(p(tD) at which the failure occurred. For cer@ih) , the m(&xh

might pass outside the workspace of the ROD, the redundancy resolution algorithm might
get stuck at a singularity, or the alternate trajectyj, tD might violate the joint limits

or cause a collision with an obstacle or another part of the manipulator. In all of these cases,

the task cannot be completed. We call the corresponding p@tuye intolerant to a failure

(2) An exception is the preimage of a critical value, which is not a manifold but a bouquet of tori
(Burdick 1988).

52

4.3 THE ALGORITHM

of DOFj .
Definition 5: Posture Tolerant to a Failure of DOF j

A postured O Z(p(tD) is tolerant to a failure of DQF if and only if the alternate
trajectory6(t, j,tD) , as determined by the redundancy resolution algorithm, satis-

fies all the task requirements.

We call the set of postureéd >(p(tl)) that are tolerant to a failure of POF the set
F 150 Z(p(tD) .

Based on the definition of a fault tolerant trajectory, we conclude that a posture is an accept-
able posture for a fault tolerant trajectory if it is tolerant to failures of each of the DOFs. The

set of acceptable postur@s] >(p(tD) is given by the equation:

n
A= F (4-2)
=1

4.3 The Algorithm

The algorithm to determine a fault tolerant trajectory consists of two parts. In the first part,
we determine for each instant] , the set of acceptable postires, , as defined in the pre-
vious section. In the second part, we create a connectivity graph for the acceptable postures

and search this graph to determine a fault tolerant trajectory.

A key observation for the development of our algorithm is that whether a pdtle, , IS
acceptable depends only on the future course of thepggth ; it is indepengétnt of for
t <tl. For example, if a failure occurs at the last poj,; . of the path, the task can

always be completed, regardless of which course the path followed previously and regard-

less of the posture in which the manipulator reaches this last point. We conclude that
Atlast =F {Iast = ... =F rglast = z(plast) ns. (4_3)

This conclusion forms the basis for the algorithm’s initialization.

The main iteration of our algorithm is based on a second important observation. Consider a

53

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

candidate fault tolerant trajectoy;(t) . Attimg , jojnt fails and the alternate trajectory
0,(t, j,ty) is followed, as is illustrated in Figure 4-1. Consider also a second candidate fault
tolerant trajectory, 0,(t) , which intersects witl(t, j,t,) at timg , SO that
0,(t,, J,t)) = 6,(t,). If a failure of jointj were to occur at tintg , the alternate trajectory
B,(t, j,t,) would be followed. Because the joint veloci@, , in the redundancy resolution
algorithm, depends only gn p(t) , and the current joint vector, the two alternate trajecto-
ries 04(t, j,t;) andb,(t, j,t,) are equal to each otherfort, . A Corollary of this obser-
vation is that a posture is tolerant to a fault in jgint if and only if all the postures along the

corresponding alternate trajectory are also tolerant to faults injjoint :

Bt) OF L < 6(tdj,t) OF 15

(4-4)
Ot>t, and 6(t,) OS
which is equivalent to the expression:
Bt)OF L - 6tdjt)OF 15
(4-5)

OtHO (t,, t, +At] and 6(t) OS, At>0

0,(t, j.ty)
0,(t, j,)

»
|

51 L t

Figure 4-1. Two possible failures resulting in the same alternate trajectory.

54

4.3 THE ALGORITHM

Equation (4-5) means that we can determine whether a pas{yje, , Is tolerant to a fault of
DOFj by tracing the alternate trajectory up{a- At rather than tgdo . This property

is used in the main iteration of the first part of our algorithm.

Part 1: determination of the acceptable postures

* discretize the path: P = p(t) = p(kAt)
« compute the preimage of the last point: 2(Pasd
» compute the acceptable postures for the last point:
Alast = F fast = Z(pjaep N S

o for =last-1 to first do

e compute the preimage: 2(py)

efor j=1 to ndo

« for every posture 6 [da(p,)
e compute O(t, , 4, J, tsing the redundancy

resolution algorithm

o if 80S and8(ty,,, j.t,) O F [¢hen 8 OF [«
enext O
enext j
» compute the set of acceptable postures: Al = rn) F jtk
enext Kk =t

Once the sets of acceptable postures have been computed, a fault tolerant trajectory is cho-
sen in the second part of our algorithm. A fault tolerant trajectory consists of a sequence,
{6(ty} , of acceptable postures—one postoflg) 0 A for each ingtant . However, one
cannot pick the posturét,) atrandom fréhh . For a valid fault tolerant sequence, there
should exist a continuous trajectory of acceptable postures connecting each pair of postures

6(t,) andO(t, . ,) . Moreover, the sequeng®(t,)} should preferably vary smoothly and

55

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

stay away from the boundaries Afx . To simplify the search for such a sequence, we first

group the postures &% that are connected to each other.

In general, a sef\% , may consist of several disjoint regRs, , of acceptable postures:
At=[]R%k and RknR&=0, Oi#j. (4-6)

The postures in each regiéhlx are connected to each other in the sense that there exists a
continuous trajectory of acceptable postufes] A , connecting any two post&és in

On the other hand, by definition, there does not exist any combination of two postures, one
from R Ilk and one fronR }k , for which such a continuous trajectory can be found. Similarly,
we call two regionsR & andrR th+1 connected if there exists a continuous trajectory of
acceptable posture§(t) , withl[t,, t,,,] , connecting any two pos#jresR K« and

9j OR }m. As a result, a fault tolerant trajectory exists if and only if there exists a sequence
of connected regiongR 1, ..., R }last} . This result is used in the second part of our algo-
rithm, in which we build a connectivity graph representing the connections between the
regionsR I . The structure of this graph is in general very simple due to the limited number
of disjoint regions in eaci\% , and due to the limited number of connections between
regions at timef, and regions at timg ; . Itis possible that there exists no fault tolerant
sequence of connected regions. To achieve fault tolerance in this case, the manipulator itself
needs to be adapted by changing its structure, joint limits, or redundancy resolution algo-

rithm.

In the final step of the algorithm, a fault tolerant trajectory is determined from the sequence
of connected regions. In general, there are an infinite number of possible fault tolerant tra-
jectories. However, a good trajectory should vary smoothly and stay away from the bound-
aries of the region® th . The choice of one specific fault tolerant trajectory can be further

limited by imposing additional task requirements or objectives.

56

4.4 IMPLEMENTATIONAL ISSUES

Part 2: search for a fault tolerant trajectory
* for =last to first do
* group the acceptable postures, , in disjokdt
regions R I
« for each region , dequkmine the connections with
the regions for k+1
* store in connectivity graph
snext k
« search the connectivity graph to determine a fault
tolerant sequence of the regions R I
* select a fault tolerant trajectory

4.4 Implementational issues

4.4.1 Computation of the Preimage

Although most of the steps of the algorithm, presented in the previous section, can be easily

implemented, the computation of the preimatyg) , requires some further explanation. As
mentioned before, for an -DOF manipulator, the preimage of a goint,]™ , is a set of
r -dimensional manifolds in the -dimensional tofli% , where n—m is the degree-

of-redundancy of the manipulator. The preimage is defined implicitly by the forward kine-
matics functionf(8) = p . The computation of the preimage involves translating this
implicit representation into an explicit one, for example, a random sampling of the preimage
stored as a finite set of postur@s] T" . However, this particular representation is insuffi-
cient for our algorithm because it does not capture the topology of the preimage. Topologi-
cal information is needed in three steps of the algorithm: first, where theé ﬁets are

computed; second, where the intersection of these sets is taken to Abtain ; and third,

57

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

64 no-m

03

Figure 4-2. The projection onto tt@5, 8,, 65) -space of a polygonal
approximation of a 2-dimensional preimage for a 5-DOF manipulator.

where the acceptable postures are grouped into disjoint re@ipns . It is important to notice
that in all three instances only the local topology matters. Locally, an -dimensional mani-
fold is diffeomorphic tod" , and can thus be approximated by an -dimensional hyper-
plane. Therefore, we have chosen to represent the preirbgoe by a polygonal
approximation consisting of line segments winea 1 , or triangular patchesrwheh :

as is illustrated in Figure 4-2.

In the next chapter on Task Based Design, the global fault tolerant trajectory planning algo-

rithm is integrated into the function that evaluates whether a candidate manipulator design

meets all the task requirements. During the design process, this function is executed many
times and for a large variety of different manipulators, some of which may be degenerate

(all axes are parallel, axes coincide etc.). This requires that the global fault tolerant trajec-

tory planning algorithm bé&astand veryrobust We have not yet been able to achieve both

of these attributes simultaneously for manipulators with more than one degree-of-redun-

dancy. Therefore, we will limit ourselves in the next chapter to the design of fault tolerant

58

4.4 IMPLEMENTATIONAL ISSUES
manipulators with at most one degree-of-redundancy.

4.4.2 Computational Complexity

Let S be the number of postur841T" used to approxiragie ,3hen increases as the
accuracy of the approximation increas8s. also depends on the dimensionality, , of the
preimage; this dependencyagponential The algorithm also requires the Cartesian path
p(t) to be approximated by a sequer{cg,} with= p(kAt) .Ret be the number of
points in the sequencgp,} . Justli®P, depends on the accuracy of the approximation.

In this case, the dependency is always linear because the Cartesian path is 1-dimensional.

The complexity of the algorithm is mainly determined by the nested loop of the first part of
the algorithm. Assuming that the complexity of the redundancy resolution algorithm is lin-

ear inn , the complexity of our trajectory planning algorithm can be expressed as:
PhOSOQn or PLE [ON). 4-7)

Because of the exponential dependency on , the algorithm is only practiga&for or
r=2.

Because the fault tolerant trajectory planning algorithm is included in the evaluation func-
tion of the task based design framework in the next chapter, it is very important that the tra-
jectory planning algorithm be implemented efficiently. An important property, in this
respect, is the progressive nature of the computation. Starting at the end of the specified Car-
tesian path, we work our way forward computing only those parts of the preimage manifolds
that are likely to contain postures tolerant to failures (thel%@ts)- When for a ¢grtain

no acceptable postures remain, ity = [, One is guaranteed that a fault tolerant trajec-
tory does not exist and the computations can be interrupted. As a result, relatively little com-
putational effort is wasted trying to determine a fault tolerant trajectory for a “bad”

manipulator configuration.

4.4.3 Selection of Trajectory

In the last step of part two of the fault tolerant trajectory planning algorithm, a joint space

trajectory is selected from a sequence of connected rediRrs,..., R Jtlast} . There exist

59

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

an infinite number of trajectories that lie within this sequence, and one can impose addi-
tional criteria that have to be met by the trajectory. In our implementation, we have opted for
a combination of two criteria: robustness and minimal length. Through local optimization

with the BFGS method (Fletcher 1987), we determine a trajectory that minimize a cost func-
tion that combines the length of the trajectory and its distance to the boundary of the con-
nected regions. The further the trajectory stays from the boundaries of the connected
regions, the more robust it is in maintaining the property of fault tolerance, despite small
deviations from the fault tolerant trajectory. Minimizing the length of the trajectory has the

additional benefit of yielding a smooth trajectory with small joint velocities.

4.5 lllustrative Example

In this section, we illustrate the use of the fault tolerant trajectory planning algorithm with
an example of a 3-DOF planar manipulator. This simple example enables us to describe

graphically how a fault tolerant trajectory is selected.

The 3-DOF manipulator has 3 links of length 1; the joint limits £180° 6for and
+150° for 8, and@; ; no redundancy resolution algorithm is specified because the 2-DOF
reduced order derivatives are non-redundant. The task is to follow the trajectory shown in
Figure 4-3 at constant speed in a total time of 10 seconds; a circular obstacle is centered at
(0.7, 0) and has a radius @2

Because the manipulator in this example has one degree-of-redundandy, , the preim-
age of every pointp(t) , is a one dimensional subser of and can be parametrized as
S(p(t) = g(p(t),a) with a OTL. The functiong describes a 2-dimensional surface in
T3, as illustrated in Figure 4-4. The surface can be parametrized by two parameters: the
Cartesian positiop (or time), and the preimage paranoeter . The postures éabeled

e, andf, are all part of the preimage of the same pqi(@d) p(00)). The postures labeled
a, b, andc, on the other hand, have the same value for the preimage parameté, (or
a = 2m), but map onto different pointg, , along the path. One can also unwrap this sur-

face and represent it in a planar coordinate system with the time in abscissa and the preim-

60

4.5 ILLUSTRATIVE EXAMPLE

p(2.68)

obstacle

7.
05+ p(7.68)

p(0)=p(10)

1 I I I I I
-0.5 0 0.5 1 1.5 2 25

Figure 4-3. The Cartesian path and obstacle position.

age parameteo in ordin&t® this representation is used in Figures 4-5a through 4-5d.
Table 4-1 gives the coordinates of the six postuaélroughf, for both the three-dimen-

sional and the two-dimensional representations of Figures 4-4 and 4-5, respectively.

In the first part of the algorithm, the S(FtS]Sk are determined. They are depicted in Figures
4-5a through 4-5c¢ as the white areas. The dark gray areas are postures that do not satisfy the
secondary task requirements; i.e., they are the @) — S . These postures would be
unacceptable for a joint trajectory even if fault tolerance were not required. The light gray
area is the set of postures for which the alternate trajectories do not meet the task require-
ments. The alternate trajectoriég, j, t,) for this example are totally determined by keep-
ing the joint angleej constant, and are represented by the black curves. Notice that, for the
postures in the light gray area, the alternate trajectories either pass through a posture that
violates a secondary task requirement, or get stuck at a singularity and do not reach the end
of the path. In either case, the requirement for fault tolerance is violated. The sets of accept-

able posturesa t« are indicated in white in Figure 4-5d. This white area is the intersection of

(3) Keep in mind that the planar representation does not capture the exact topology of the 2-dimen-
sional surface, because the preimage parameter is an elemént of and ti{g path is closed,

p(0) = p(10) .

61

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

150
100

50

63

-50

-100

-150

100
50

0 -150
50

062

Figure 4-4. The preimage of the trajectory.

posture 01 [deq] 02 [deg] | 63 [deg] t [sec] a [rad]
a 45.00 -60.00 -60.00 0 and 10 02m
b 75.00 -60.00 -60.00 2.68 0 am
c 61.52 -75.52 -75.52 7.68 0 am
d 13.95 -104.48 104.48 Oand 1p 102
e -75.00 60.00 60.00 0 and 10 T
f -43.95 104.48 -104.48 Oand 10 312

Table 4-1. The coordinates for each of the postures labeled a—f in Figure 4-4.
Joint angleH1 P2 , an€é3 the coordinates for the 3D representation of
the preimage (Figure 4-4)
timet and preimage parameter :the coordinates for the 2D representation of
the preimage (Figure 4-5)

62

preimage parameter o

preimage parameter

21

312

0

0 2 4 6 8 10
time

Figure 4-5a. The set of postures
tolerant to a fault in joint 1 (in white).

21

312

0

0 2 4 6 8
time

Figure 4-5c. The set of postures
tolerant to a fault in joint 3 (in white).

10

preimage parameter o

preimage parameter o

4.5 ILLUSTRATIVE EXAMPLE

21t

312

time
Figure 4-5b. The set of postures
tolerant to a fault in joint 2 (in white).

21

312

time
Figure 4-5d. A possible fault tolerant
trajectory (dashed line). The white areas
are the sets of acceptable postures.

Figure 4-5. Planning a fault tolerant trajectory: an illustrative example

The dark gray areas are postures that violate the secondary task requirements

(joint limits and obstacles). The light gray areas are postures for which the

alternate trajectory violates the task requirements. The black curves are alternate

trajectories, determined by keeping the angle of the failing joint constant.

(o3}

3

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

120

100F SRS P

80 S~ T

o
1
\ 4

60r

407 o » s

IN
Py

20p ~

o4
L _20 |- 4
01
-40F 1
le0000000000000
.60} 4
8 1

w
h
L 4

disjoint region number
01, 62, 83 in degrees

N
!

-80

0 2 4 6

. 0 0 2 4 6 8 10
time time
Figure 4-6. Connectivity graph for the Figure 4-7. Fault tolerant trajectories
disjoint regions of acceptable postures. for the individual joints.

the white areas in Figures 4-5a, 4-5b and 4-5c, in accordance with Equation (4-2).

In the second part of our algorithm, the acceptable postures are first grouped into disjoint
regions. Such a regioR, i , corresponds to a vertical white line segment with afscissa in
Figure 4-5d. The number of disjoint regions is usually small—a maximum of six for this

example. Once the regio® ! have been determined, the connections with the disjoint
regions at time, , ; are stored in a connectivity graph, which is shown in Figure 4-6. As

mentioned before, the graph is very simple in general. For this example, there exists only
one fault tolerant sequence of connected regions. A possible fault tolerant trajectory for this
sequence is shown as a dashed line in Figure 4-5d. The corresponding individual joint tra-

jectories are depicted in Figure 4-7.

4.6 Comprehensive Example

In this section, we describe an example of fault tolerant task execution by the 4-DOF spatial
manipulator shown in Figure 4-8. The manipulator is a configuration of the Reconfigurable

Modular Manipulator System (RMMS), and consists of the manipulator base, three pivot

64

4.6 COMPREHENSIVEEXAMPLE

dof || link offset | link length| twist angle
1 -0.1373 0.0 U2
2 0.7344 0.0 U2
3 -0.1373 0.3270 W2
4 -0.1373 0.4705 0.0

2
Figure 4-8. A simulation of the

Reconfigurable Modular Manipulator
System executing a fault tolerant trajectory.

joint modules, one rotate joint module, and a link module. The modules are assembled such
that the resulting manipulator has the Denavit-Hartenberg parameters listed in Table 4-1.
The joint limits for each of the joint modules a#65° . The task is to follow a circular path
on a table while avoiding collisions with the table—even after one of the joint modules has

failed and is immobilized.

The simulation uses the same control software running on the same hardware as would be
used to control the actual manipulator system. The only difference is that the robot interface
Is replaced by an interface to the TeleGrip simulation software package (by Deneb Inc.).
TeleGrip runs on a SGI Crimson which is connected to the VME-based control hardware
through a VME-to-VME-adaptor. We use a damped least-squares kinematic controller with

null-space optimization:
6 = JH(p+a(p-x)+B(I —ILV) (8, -8), (4-8)

where JU is the singularity robust Jacobian inverse (Kelmar and Khosla 1490), is the
desired Cartesian path, afig(t) is the fault tolerant trajectory. The null-space optimization

component of the controller ensures that the manipulator follows the desired fault tolerant

65

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

fault instant fault instant
e T T e
I

theta 1 [deg]
theta 2 [deg]

. . . .
0 5 10 15 20 0 5 10 15 20
time [sec] time [sec]

fault instant fault instant
S T T S
I

=
o
o

601
50
™ 40r
© 301

20

10c I I k| I |]
0 5 10 15 20 5 10 15 20

time [sec] time [sec]

©
o

theta 4 [deg]
o]
o

3
o=

Figure 4-9. Joint trajectories theta 1 through theta 4.
Before failure (0—10sec), the manipulator follows the fault tolerant trajectory.
At the tenth second, joint 4 fails and is immobilized. The manipulator then
deviates from the fault tolerant trajectory (dotted line) and follows the alternate
trajectory (solid line) as determined by the redundancy resolution algorithm.

joint space trajectory closely before a failure occurs, as is shown in Figure 4-9. After failure,
the same controller is used with the column of the Jacobian, which corresponds to the frozen
joint, set to zero. The trajectories for the remaining joints deviate from the fault tolerant tra-

jectory to ensure that the end effector continues to track the desired path.

Instead of using the kinematic controller given by Equation (4-8), one could linearly inter-
polate the fault tolerant trajectory before failure and only switch to Cartesian control after
failure. Besides having to switch controllers at the instant of failure, this has the disadvan-
tages that a dense sampling of the fault tolerant trajectory is required to achieve good end
effector position accuracy. Furthermore, Equation (4-8) allows us to move back smoothly to

the fault tolerant trajectory if the failure was temporary.

Figure 4-10 shows the position error of the end effector. The error does not increase after
failure and remains an order of magnitude smaller than the diseance, , traveled by the end

effector during one sample period:

_ 2nO.1m _ —4 -
= Seod] 150Hs 8.38x10 "'mx» error (4-9)

66

4.6 COMPREHENSIVEEXAMPLE

10 x 10 ‘ fault |?stant :
E of : A
g SMWNWW\/‘
()] |
s 7t | -
‘0 [
S 6r \ B
|
| | |
0 5 10 15 20
time [sec]

Figure 4-10. The end effector position error does not increase after failure.

The error could be further reduced by increasing the cycle frequency of the damped least-

squares controller.

Many simulations with a wide variety of failure times and failing joints resulted in a maxi-
mum positional error 08.67x10°m . This confirms the fact that the trajectory determined

by our algorithm is indeed fault tolerant with respect to this task. Unfortunately, we cannot
demonstrate this graphically as we did for the previous example. Because the topology of
the preimage changes at the points where the path crosses the critical value manifolds of the
manipulator (Burdick 1988), the preimage of the path cannot be unfolded into a 2-dimen-

sional graph such as Figure 4-5.

When executing the task with the real hardware, instead of in simulation, one can notice a
small jerking motion at the instant of failure. This motion was not visible in the simulation
because the simulation is purely kinematic and the jerking motion results from dynamic
effects. More specifically, at the instant of failure, the velocity of the failing joint drops
almost instantaneously to zero (the brakes can exert a very large torque). In order to main-
tain a constant end-effector velocity, the velocity of the other joints needs to change instan-
taneously too. However, this cannot be accomplished with the limited torque of the motors.
This can be expressed mathematically as follows. Assume thatkjoint fails at instant
Before as well as after the failure, the kinematic relationship has to be satisfied, while the

end-effector velocity remains constant:
JHB() = X(t) = X(t*) = IH6(Y, (4-10)

67

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

or

n
> O (E)-8(t?)) =0, (4-11)
i=1
WhereJ; istha -th column of the Jacobian, #nd s the velocity ofijoint . Afterkoint

has failed, the joint velocit9k(t+) equals zero, so that Equation (4-11) becomes:

n
S 06 -6(t7) = I M) (4-12)
=
This equation can be interpreted as follows: unless the joint velocity ofkjoint was zero or
did not contribute to the end-effector motion right before the instant of failure, a discontin-
ues change in joint velocity has to occur in some or all of the other joints in order to main-
tain a constant end-effector velocity. As a result, a small jerking motion of manipulator at

the instant of failure cannot be avoided, but it can be reduced by decreasing the end-effector

velocity and hence decreasing the joint velocities.

4.7 Comparison

In this section, we compare our algorithm for global fault tolerant trajectory planning with
the approaches for fault tolerant task execution described in (Lewis and Maciejewski
1994a), (Lewis and Maciejewski 1994b), and (Paredis and Khosla 1994).

Lewis and Maciejewski (1994a) propose a local redundancy resolution algorithm which
maximizes the kinematic fault tolerance measkird). Thekfmis defined as the minimum

remaining dexterity of the manipulator after joint failure:

kim= min o.('J), (4-13)
f=1.n

(4) The authors also define a dynamic fault tolerance meakmeyhich we do not consider in this
thesis.

68

4.7 GOMPARISON

whereo('J) is the smallest singular value of the Jacobian of the original manipulator with
the f -th column removed. One can think of the dexteaty, , as the ease with which the
end-effector of the manipulator can be moved in the least suitable direction. To achieve fault
tolerance, it is important that, after a joint fails and is immobilized, all end-effector move-
ments remain feasible, that ig, remains nonzero. This idea is realized practically by
using a redundancy resolution algorithm with null-space maximization dfitheDue to

the local nature of the kinematic fault tolerance measure, however, this method cannot guar-
antee fault tolerance on a global sale. Moreover, it does not take secondary requirements
such as joint limits and obstacles into consideration. Nevertheless, the method is important
in case the desired end-effector path is unknown a priori; global off-line path planning is
impossible in this case, so that local optimization ofkfinecombined with joint limit and
obstacle avoidance, is probably the best one can do. A drawback of the method is that it
requires the computation of the gradient of the kfm, which in turn requires the computation
of the full singular value decomposition o ; the computational complexity for the singu-

lar value decomposition of anx n matrix is approximately (Golub and Van Loan 1989)
4m2n + 8mré + 9n3. (4-14)

Although this is quite computationally intensive for an on-line algorithm, it does not suffer
from exponential complexity in the degree-of-redundancy, , so that this method could be

used to achieve local fault tolerance even in highly redundant manipulators.

Lewis and Maciejewski (1994b) acknowledge the local nature ddfthepproach and pro-

pose a global method for fault tolerant task execution. For every “critical task point” (a point
that needs to be reachable after joint failure), a bounding box of the preimage manifold is
computed. Every critical task point is reachable after joint failure, if the failure occurs at a
posture inside the intersection of the bounding boxes of the preimage manifolds. Global
fault tolerance is achieved by using a redundancy resolution algorithm that ensures that the
joint space trajectory remains inside the intersection of the bounding boxes. This method is
similar to our global fault tolerant trajectory planning algorithm to the extent that it uses the
pre-computation of the preimage manifolds to achieve global fault tolerance. However,

since it only uses thieounding boxesf the preimage manifolds, it cannot guarantee path

69

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

180 T T T T T T T
135¢
90

45¢

& o0
-451
-90r
preimage of p1
— — — - preimage of p2
-135¢
-180 1 1 i 1 1 1 1
-180 -135 -90 -45 0 45 90 135 180

01

Figure 4-11. A case in which the method described in (Lewis and
Maciejewski 1994b) cannot guarantee fault tolerant path following.

following. We can illustrate this drawback with the comprehensive example of Section 4.6.
The desired Cartesian path passes through the two ppints,(0.763 0.393 0.783 and
p, = (0.895 0.331 0.788 Assume that the poirng; is reached in the poséure , which

is inside the bounding boxes of the preimagep,of @nd , asis shown in Figure 4-11. A
failure occurs in joint 1, locking it é@1 = —45° . To reach the pamt , the manipulator
would have to move to eithé’z ée , both of which would require a deviation from the
desired path. On the contrary, in our global trajectory planning algorh]m, IS not an
acceptable posture because a failure of joint one would result in the redundancy resolution
algorithm getting stuck at a singularity. Another disadvantage of the method described in
(Lewis and Maciejewski 1994b) is that, just like in (Lewis and Maciejewski 1994a), second-
ary requirements are not taken into account. Also, the algorithm requires the computation of
the preimage manifolds which is, as we have shown before, exponential in the degree-of-

redundancyr ; this limits the usefulness of the algorithm to manipulators witi 2 or

A third approach to fault tolerant task execution is the one described in Chapter 3. This

70

4.8 SUIMMARY

approach is different because it does not make any assumptions about the redundancy reso-
lution algorithm used at run-time. Instead, fault tolerance is achieved at the design stage. A
manipulator is designed which is able to reach every task point even when an arbitrary joint
fails at an arbitrary angle. As a result of the assumption that a joint can faibdiitary

angle, at least two degrees-of-redundancy, instead of one, are necessary for 1-fault tolerance.
An additional drawback is that the design approach does not consider obstacles—it does
take joint limits into account. Moreover, it only guarantees reachability of task points, not

path following.

In conclusion, the two main qualities that distinguish our fault tolerant trajectory planning
algorithm from the other approaches to fault tolerant task execution are its ability to guaran-

tee fault tolerance for path following, and its consideration of secondary requirements.

4.8 Summary

In this chapter, we have presented a trajectory planning algorithm for fault tolerant task exe-
cution. This algorithm guarantees fault tolerance on a global scale, while also satisfying sec-
ondary kinematic task requirements such as joint limits, obstacles collision, and self
collision. The algorithm consists of two main parts. In the first part, the postures acceptable
for a fault tolerant trajectory are determined. The computations are based on the topology of
the preimages of the Cartesian path, and on the characteristics of the redundancy resolution
algorithm which is used after a failure has occurred. In the second part of the algorithm, a
connectivity graph is constructed, representing the topological structure of the set of accept-
able postures. By searching this graph, a global fault tolerant trajectory is found. A simple
example for a 3-DOF planar manipulator is used to explain the development of the algo-
rithm graphically. A second more comprehensive example further illustrates some of the
kinematic control issues of fault tolerant task execution. Compared to other approaches for
fault tolerant task execution, our method has the advantage that it guarantees fault tolerance
for path following, and that it takes secondary requirements such as joint limits and obsta-

cles into consideration.

71

CHAPTER4: GLOBAL FAULT TOLERANT TRAJECTORYPLANNING

72

Chapter 5

Task Based Design:
An Agent-Based Approach

5.1 Introduction

This chapter is the most important part the thesis. It ties together all the building blocks pre-
sented in the previous chapters—reconfigurable hardware, control software, fault tolerance,
and trajectory planning—and turns them into a unified rapidly deployable fault tolerant
manipulator system. Indeed, to be able to rapidly deploy a reconfigurable modular manipu-
lator system, one needs to solve Task Based DesigiTBD) problem—that is, one needs

to create a framework for answering the question: which modular configuration should be
used to perform the given task? This question cannot be answered correctly without taking
into account the complete manipulator system, including control and trajectory planning
software. This is especially true for the design of task spéaifit tolerantmanipulators,
because the guarantee for task specific fault tolerance depends critically on the fault tolerant

trajectory and redundancy resolution algorithm.

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

Unfortunately, TBD is a very difficult problem. The size of the design space grows exponen-
tially with the number of modules in the inventory; the constraints and optimization criteria
are highly coupled and non-linear; and evaluating whether the constraints are satisfied and

to which extent the optimality criteria are achieved is very computationally expensive.

To overcome this complexity, we introduce a novel agent-based approach to TBD which is
based on genetic algorithms. All of the agents contain problem specific knowledge to reduce
the size of the search space and to reduce the cost of evaluation whether the constraints are
satisfied. This results in a more effective search strategy than a standard genetic algorithm.
Moreover, our agent-based framework can be easily executed in parallel on a distributed net-
work of workstations. This combination of an effective search strategy with the high com-
puting performance of a system of networked workstations results in a very powerful new
approach which allows us to solve complicated TBD problems within a reasonable amount

of time.

5.2 The Task Based Design Problem

The goal of TBD is to design a manipulator that is optimally suited to perform a given task.
More specifically, as is illustrated in Figure 5-1, the class of design problems considered in

TBD is defined as follows:

Given:

» a description of the task

* an inventory of available RMMS modules

* a manipulator configuration of RMMS modules and its base position/orientation

» adesired joint space trajectory

74

5.2 THE TASK BASED DESIGN PROBLEM

5.2.1 Task Definition

The first input component of the TBD problem is a low-level task description consisting of a
timed Cartesian trajectory and obstacles models. There are many different levels of abstrac-
tion at which a manipulation task can be defined. For instance, consider the assembly of an
electric motor. At the highest level, this task could simply be described as: “assemble elec-
tric motor.” At an intermediate level, the task is split into subtasks such as: locate rotor, pick
up rotor, insert rotor into stator, etc. At the lowest level, all the details are included: move to
point A, exert a force of x Newtons in the Z-direction, etc. Assuming that the task is feasi-
ble, one can translate high-level task descriptions into low-level task descriptions. Carriker
(1995) addressed this task level planning problem for assembly tasks. He presents a frame-
work for an assembly planning and execution system (CAPEK) which takes high level
assembly plans generated by an assembly sequence planner, and generates low level
sequences of robotic skills that can be used to execute the assembly task automatically with
a manipulator. Although this is a very interesting problem which still remains to be fully
resolved, it is not the focus of this thesis. Instead, we assume that a low-level task descrip-
tion is provided. Specifically, the task description consists of a timed Cartesian path to be

followed by the end-effector, and a description of the obstacles in the manipulator work-

Q)
F %
Low Level
Task Description \
Tas k ¥ Modular Assembly

Based Configuration
D Design \
Bin of

Modules

o(t)

Desired Joint
Space Trajectory

Figure 5-1. Task Based Design problem definition.

75

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

space. The user also needs to indicate whether the end-effector orientation should be taken

into account and whether that task should be executed fault tolerantly.

In many respects, this is a more complete task description than has been used in earlier
research on TBD (Chedmail and Ramstein 1996, Chen 1994, Kim 1992, Murthy 1992, Pare-
dis 1990). In all five references, a task is defined as a sequence of points to be reached by the
end-effector—no time information and no specification of the behavior in-between points is
given. Without time information, it is impossible to consider dynamic task requirement. Pre-
viously, only Murthy (1992) considered dynamic task requirements. He specified desired
velocities and accelerations at each of the given task points, but failed to guarantee that these
velocities could be reached during the time in-between task points. Besides the desired Car-
tesian path, obstacles constitute an important constraint on the kinematic structure of task
specific manipulators. Yet they are only considered as part of the task description by Ched-
mail and Ramstein (1996) and by Paredis (1990). Finally, this is the first approach to TBD

that considers fault tolerance as a criterion.

Although manipulability and other dexterity measures have been often studied as a task cri-
terion in TBD (Chen 1994; Kim 1992; Murthy 1992; Paredis 1990), we do not consider
them in this thesis. Manipulability is a measure for the manipulator’s ability to arbitrarily
change the position and orientation of its end-effector (Yoshikawa 1985). It is an important
measure for the design of general purpose manipulators for which arbitrary changes in end-
effector position and orientation are desirable. However, in TBD, the task is known a priori
and, therefore, it is not important whether an arbitrary change in end-effector position/orien-

tation can be achieved rather than the change in position/orientation required by the task.

The main objective of TBD is to findfaasiblesolution, that is, a manipulator that is able to
execute the task successfully—without violating any task constraints. In addition to task
constraints, one could also consid@timality criteria In our current implementation, we

use energy consumption as an optimality criterion.

76

5.2 THE TASK BASED DESIGN PROBLEM

5.2.2 Inventory of Modules

Besides a task specification, TBD requires and inventory of modules as an input. The inven-
tory of modules specifies the set of modules from which candidate manipulators design can
be built. Each of the modules in the inventory is described by a module definition file. The
same module definition files are also used by the hardware controller, and the TeleGrip sim-
ulation software. An example of such a file can be found in Appendix A. The descriptions
provided in the files include kinematic parameters, dynamic parameters, CAD-models for
collision detection, and sensor calibration parameters. Any module with only one input con-
nector and one output connector can be completely defined in this format, regardless of the

joint type (prismatic or revolute) and regardless of the number of DOFs.

Limitations on module parameters are a source for additional design constraints: joint angle
limitations, joint velocity limitations, and joint torque limitations. Furthermore, the
MOD_TYPE parameter limits the number of feasible assembly configurations; base-type
modules can only appear as the first module of a manipulator configuration, end-effector-
type modules can only be mounted last, while all the other modules can be used anywhere

except first or last.

5.2.3 Manipulator Configurations

The first output component of the TBD problem is a manipulator configuration. A modular
manipulator configuration consists of the position and orientafigny, ¢) , of the base
module, and an ordered list of modules with their relative assembly orientations. For the
RMMS hardware, a module can be assembled in eight different orientations (at 45 degree

intervals) with respect to the previous module.

Besides the constraints arising from the module type, the user can define additional con-
straints limiting the acceptable manipulator configurations. One can restrict the base posi-
tion of the RMMS to remain within rectangular bounds. Furthermore, one can specify

bounds on the number of DOFs. This is important, especially from the perspective of the

search algorithm used to solve the TBD problem. By providing a tight estimate for the num-

77

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

edes‘ éref‘
trajectoryj - 6. |computed ¢
. P, damped rel LIS
generato . 6 torque
P o] least ey g b
X mez
» squares PID T
0 >
30 ref - RMMS emez
Oref controller]
.emez‘
forward)
mez__
kinematics|«- o
Jacobian

Figure 5-2. The control structure of the RMMS

ber of DOFs, one can limit the size of the design space which improves the convergence of

the search algorithm.

5.2.4 Desired Joint Space Trajectory

In addition to the manipulator configuration, the output of the TBD problem includes a

desired joint space trajectory. It is typical for a wide range of engineering design problems
that the design task consists of determining not only an artifact, but also the artifact’s behav-
ior or function. For a manipulator, the behavior is determined by the controller and the path
planner. We have limited ourselves to the control structure illustrated in Figure 5-2. The

damped least-squares kinematic controller has the following structure:

Bret = J(P+a(p—) + Bl —IW)(Byes—Bre) (5-1)

whereJU is the singularity robust Jacobian inverse (Nakamura and Hanafusa 1986; Kelmar
and Khosla 1990). The objective of this controller is to follow the desired Cartesiap path,

while staying as close as possible to the desired joint space trajégiqry, , through null-
space optimization. The advantage of using this control structure rather than executing the
desired joint space trajectory directly with a joint space controller, is that one can achieve

good end-effector accuracy with only a limited number of via points in joint space. In other

78

5.3 PROBLEM CHARACTERISTICS

words, when designing the behavior of the manipulator, one needs to providecoalga
samplingof the desired joint space trajectory to guide the redundancy resolution, while the

damped least-squares controller maintains good end-effector accuracy.

Providing the desired joint space trajectory as an output of the TBD problem, is particularly

important when the successful completion of a task depends on the choice of redundancy
resolution, as for example in the case of fault tolerance or obstacle avoidance. When the
manipulator is non-redundant, on the other hand, the null-space of the Jacobian is empty,
and the second term in Equation (5-1) reduces to zero. In this case, the behavior of the
manipulator is independent of the desired joint space trajectory. Yet, even the inverse kine-
matics of non-redundant manipulators have multiple solutions—at most 16 solutions for a

6R serial link manipulator (Raghavan and Roth 1993). Therefore, one does have to include

as a design variable the posture of the manipulator at the start of the Cartesian path.

5.3 Problem Characteristics

In order to pick the best solution approach for the TBD problem, it is important to under-
stand the problem characteristics. Tong and Sriram (1992) classify engineering design prob-

lems according to the following criteria:

» available methods and knowledge;
« amount of unspecified (physical) structure;
» complexity of interactions between subproblems;

« amount and type of knowledge the user can provide.

Available methods and knowledgeTBD can be classified as amovativedesign task.

Tong and Sriram (1992) distinguish between three levels of complexity: routine, innovative,
and creative. If an appropriate method and/or sufficient knowledge is available to translate
the functional design requirements into an acceptable design without any search, the design
task is called aoutine task. If the available knowledge by itself provides unacceptable

designs, but an acceptable solution can be generated through a limited search, we call the

79

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

design procesgnovative Finally, if the construction of the search space itself requires
problem-solving, or if the best known design method is an unguided search through a very
large space, we havecaeative design task. According to those definitions, Task-Based-
Design of the RMMS qualifies as innovative: the design space is well known, but there is

insufficient design knowledge available so that a search is required.

The knowledge that is available about TBD of manipulators can be divided into two catego-
ries: knowledge about the design of the structure and knowledge about the design of the
behavior. It might come as a surprise to the reader that we consider knowledge about the
behavior of the manipulator, i.e. planning and controldesignknowledge. Remember,
however, that trajectory planning plays a critical role in the design of task specific fault tol-
erant manipulators. Therefore, one could look at the determination of the desired joint space
trajectory,0,.s , as a subproblem of the overall TBD problem. As we have shown in Chapter
4, there is considerable knowledge available about the fault tolerant trajectory planning sub-
problem, to the extent even that one can consider this subproblem a routine design task—
there exists an algorithmic solution to the problem. Even though the fault tolerant trajectory
planning algorithm is computationally expensive, it is much desirableseaechingfor a

trajectory.

As for the sub-task of designing the manipulator structure itself, very little knowledge
exists—most of the manipulator design knowledge pertains to the degjgnesl purpose
manipulators and is not applicable to TBD. The first structured investigations of manipulator
design started in the early eighties. Vertut and Liégois (1981) listed a set of general design
criteria for manipulators, and provided a software for analyzing these criteria, given a speci-
fied manipulator. The optimization of the design parameters was left to the designer. Gupta
and Roth (1982) focussed on kinematic design criteria, and proved that the hand size of a
manipulator should be as small as possible in order to maximize the dexterity; they did not
investigate the positional structure. Lin and Freudenstein (1986) developed a systematic
search procedure to maximize the workspace and the workspace-to-void ratio of a 3R
regional structure. The procedure was mainly based on workspace analysis combined with

an exhaustive search of a limited number of parametrized designs. A more rigorous

80

5.3 PROBLEM CHARACTERISTICS

approach is described by Vijaykumar, Waldron, and Tsai (1986). The conclusion, based on
geometric reasoning, is that an elbow manipulator with zero link offsets is optimal with
respect to working volume and dexterity. The same conclusion was obtained by Tsai and
Soni (1984) and was proved mathematically by Paden and Sastry (1988). Although the
design knowledge described in the above mentioned articles is important for the design of
general purpose manipulators, it is of limited use for Task Based Design. For instance, the
criterion of workspace volume is important when one does not know in advance for which
task the manipulator will be used; by maximizing the workspace, one increases the chance
that the manipulator will be able to execute the still unknown task. However, if this task
known a priori, and one can design a manipulator specifically for that task, then workspace
volume is relatively unimportant, as long as the manipulator is able to reach all the points
required for the execution of the task. Furthermore, the papers, cited above, consider none or
only a few design constraints such as joint limits, obstacles in the workspace, torque limits
etc. The knowledge regarding optimal design of manipulators without constraints, does, in
general, not apply to the highly constrained TBD problem. For instance, an elbow manipula-
tor configuration, considered to be optimal in the above papers, becomes useless for a task
constrained by two obstacles forming a narrow horizontal gap; the manipulator cannot move

into the gap without striking the obstacles with the elbow (Paredis and Khosla 1993).

The first attempts to include task specificity at the design stage were based on an exhaustive
search of a limited number of manipulator configurations. Tsai and Morgan (1985) made the
assumption that an elbow manipulator is optimal for any task; only the size of the manipula-
tor and its base position are considered as design parameters. A mechanism-design-based
approach is presented by Manoochehri and Seireg (1990). The authors divide the manipula-
tor design problem into two subproblems: form synthesis and dimensional optimization.
First, a list of possible topologies is generated based on a user provided set of basic elements
(single links and dyads). For each of those topologies, the dimensions are optimized with
respect to the given task. Finally, the best optimized design is retained. Although this proce-
dure probably yields good results for simple tasks, it is severely limited by the fact that an

exhaustive search of the possible topologies is performed.

81

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

To avoid an exhaustive search, other researchers have used guided global search algorithms
such as simulated annealing (Paredis 1990) and genetic algorithms (Chedmail and Ramstein
1996; Chen and Burdick 1995; Farritor et al. 1996; Kim 1992; Murthy 1992). Most of these
papers include design knowledge implicitly by penalizing infeasible designs during the eval-
uation stage of the search algorithm. Only Murthy (1992) explicitly includes knowledge
about the design. This knowledge is represented in the form of heuristics such as “move
base to fix reach violation.” For the design of planar manipulators, as considered by Murthy
(1992), these explicit design heuristics can be easily derived from kinematic and dynamic
analysis. However, due to the highly nonlinear nature of the kinematics and dynamics of
spatial manipulators, these heuristics cannot be easily extended to spatial manipulators,

especially when considering such global criteria as fault tolerance or energy consumption.

In conclusion, the literature reveals that there is very little explicit knowledge available
about task specific design of robot manipulators. The most promising results so far, have
been obtained by using guided global search algorithms such as simulated annealing or
genetic algorithms in which design knowledge is included implicitly in the evaluation of

candidate solutions.

Amount of unspecified (physical) structure TBD is astructure configuratiomesign task.

A design process involves creating@nplete(physical) structure. However, in most engi-
neering design tasks only a limited part of the structure still needs to be identified. In TBD
of modular manipulators, the complete physical structure of each of the modules is specified
a priori. The remaining unidentified part of the design is the base position/orientation, and
the order and relative orientation of the manipulator modules. This kind of design task is
typically called astructure configuration taskhe unspecified structure is a configuration of
parts of pre-determined type. The advantage to this kind of problems is that the design space
is usually well known and easily parametrizable. Nevertheless, structure configuration tasks
can be very challenging depending on the size of the design space. The number of different
assembly configurations of the RMMS grows exponentially with the number of available
modules (approximately ag8" , where the number 8 corresponds to the number of possi-

ble relative orientations between two successive modules). In addition, for every assembly

82

5.3 PROBLEM CHARACTERISTICS

configuration, one has to consider all possible base positions/orientations (continuously

varying).

Complexity of interactions between subproblemsTBD is complicated by a strong inter-
action between its subproblems and by the global nature of its constraints and optimality cri-
teria. In general, complexity of design problems increases when the number of interactions
between subproblems increases and when the type of interaction becomes more complex.
As mentioned earlier, one can think of TBD as consisting of two subproblems: (1) the
design of the manipulator structure and (2) the planning of the trajectory. This is a conve-
nient division of the problem because the trajectory planning subproblem can solved algo-
rithmically. However, the two subproblems strongly interact. A trajectory planned for one

manipulator structure is meaningless for another manipulator structure.

A fundamental principle in engineering design is “the division of tasks” (Pahl and Beitz
1996) or “independence of functional requirements” (Suh 1988). The idea is to divide the
design problem in subproblems that each address an independent functional requirement.
For instance, in the design of a general purpose manipulators, the functional requirement is
to be able to position the end-effector in an arbitrary position and orientation. This require-
ment is commonly divided into the requirements to position the end-effector and to orient
the end-effector. For each of these sub-tasks a different structure of the manipulator is
responsible: the positional structure and the wrist, respectively (There is a weak interaction
when the hand length, the distance between the wrist center and the end-effector, is non-
zero). In Cartesian manipulators, the positional structure is further divided into substructures
that are responsible for positioning the wrist in each of the three independent coordinate
directions. Although the principle of the division of tasks is a very valuable concept in gen-
eral, it does not apply to the TBD f&#ult tolerantrobot manipulator. As we indicated in
Section 3.1 of Chapter 3, it is important for the design of fault tolerant manipulators that
there be strong coupling between the manipulator DOFs, so that a failure in one of the DOFs
can be compensated for by the remaining DOFs. For instance, when a failure occurs in one

of the DOFs of a Cartesian robot, with fully decoupled DOFs, all capability to move in that

83

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

particular direction is lost. This strong interaction between the subcomponents of a fault tol-

erant manipulator configuration complicates the TBD process.

In addition to the subcomponent interactions introduced by the fault tolerance requirement,
other strong interactions arise from the global nature of the constraints and optimality crite-
ria. Constraints such as torque limits, or optimality criteria such as power consumption

depend on all the parameters of a manipulator—kinematic, dynamic, and even electric. Fur-
thermore, this dependence is highly non-linear due to the nature of manipulator kinematics
and dynamics. To solve the design problem, one needs to determimeeise of this

highly non-linear mapping, i.e., the mapping from task requirements to design variables.

This is currently beyond the capability of modern mathematics—except for a few toy prob-

lems (Paredis and Khosla 1993).

Amount and type of knowledge a system user can provid@ne can consider the human
users of a design system as knowledge sources. For instance, if the user can provide assis-
tance to the design system when it lacks the knowledge to continue, the design task can still
be considered “routine.” It is my experience, however, that for TBD of fault tolerant manip-
ulators, the human lacks the knowledge and intuition to assist the design system. It seems
that our knowledge of manipulator design is mainly based on our experience with a rather
limited set of common manipulator configurations. Most of these common configurations
are simple structures with parallel or perpendicular motion axes. These designs make good
general purpose manipulators, but are usually not optimal (or even feasible) for specific
tasks, as we will show in Chapters 6 and 7. Furthermore, satisfying the fault tolerance
requirement requires the simultaneous consideration of all possible failures in each of the
DOFs at any time during the task execution. This amounts to such an enormous number of
possible failure scenarios that it becomes impossible for a human to consider them all at

once.

In conclusion, TBD is an innovative design task that can be split into two subproblems: the
design of the manipulator structure, for which very little design knowledge exists, and the
design of the manipulator’s behavior, which is a routine design task (solved algorithmi-

cally). One can consider TBD to be a structure configuration task for which the design space

84

5.4 PREVIOUS SOLUTION APPROACHES

is well known and easy to represent, yet very large. The complexity of the TBD problem
arises mainly from the degree of interaction between the subproblems, and from the global
nature of the constraints and optimality criteria. Even for humans, these interactions are very

difficult to understand or predict intuitively.

5.4 Previous Solution Approaches

The initial approach to task based design (Krishnan 1989; Paredis 1990) has been to divide
the design problem into several stages as is shown in Figure 5-3. First, we design the kine-
matic structure; second, the dynamic structure. We then iterate between these two design
processes until a solution is found, and end by designing a controller and planning a trajec-
tory. While this approach was a reasonable first attempt, it had the disadvantage that it was
slow. Since the kinematic parameters depend on design choices made during the dynamic
design phase, several iterations of the design process were needed. The search for a kine-
matic design was performed by simulated annealing (Kirkpatrick, Gelatt and Vecchi 1983).
This is a global search algorithm that, under certain assumptions, is guaranteed to converge

to the global minimum with a probability of one. However, it has the disadvantage that it is

Task Requirements

I [
- : - Automatic Generation
Kinematic Design > of Kinematics I
I
I
Module > D ! Dosi _ | Automatic Generation |
Database > _Pynamic Design > of Dynamics |

Y
Controller Design

Y
Path Planning

Figure 5-3. Initial design approach for the RMMS.

85

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

rather slow and that it cannot easily be parallelized. The objective function of the simulated
annealing algorithm was a penalty function in which penalties for violating task constraints

were combined in a weighted sum—no optimality criteria were considered.

Kim (1992) focussed also on the kinematic design of manipulators and used a Multi-Popula-
tion Genetic Algorithm (MPGA) to search for a feasible solution. The idea was to have one
GA per task point to search for locally optimal designs, and then progressively increase the
coupling between the individual GAs to arrive at one single globally optimal design for all

the task points. Kim also introduced the concept of Progressive Design—a coarse-fine
approach in which the number of task points is progressively increased while the number of

design variables is progressively decreased.

Murthy, Khosla, and Talukdar (1993) studied the task specific design of planar modular
manipulators. They used an asynchronous team (A-team) approach to search the design
space. An A-team is an organization of autonomous agents, that work in a cyclic, iterative,
asynchronous fashion on common shared memories (Talukdar, de Souza, and Murthy 1993).
In addition to mutation operators as in GAs, Murthy uses a large set of simple heuristic
modification operators. Each of these heuristics is unable to generate good or even feasible
designs; yet, by combining them into a team of agents, the population of candidate designs
have been shown to converge to good solutions quickly and robustly. Unfortunately, the heu-
ristics proposed by Murthy rely extensively on kinematic and dynamic analyplarcir
manipulators and do not translate or scale well to the design of three-dimensional manipula-

tors.

Chen (1994) addresses TBD of three-dimensional modular manipulators. He uses a genetic
algorithm to optimize the Assembly Configuration Evaluation Function, which consists of
two parts: structural evaluation and task evaluation; that is, in addition to evaluating how
well a candidate manipulator design can execute the given task, Chen also evaluates the
manipulator structure itself to discourage manipulators with degenerate sub-structures (for
instance, coinciding rotation axes). This is especially important when the design of the

manipulator modules being used is such that there is a high probability for degeneration.

86

5.4 PREVIOUS SOLUTION APPROACHES

Chedmail and Ramstein (1996) consider only kinematic constraints (reachability and obsta-
cle avoidance) and build a cost function based on the length of the desired trajectory that can
be followed by the manipulator without colliding with any of the obstacles. They also use a

standard genetic algorithm to solve the global search for a feasible manipulator design.

Related to the TBD of robot manipulators is the design of modular mobile robots from task
specifications. We found the following papers in the literature on this subject: Farritor et al.
(1996), Roston (1994), Rutman (1995), and Sims (1994). In all four papers, the solution
approach is based on genetic algorithms (Holland 1975) or genetic programming (Koza
1992).

Farritor et al. (1996) and Rutman (1995) consider the problem of automated design of mod-
ular field robots. Similar to the concept of the RMMS, they envision an inventory of robot
modules (bodies, joints, wheels, etc.) with which one can build a mobile robot suited for a
particular task. To deal with the combinatorial explosion of the size of the search space, they
propose a hierarchical selection procedure combined with a genetic algorithm to determine
the robot structure. In a second stage, genetic programming is used to generate motion plans

built from elementary “action modules” (Cole 1995).

Roston (1994) presents a genetic methodology for configuration design and, as an example,
applies this “Genetic Design” methodology to the design of a frame walking robot or step-
ping stone walker. Instead of building the robot from modules, Roston uses formal grammar
to describe and represent candidate designs. The design process itself is based on genetic

programming.

Sims (1994) also uses genetic algorithms to create mobile robots or “virtual creatures.” these
creatures consist of blocks that are connected by rotational joints. The design representation
is very general; it accommodates a large variety of structural topologies and also includes a
control structure which determines the joint torques applied to the blocks. Both the physical
structure and the control structure evolve genetically during the design process. With a sim-
ple, yet computationally expensive, fithess function, Sims is able to generate creature with

interesting behaviors such as swimming, walking, and jumping.

87

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

5.5 An Integrated Solution Approach

Based on the literature review on Task Based Design in the previous section, one can distin-
guish a spectrum of approaches between two extremes: sequential and fully integrated
design. In a first approach, illustrated in Figure 5-3, the design problem is split into subprob-
lems: kinematic design, dynamic design, trajectory planning, and control. Each of these sub-
problems is tackled individually and sequentially. But because the subproblems are not fully
decoupled, an optimal solution at one stage might not be optimal anymore after the next
stage. In other words, the globally optimal solution might never be found, because of its pos-
sible suboptimality at an intermediate stage. The second extreme, as implemented by Sims
(1994), integrates all the design criteria (kinematics, dynamics, planning, and control) into
one large global search problem. As a result, the global optimum is never pruned from the
search space prematurely, but the search space is so large and the evaluation of all the design
criteria is so computationally expensive that finding the global optimum takes a very long

time.

We have chosen to take an integrated solution approach to the TBD problem, because the
coupling between the different subproblems is significant (especially when considering fault
tolerance), and the chance of obtaining sub-optimal or even infeasible solutions is consider-
able. To make an integrated approach computationally feasible, we have focussed on elimi-
nating the disadvantages of such an approach, namely, a large search space and a
computationally expensive evaluation. The two main concepts that we have applied to
achieve this goal are to inclugeoblem specific design knowledmethe search, and to

implement the search in an eagigrallelizable agent-based paradigm

The basis for our design system is a genetic algorithm. Genetic algorithms were first intro-
duced by Holland in 1975. Holland showed how the evolutionary process of survival of the
fittest can be applied to artificial systems, and he provided a strong mathematical framework
for analyzing such adaptive systertitee schemata thearyet, it was not until 1989, when
Goldberg (1989) provided a more practical guide to genetic algorithms, that they became

widely used. Genetic algorithms are a class of algorithms that transform a set or population

88

5.6 RROBLEM SPECIFICDESIGN KNOWLEDGE AND GENETIC ALGORITHMS

of mathematical objects, each with an associated fitness value, into a new population. The
transformation process is based on the natural processes of sexual recombination and asex-
ual mutation, combined with the principle of survival of the fittest. Although the original
algorithm was formulated for objects represented by a fixed length bit-string, many varia-
tions now exist representing individual objects by variable length structures, graphs, and

trees.

5.6 Problem Specific Design Knowledge and Genetic Algorithms

In the literature, one can find numerous examples of task specific manipulator or robot
design using variations of simulated annealing and genetic algorithms (Chedmail and Ram-
stein 1996; Chen and Burdick 1995; Farritor et al. 1996; Kim and Khosla 1993; Murthy,
Khosla, and Talukdar 1993; Paredis and Khosla 1993; Roston 1994; Sims 1994). Both simu-
lated annealing and genetic algorithms are global search methods that are very robust, but

also rather slow.

The performance of these search algorithms can be drastically improved by including prob-
lem specific knowledge. This concept was proposed by Michalewicz (1994) who includes
problem specific knowledge into genetic algorithms; he calls the new algogtlohgion
programs He shows that by using problem specific data structures (instead of binary
strings) and problem specific “genetic” operators (generalizations of the generic mutation
and cross-over operators), the performance of the search algorithm increases dramatically.
The more specific the evolution program, the higher the performance can be, as is illustrated
in Figure 5-4. The drawback is that the more specific the algorithm, the narrower the range
of problems it can solve. Ideally, one would like to include just enough problem specific
knowledge to make the algorithm fast and robust for the class of problems in which one is

interested.

There are two major mechanisms through which problem specific knowledge can improve

the efficiency of the search algorithm:

89

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

>
e A
k5 mEPB
[&]
= ~
(D)
EP2
EP1 GA
I >
P problems

Figure 5-4. Efficiency vs. problem spectrum for Evolution Programs.
From Michalewicz (1994).

* reduction of the search space size

« reduction of the evaluation cost of a candidate solution

5.6.1 Search Space Reduction

In the context of TBD, avery important reduction in the size of the search space is obtained
by applying the global fault tolerant trajectory planning algorithm, developed in Chapter 4,

to the trajectory planning and control subproblem of TBD. Instead of searching the entire
joint space (i.e.T" for an n-DOF revolute manipulator), the fault tolerant trajectory plan-
ning algorithm reduces the search space in several steps to a simple connectivity graph of
connected region® J-tk . First, by taking the manipulator kinematics into account, the search
space is reduced to the preimage of the Cartesian path. Second, the postures that do not sat-
isfy the secondary requirements (joint limits, obstacle collision, and self collision) are
excluded. Third, the search space is further reduced to the sets of postures that are accept-
able for fault tolerant trajectories, and, finally, to a sequence of connected regions. By using
a local optimization algorithm to find the shortest trajectory through this set of connected
regions, we have totally eliminated the needse¢archfor a desired trajectory, and have

replaced the search with an algorithmic solution. This amounts to an eliminat®niof

90

5.6 RROBLEM SPECIFICDESIGN KNOWLEDGE AND GENETIC ALGORITHMS

continuous design variables, whdPe is the number of postures in the discretized desired

trajectory, anch is the number of DOFs of the manipulator.

The fact that the trajectory planning subproblem can be solved algorithmically does not con-
tradict the fact that there is a strong interaction between it and the structural design problem.
For every candidate manipulator configuration, one still needs to plifferantdesired tra-
jectory; only, this desired trajectory can be determined algorithmically instead of through

search.

A second important reduction in search space size, is achieved by including problem spe-

cific design knowledge in the generation of candidate design solutions:

* Because base and end-effector modules only have one female or male connec-
tor, respectively, they can only be used as the first or the last module of a manip-
ulator configuration. The other modules, with two connectors, can be used at
any position except the first and the last.

* We know that at least six DOFs are necessary to complete a task which involves
positioning and orienting the end-effector along a specified trajectory (except
for some degenerate cases). Therefore, candidate solutions with fewer than six
DOFs are immediately rejected—without being evaluated. Similarly, designs
with more DOFs than the user-specified maximum are rejected.

» Some of the modules are axially symmetric; it does not matter in which orienta-
tion they are mounted with respect to the previous module. Therefore, we arbi-

trarily set the corresponding relative orientation equal to zero.

The combination of these three constraints result again in a very significant reduction of the
search space size. An example illustrates this best. Consider the case of the existing RMMS
hardware being used to construct a 3-DOF manipulator. There are seven RMMS modules: a
base, an end-effector, a link, and four joint modules. The modules can be connected with
each other in eight different relative orientations. The initial search space consists of an
ordered list of modules and their relative orientations. The 8ize, , of the search space

equals:

91

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

,
N=Y (77_)|8' 1.19810™. (5-2)

i=1

After taking into account that an acceptable configuration has to start and end with a base

and end-effector module, respectively, the size reduces to:

N = 82 z (—g—_——)—|8' 2.85210° (5-3)

In the next step, the search space is further limited to configurations with three DOFs:
— g2[# 4 3) ~ Y -
N=8 l:BB(4!8 +3183) = 2.595¢10 (5-4)

Finally, we incorporate the knowledge that the base, the end-effector, the link module, and

one of the four joint modules are axially symmetric:

N = (4!+31)(83+3[82) = 2.112x10", (5-5)
which is six orders of magnitude smaller than the initial size of the search space.

5.6.2 Progressive Evaluation

The second mechanism to improve the efficiency of the search algorithm, is to reduce the
cost of evaluating a candidate solution. This is particularly important for our integrated
approach to TBD, where simultaneous consideration of all the task specifications can lead to

very long evaluation times.

We call the approach we have implemented “progressive evaluation,” because it progres-
sively uses more and more complicated tests to evaluate designs. Very often it is possible to
devise a simple test forreecessary conditierif a design fails the test one can guarantee

that the design does not meet the task requirements. When a design does not pass the test for
a necessary condition, an estimate for the fitness of the design is generated and the evalua-

tion is terminated. This approach is based on the observation that it is very often possible to

92

5.7 AN AGENT-BASED DESIGN FRAMEWORK

recognize a bad design quickly using a simple test. Instead of completing the full evaluation
for such a design, it is sufficient to make a rough estimate of the fitness and interrupt the
evaluation to reduce the computation time. Here is a successive list of tests that are imple-

mented in the TBD evaluation function:

 |If fault tolerance is required, test whether the manipulator is redundant.

» Test whether the manipulator can reach the initial point of the Cartesian path.

e If the manipulator is redundant, test whether a desired joint space trajectory
exists.

» The trajectory planning algorithm itself is also implemented in a progressive
manner: the computations stop as soon as a Cartesian point is reached for which
no more acceptable postures can be found.

* Only when all these tests are satisfied does the simulation of the task execution

start.

5.7 An Agent-Based Design Framework

An approach to TBD that integrates kinematics, dynamics, planning, and control, has the
disadvantage that the search for a globally optimal solution can take a long time. In the pre-
vious section, we addressed this problem by including problem specific design knowledge
to reduce the size of the search space and to reduce the computation cost for evaluating a
candidate design. In this section, we take a different but complementary approach to speed

up the search, namely, by increasing the computational resources.

The computational resources can be increased by developing an agent-based implementa-
tion which runs on a distributed network of workstations. When Sims (1994) evolved crea-
tures using an integrated approach, he resorted to a 32 processor CM5 to overcome the
problem of computational power. He implemented a modified genetic algorithm to run in
parallel according to a master/slave message passing model. The approach we have taken, is

to modify the genetic algorithm according to a multi-agent paradigm. The resulting algo-

93

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

rithm can be executed in a distributed fashion on any MIMD computer, including shared
memory multi-processors and, in particular, networks of computers used for concurrent

computation.

Due to the centralized control of the standard genetic algorithm, it is not well suited for dis-
tributed implementation. For every new generation in a genetic algorithm, one needs to
modify and evaluate each of the individuals. These modification and evaluation operations
can be parallelized. However, a straightforward parallel implementation of the standard
genetic algorithm would cause load balancing problems and inefficient processor usage due
to the synchronization requirements of the centrally controlled algorithm—selection of the
parents for the next generation of individuals depends ondirmealizedfitness and there-

fore cannot be executed urdll the individuals have been evaluated. In the current literature

on parallel genetic algorithms, one can find three main adaptations of the standard genetic
algorithm that avoid this centralized control. In a first approach, new parents are selected
through “tournament selection”; this eliminates the need for normalization of the fitness
value (Goldberg, Deb, and Korb 1991). A second approach is to run many standard genetic
algorithms in parallel (one sub-population per processor), and to have individuals migrate
from one sub-population to another every so often (Tanese 1989). In this way, the synchroni-
zation problem is not totally eliminated, but it is reduced significantly. A last approach is to
have one single population in which each individual has a dedicated processor (Muhlenbein
1992). The individuals select a mating partner not from the global population, but only from
their immediate neighbors. This happens asynchronously without the intervention of a cen-

tralized controller.

Synchronization problems can also be avoided through an agent-based implementation,
where each agent corresponds t@mperatorrather than an individual. This approach, illus-
trated in Figure 5-5, combines four types of agents: creation agents, modification agents,
evaluation agents, and destroyer agents. The agents do not communicate with each other
directly, but only indirectly through a shared memory which contains the population of can-
didate solutions. A population manager manages the storage and retrieval of individuals of

the population, but does not control the execution of the agents. The agents are fully autono-

94

5.7 AN AGENT-BASED DESIGN FRAMEWORK
Modification Modification
Agent Agent
Memory with :
; Creation

Destroyer Candidate

Solutions Agent
Evaluation

Agent

Figure 5-5. Layout of a generic agent-based design framework.

mous and execute asynchronously; they decide when to act, and which individual to act on,
without being controlled by a centralized controller. Their functions correspond roughly to
the functional entities of the genetic algorithm. At start-ugreation agengenerates initial
candidate solutions and places them in the population (creation of the initial population).
One or moreevaluation agentshen retrieve the unevaluated solutions, evaluate them and
return them to the population (determination of the fitness values). Based on the evaluations,
modification agentselect and modify candidate solutions and return them to the population
(selection, mutation, and cross-over in genetic algorithms). One major difference between
this agent-based approach and the standard genetic algorithm is the way the population is
managed. Rather than creating a new population each generation based on the population in
the previous generation, the algorithm does not consider distinct generations at all. Instead,
the off-spring is simphaddedto the current population. To avoid an ever growing popula-
tion, individuals with a low fitness value are destroyeddstroyer agentghis is similar to

the mechanism used i(u +A) -Evolution Strategies described by Schwefel (1981). Theo-
retical models of genetic algorithms show the importance of selection as a converging force
within a population (Holland 1975). In genetic algorithms, convergence is achieved by pref-
erably selecting the best individuals as parents for the next generation. A similar converging
force is achieved in our approach by preferably destroying the worst individuals. As a result,

the framework, shown in Figure 5-5, maintains the desired convergence characteristics of

95

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

genetic algorithms, while, at the same time, avoiding the need for centralized control—a

critical criterion for a distributed implementation.

The main advantage of an agent-based framewqukriermance Current day computing
facilities consist of a highly networked group of powerful workstations. Many of these
workstations are idle for large amounts of time. These idle cycles can be used at no extra
cost to run the agents in our distributed framework. Since we are dealing with a small data
structure to represent candidate solutions, the time needed to exchange data between the
agents and the population manager is negligible compared to the computing time required
for modification and evaluation of candidate solutions. The bottleneck of our implementa-
tion is thus evaluation and modification and not communication with the shared resource.
Therefore, one can expect a speedup which is almost linear in the number of processors.
This is confirmed by a simple test of our current implementation which revealed that con-
gestion of the population manager starts to occur around 20 solution insertions per second.
The average insertion rate for the example in Chapter 7 is approximately one insertion every

two seconds—far below the congestion limit.

An additional advantage of this agent-based design frameworknsdslarity We have

divided the monolithic standard genetic algorithm into functional entities that, by removing
the centralized control, have become independent modules or autonomous agents. These
agents are separate processes that interact only with the population manager, so that the
addition of new agents does not affect the other agents. Modularity makes the design system
also reconfigurable oromposableFor instance, in the examples in Chapter 6, the base
position is fixed. Therefore, one can compose a design system without the MutateBasePosi-
tion agent. In Chapter 7, on the other hand, we do consider the base position as a design
variable so that the MutateBasePosition agent is included. This can be achieved without

having to change any code.

96

5.8 IMPLEMENTATION

5.8 Implementation

5.8.1 The Asynchronous Team Toolkit

The agent-based design framework described in the previous section has been implemented
using the Asynchronous Team Toolkit developed by Talukdar et al. (1996). This toolkit pro-
vides object oriented support software to implement a team of asynchronous autonomous
agents (Talukdar, deSouza, and Murthy 1993). At a low level, the toolkit provides utilities to
write and read candidate solutions to and from a shared memory managed by a population
managing process. Furthermore, the toolkit contains a query mechanism to search and select
for specific candidate solutions that are stored in the population. At an intermediate level,
agent templates aide the user in creating agents for a specific search problem. There are
generic templates for destroyer, creation, modification, and evaluation agents. At the highest
level, the A-teams toolkit provides a graphical user interface, illustrated in Figure 5-6, with
which one can first connect agents and memories into a team and then spawn and monitor

them on a network of computers.

To support a distributed implementation across a wide range of platforms, the toolkit is built
on top of PVM (Geist et al. 1994). PVM (Parallel Virtual Machine) is a software package
that enables the computer user to define a networked heterogeneous collection of serial, par-
allel, and vector computers to function as one large computer. It can be used as stand-alone
software or as a foundation for other heterogeneous network software such as the A-teams
toolkit.

The software agents that constitute our design framework all have the same internal struc-

ture. They consist of a scheduler, a searcher, a selector, and an operator.

The scheduler.The scheduler decides when the agent should be active. For instance, a cre-
ation agent or seeder might only be active at start-up to create the initial population. We have
implemented a relatively simple scheduler with which one can limit the number of times the

agent executes (especially useful for creation agents), and with which one can specify the

97

CHAPTERS: TASK BASED DESIGN.: AN AGENT-BASED APPROACH

time an agents sleeps in-between executions, both under normal circumstances and when an

execution error occurs.

The searcher.The searcher determines which individuals from the population are eligible to

be acted upon. For instance, the searcher of an evaluation agent will query the population
manager for candidate solutions that have not yet been evaluated. Other agents can have
more sophisticated searchers. Assume, for instance, that a modification operation is only

useful for manipulator designs that do not meet the kinematic constraints, then the searcher

= D MEMORY
OPEM | SAUE | SAUEAS WRITE Memory

REFRESH

98

ams.ius.cs.cmu.edu

-
=m0

Destroy &
DESTROYER

ams.ius.cs.cmu.edu

AddDelete Module
HODIFIER]

j¥.us.cs.cmu.edu

Permute Module

MODIFIERY

j¥.us.cs.cmu.edu

ams.ius.cs.cmu.edu

[¢] Dataflow Diagram

TkkMemMonitor
fmmmny
-
j¥.us.cs.cmu.edu
L)
RandomSeeder
Fg’ JuEELEE) AGENT
& .
DELETE ams.ius.cs.cmu.edu AddDelete Module
COMNECTION Destroy
4 Evaluate
@& Mutate BaseFPosition
JELETE (ElaiizE MutateModule
L MutateRelative Orientat
@k’ YOW.ius.cs.cmu.edu PermuteModule
DELETE RandomSeeder
MEMORY TkMemMonitor
Mutate Module Append
HODIFIER] P

Redraws

(= E

Figure 5-6. An overview of the Ateams toolkit GUI.

5.8 IMPLEMENTATION

can query the population manager for designs that contain a non-zero kinematic penalty.
The population manager replies to agent queries by sending them a list of designs that match

the query.

The selector.Since most agents act on only one or two solutions at a time, they have to
make a selection from the search list—the list of solutions returned by the population man-
ager upon a search query. This is performed by the selector. A mutation agent, for instance,
might perform tournament selection, that is, it compares the fitness value for two or more
individuals randomly chosen from the search list and it retains the fittest. If the best individ-
ual fromk randomly chosen individuals is retained, then the probability that the individual
with ranki is selected from a populationrof individuals ranked by fitness from 1 (best) to

n (worst) equals

k(n—i+ 1)k-1

P(individuali is selecteyl = ”
n

(5-6)

As the tournament sizZe increases, the selective pressure increases too. All the agents that
we have implemented so far use tournament selectionkwath? , Which corresponds to a

linear probability distribution.

The operator. Once the agent has selected one or more individuals, the actual operation is
performed—creation, modification, destruction, or evaluation. The operator functions are

explained in more detail in the next two sections.

The internal structure of agents outlined above is general enough to accommodate a wide
variety of operators, ranging from the standard genetic operators to operators that contain

explicit knowledge about the design problem.

5.8.2 The Evaluation Function

The evaluation function is the function that determines the fitness value for a given candi-
date design. In the case of TBD, the fitness value is a combination of the extent to which the
constraints are violated and the extent to which the optimality criterion is achieved. Specifi-

cally, the constraints include:

99

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

» Reachability: is the manipulator able to follow the specified trajectory?
» Joint limits: do the joint angles remain within their limits?
» Joint velocities: do the joint velocities remain within their limits?

» Singularity avoidance: does the manipulator stay away from singular configu-

rations?
» Torque limits: do the joint torques remain within the motor limits?

» Collisions with obstacles:does any part of the manipulator collide with the

specified obstacles?

» Self-collision: does any part of the manipulator collide with any other part of

the manipulator?
The optimality criterion that we consider is:
» Energy consumption

The evaluation process occurs in two stages. In a first stagdesired behavioof the
manipulator is determined. As we explained in Section 5.2.4, the behavior of the manipula-
tor is determined by the trajectory planner and the controller. For the RMMS, the controller

is the damped least-squares controller defined by:

Bret = J(P+a(p—x) + Bl —IW)(Byes—Bre) (5-7)

This controller completely determines the behavior of the manipulator when given the initial

posture,B,; at time zero, the desired trajectépyt) , and the parameters and . The

ref
parameter&t anfl are constant; they are set by the user in the problem definition file. The
desired trajectory8,.{t) , is determined using the global trajectory planning algorithm
described in Chapter 4. The trajectory planner guarantees that the specified Cartesian path
can be followed even when one of the joints fails and is immobilized, i.e., fault tolerantly.
Secondary requirements (joint limits, obstacle collision, and self-collision) are also taken
into account. With a small change, the same algorithm can also be usedrtorpiamt tol-

erant trajectories that satisfy the secondary requirements. As a result, the behavior of any

100

5.8 IMPLEMENTATION

redundant manipulator can be determined algorithmically using the global trajectory plan-

ning algorithm of Chapter 4.

The evaluation function including the global fault tolerant trajectory planning algorithm is
executed many times and for a large variety of different manipulators, some of which may
be degenerate (all axes are parallel, axes coincide etc.). This requires that the global fault
tolerant trajectory planning algorithm Bestand veryrobust We have not yet been able to
achieve both of these attributes simultaneously for manipulators with more than one degree-
of-redundancy. Therefore, we will limit ourselves to the design of fault tolerant manipula-

tors with at most one degree-of-redundancy.

For non-redundant manipulators, the null-space of the Jacobian is empty and the second
term of Equation (5-7) reduced to zero. The behavior is independent of the desired trajec-
tory, 8,.{1t) , and fully determined by the initial postuée,(0) , which is computed by solv-

ing the inverse kinematics for the initial point of the Cartesian path.

If no acceptable behavior can be found, that is, no global trajectory can be planned for
redundant manipulators or no initial posture can be found for non-redundant manipulators,
the evaluation routine returns a fitness value that reflects how close the first stage came to
being successful. For non-redundant manipulators this fitness value is based on how close in
Cartesian space the manipulator was able to approach the initial point of the Cartesian path;
for redundant manipulators, the fitness value is based on the total size of the sets of accept-

able postures.

In the second stage of the evaluation, the task execution is simulated with the given manipu-
lator configuration and the behavior determined in stage one. The simulation engine uses the
same control structure as is used for the actual RMMS hardware. The only difference being
that the PID controller is eliminate and the feed forward torgyie, in Figure 5-2, is consid-
ered to be the actual torque required to accurately follow the trajegtoft) . For every
time step of the simulatiom¢ = 0.01s), the evaluation routine checks whether any con-

straints have been violated. For every constraint, it keeps track of the number of time steps

101

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

during which a violation occurs. At the end, a fithess value is computed based on the total

number of constraint violations.

The joint velocity and singularity avoidance constraints are not checked explicitly. They are
implicitly included in the reachability constraint. Thanks to the singularity robust Jacobian
(Nakamura and Hanafusa 1986) in the damped least-squares kinematic controller, the con-
troller remains stable when approaching a singularity, but will deviate from the desired Car-
tesian end-effector path. Moreover, the kinematic controller limits the joint velocities
(through clipping), before the velocities are integrated to obtain the joint traje@fg(),
Therefore, both joint velocity and singularity avoidance violations result in a deviation from

the desired Cartesian path and are thus implicitly included in the reachability constraint.

To check for obstacle collision and self-collision constraint violations, we have included a
public domain software package called RAPID (Gottschalk, Lin, and Manocha 1996).
RAPID is aRapid and Accurate Polygon Interference Detectibrary for large environ-

ments composed of unstructured models. The models of the obstacles and the manipulator
may consist of sets of triangles without adjacency information and without any topological
constraints (the models may contain cracks, holes, self-intersections, degenerate polygons,
and non-generic configurations). Collision detection is performed hierarchically using Ori-
ented Bounding Box trees (OBB-trees). These trees are pre-computed for each of the
RMMS modules during the problem initialization, so that there is no computation overhead
during the evaluation of a specific manipulator configuration. An example of a manipulator
model is shown in Figure 5-7. Notice that the models for the RMMS modules have been
defined a little larger than the actual modules, so that one can guarantee collision free task

execution without having to model every little detail of the modules.

The evaluation routine also integrates the total energy being consumed by the manipulator.
The energy consumption consists of three parts: energy consumed by the electronics, by the
amplifier and brake, and by the motors. Therefore, link modules consume less energy than
joint modules, even when the joint is not generating any torque. According to our measure-

ments on the actual RMMS hardware, the electronics dissipate approximately 16.2W and

102

5.8 IMPLEMENTATION

Figure 5-7. A CAD-model of the manipulator used for collision detection

the amplifier and brake dissipate 15.8W. The power required by one of the motors is time

dependent and equals
. - R .
Pmotor = RIZ(M) +TO() = 5120 +1()6() , (5-8)

whereK is the torque constant of the mobor, s the joint velocitymand, s the joint torque
as computed by the computed torque algorithm. For a manipulatomwith DOFR® and

modules, the total power consumption equals

n
R .
Pt = M16.2+n15.8+ z K_ZTJZ(t) +1,(1)6;(1) (5-9)
i=1

Note that Equation (5-9) remains valid even when the motor power becomes negative,
because the PWM amplifiers regenerate the mechanical power and redistribute it over the

other motors and brakes.

The total fitness value for a manipulator design can range from -200,000 to zero. This value
is used by the selection operators of the agents to select and individual design from the cur-
rent population. All the agents that we have implemented use tournament selection. Thus, an

individual is selected based on its fithess vaklative to another individual's fitness

103

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

value—theabsolutevalue of the fitness function is irrelevant. This gives us the freedom to
design the evaluation function in such a way that the fitness value indicates at which stage of

the progressive evaluation procedure the evaluation was terminated:

f = —200,000: insufficient number of DOFs to achieve fault tolerance.
e —200,000< f <-100,000: the design is unable to reach the initial point of the
Cartesian path.

» -100,000< f <-80,000: the fault tolerant trajectory planning algorithm failed
to return an acceptable solution.

» —-80,000< f <-20,000 : certain task requirements were violated during the
simulation.

» -20,000=< f : no violations; the fitness value equals minus the power consump-

tion.

5.8.3 The Modification Operators

For the TBD problem, we have defined six different modification operators: five mutation
operators and one cross-over operator. Each of the five mutation operators modifies a candi-

date solution in a different way:

» MutateBasePositionrmakes a small random change to the base position and ori-
entation.

» MutateRelativeOrientation randomly selects a module and changes its relative
orientation with respect to the previous module. The change in relative orienta-
tion is at most 90 degrees.

» MutateModule randomly selects a module and replaces it by a different module
retrieved from the inventory.

* PermuteModule swaps two randomly chosen modules both from the current
manipulator configuration.

» AddDeleteModule adds or deletes a module at a randomly selected position in

the manipulator configuration.

104

5.8 IMPLEMENTATION

In Section 5.6, we formulated three constraints that have to be satisfied by a candidate solu-
tion: start and end with a base and end-effector module respectively, stay within the speci-
fied range of DOFs, and have a relative orientation of zero for axially symmetric modules.
The mutation operators have been implemented in such a way that these constraints are
always satisfied; if they cannot find a candidate solution satisfying these constraints, they

return an error-code.

For the cross-over operator, one has to consider the additional constraint that each RMMS
module can only appear once in a legal candidate solution. Direct application of the standard
genetic cross-over operator could result in illegal solutions. For instance, consider the fol-

lowing two sequences of module numbers, with a cross-over point after the second module:

[0, 7[B, 6, 2, &1
[0,2[11,9,7, 8]

The off-spring resulting from these two parents are:

[0, 711,09, 7, &1
[0, 2] B, 6, 2, &

Both children are illegal because they contain a duplicates of the same module. Moreover,
there is no guarantee that the children satisfy the imposed constraint on the number of
DOFs. To overcome these problems we propose a variation of OX (order cross-over) as
introduced by Davis (1985) for the traveling salesman problem. The idea is to maintain the
order of the modules, omitting the ones already in use. The algorithm is illustrated with the

same two parents used above.

. Select a random cross-over point in the first paténfz/ 3, 6, 2, &1
. Copy the first part of the parent to the chill; 7/ X, x, x, X
. Remove the modules that are already in use from the second parén®, 81

. Select a random cross-over point in this reduced paghtt, 9, §

aa b~ W N P

. Complete the child, and check whether it satisfies the conditions for legal candidate
solutions (Section 5.6); if not, go back to step®:7[11, 9, §]

105

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

Note that, if both parents are legal, there will always be enough DOFs left in the reduced
parent to create a legal child; only modules that are already part of the child are deleted from
the second parent, so that in the worst case all the DOFs of parent two are needed to com-

plete a legal child.

5.8.4 The Agents

When composing an agent-based design system for a particular design task, one needs to
decide which agents one should use (based on the problem statement) and how many
instances of each agent one should spawn. The number of agents in a design system depends
on the available computing facilities; one would like to spawn at least one agent on each
available processor. For TBD, the fitness evaluation is the computational bottleneck, so that
it is important to distribute the evaluation effort as evenly as possible over the computational
resources. The design modification operators, on the other hand, perform only very little
computation. Yet, every design modification needs to be followed by an evaluation. There-
fore, there needs to be a well balanced proportion between the number of evaluation and
modification operators. To avoid having to fine tune this proportion for every new design
task (the fitness evaluation time varies from one task to another), we decided to combine the
modification and evaluation operators into one single agent. Similarly, creation operators are
paired with evaluators in one agent. The resulting design system has a very simple topology,
shown in Figure 5-8, and consists of only three types of agents: creation/evaluation agents,
modification/evaluation agents, and a destroyer agent. Internally, these agents are structured

as follows:
Creation/Evaluation agents:

» scheduler:the agent is active until the number of individuals in the population

reaches the desired population size.

» operator:the agent contains a creation operator that generates a (legal) random
candidate solution, and an evaluation operator that evaluates the solution before

it is stored in the population.

* a creation agent does not havesearcherand selector because it does not

106

5.8 IMPLEMENTATION

Modification/
Evaluation
Agent

Memory with
Solutions

Modification/
Evaluation
Agent

Creation/
Evaluation
Agent

Figure 5-8. Topology of the agent-based design system.

retrieve candidate solutions from the population.

Modification/Evaluation agents:

» schedulerithe modification agents are always active. However, if an execution
error occurs, for instance, due to the fact that the search query returns an empty
list, the agent sleeps between zero and ten seconds. This is to avoid that the
agents submerge the population manager with search queries when no “interest-
ing” candidate solutions are found in the population. The sleep time is randomly
chosen between zero and ten seconds with a uniform probability distribution. A

randomly chosen sleep time is used to avoid any periodicity in the schedule.

» searcher: the modification agents search for evaluated candidate solutions.
However, if the number of evaluated candidate solutions in the population is
smaller than desired population size, the searcher returns an error, causing the

agent to sleep for an average of five seconds.

» selector:from the list of candidate solution returned by the population manager,
the selector picks one candidate solution (two for cross-over) using tournament

selection: it randomly picks two candidate solution from the list, compares their

107

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

fitness values and retains the fittest candidate.

» operator: for each of the six modification operators described in the previous
section (five mutation operators and one cross-over operator), there exists a sep-
arate agent. The agent performs the mutation or cross-over on the selected can-
didate solution(s) and evaluates the new solution before returning it to the

population.

Destroyer:

schedulersame scheduler as modification/evaluation agents.

» searcherithe destroyer agent also searches for evaluated solutions, while requir-
ing that the number of evaluated solutions be larger than or equal to the desired
population size.

» selector:the destroyer agent also uses tournament selection. However, the tour-
nament is set up such that the worst individual wins. As a result, the destroyer
preferably destroys bad solutions.

» operator:the operation performed by a destroyer is to remove the selected can-

didate solution from the population.

There is one additional agent, namely a display agent. Periodically, this agent retrieves the
best solution so far from the population and stores it in a file. Furthermore, it prints some
simple statistics about the current population (minimum, maximum, and average fitness
value) together with a time stamp, so that the user can examine the state of the design pro-
cess and decide whether an acceptable solution has been reached and whether the design

process can be terminated.

5.8.5 Emergent Behavior

Based on the behaviors of the individual agents, as specified above, one can distinguish two
phases in the emergent group behavior. At start-up, the population manager is spawned first,
so that it is ready to respond to the agents’s queries once they have been created. Once the
population manager is running, we start the creation/evaluation agents to seed the initial

population (there is only one type of creation agent of which we spawn multiple copies).

108

5.9 SUMMARY

Due to a limitation of the current implementation, the agents have to be spawned sequen-
tially. As a result, the rate at which new candidate designs are introduced into the population
is small in the beginning and increases slowly as more creation agents are spawned. While
the creation agents are filling up the population, the destroyer agent and all the modification
agents are spawned. During this initialization phase, the modification agents remain mostly
dormant; they wait for the number of candidate designs in the population to reach the
desired population size. Every five seconds they inquire about the current number of designs
in the population. When the desired population size is reached, a transition occurs. The
modification agents wake up and start working non-stop, while the creation agents, having
completed their job, exit. The destroyer agent also becomes active and periodically removes
the excess candidate designs from the population. In this second phase of operation, the
quality of the designs in the population gradually improves, because the modification agents
select preferably the highest ranked candidate solutions, while the destroyer agent deletes

preferably the lowest ranked individuals.

5.9 Summary

This chapter presented a framework for solving the Task Based Design problem. This
framework is the linchpin of the rapidly deployable fault tolerant manipulator system. It ties
together all the building blocks: reconfigurable hardware, control software, fault tolerance,

and trajectory planning.

TBD is a very complicated problem because (1) there is only very little explicit knowledge
available about structural design of task specific manipulators, (2) the design space consist-
ing of modular manipulator configurations is very large, and (3) the relation between the

design variables and the constraints and optimality criteria is highly coupled and nonlinear.

Unlike most previous TBD approaches, we presented an integrated approach to the TBD
problem to deal with the tight coupling between the design subproblems caused by the fault

tolerance requirement. However, this resulted in a very challenging, computationally expen-

109

CHAPTERS: TASK BASED DESIGN. AN AGENT-BASED APPROACH

sive problem. We proposed two complementary approaches to cope with this challenge:
reduce the computational complexity by including problem specific knowledge, and

increase the computational resources through a distributed implementation.

The agent-based design framework that is the main focus of this chapter combines these two
approaches. It is based on genetic algorithms, but avoids the central control of the standard
genetic algorithm by implementing the modification and evaluation operations as autono-

mous asynchronous agents. These agents include problem specific knowledge which results
in a significant reduction of the size of the search space and a reduction of the cost of evalu-
ating a candidate design solution. Furthermore, thanks to their autonomous and asynchro-
nous nature, these agents can be easily executed on a network of workstations, drastically

increasing the computation power available to solve the TBD problem.

In conclusion, the flexibility and performance of the agent-based design implementation
combined with the problem specific knowledge included in the modifiers and evaluators
results in a powerful new approach to the task based design of rapidly deployable fault toler-
ant manipulators. In the next chapters, we will test the performance of this agent based
design system, first with two relatively simple tasks, and, in Chapter 7, with a very challeng-

ing comprehensive task for a satellite docking operation aboard the space shuttle.

110

Chapter 6

Analysis of the Task Based Design Problem

6.1 Introduction

The goal of this chapter is threefold: (1) to provide insight into the nature of the TBD prob-
lem; (2) to characterize the complexity of the TBD problem; (3) to compare the performance
of the agent based design framework with such benchmark algorithms as random search and

multiple restart statistical hill-climbing.

These goals are achieved through an empirical approach. Two different examples are con-
sidered: a non-redundant non-fault-tolerant task, and a redundant fault tolerant task. For
both examples, a complete analysis is performed based on an exhaustive search, random
search, multiple restart statistical hill-climbing, and the agent-based design framework pre-

sented in the previous chapter.

Whether a solution to a specific TBD problem can be found depends both on the characteris-
tics of the problem and on the power of the algorithm. Both of these aspects are investigated

for the two examples in this chapter. In this respect, the exhaustive search offers some

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

insights into the nature of the TBD problem, and it provides the baseline against which the

statistical search algorithms can be compared.

6.2 Set-up of the Experiments

The analysis of the TBD problem is based on the results from two experiments. The prob-
lem definitions, algorithms, and facilities that are used for these experiments are described

in this section.

6.2.1 Test Problems

In this chapter, we consider two problems with the following characteristics:

* The desired Cartesian path traces the letters “RMMS” on a white board (the
same trajectory as is used in Chapter 2).

* The module inventory consists of the seven RMMS modules that have been
physically realized so far: one base module, one end-effector module (a marker
and holder), one link module, three pivot joint modules, and one rotate joint

module.
* Only end-point position is considered—not orientation.
* In addition to self-collisions, collisions with the white board should be avoided.
» Three DOFs for example one; four DOFs for example two.

* Non-fault tolerant for example one; fault tolerant for example two.

We have chosen to limit the inventory to the seven RMMS modules, so that design solutions
can be tested and demonstrated with the existing hardware. Moreover, the search space for
an inventory of seven modules is relatively small, which allows us to perform an exhaustive
search. Even though exhaustive search is unacceptably slow for a practical solution method,
it is important for the performance analysis because it gives us ground truth about the com-
plexity of the problem and about the absolute quality of the solutions found by statistical

search algorithms.

112

6.2 SET-UP OF THEEXPERIMENTS

6.2.2 Search Algorithms

Besides exhaustive search, three statistical search algorithms are used to solve the TBD
problems defined above: random search, multiple restart statistical hill-climbing, and the

agent-based genetic algorithm developed in the previous chapter.

In random search, the simplest of the three statistical search algorithms, candidate solutions
are selected at random, while keeping track of the best solution so far. Random search is of
little practical importance as a solution method because it is too slow. However, for prob-
lems for which an exhaustive search is impossible due to the size of the search space, ran-
dom search can give an indication of the complexity of the problem. Indeed, an important
problem characteristic is the fraction of acceptably good solutions in the search space; this

fraction can be approximated through random search.

Multiple restart statistical hill-climbing (MRSH) has been suggested in the literature as an
adequate baseline method for evaluating the performance of genetic algorithms (Juels and
Wattenberg 1994; Baluja 1995). The method consists of a statistical hill-climbing algorithm
that is started multiple times at randomly chosen initial points in the search space. In each of
the statistical hill-climbing runs one keeps track of the best solution so far. This solution is
randomly perturbed to create new candidate solutions that are only accepted when they are
better than the current best solution—similar to simulated annealing (Kirkpatrick, Gelatt,
and Vecchi 1983) but without the provision for occasional descent to avoid local maxima.
Since statistical hill-climbing cannot avoid local maxima, an individual run might get stuck
relatively quickly. Both Juels and Wattenberg (1994) and Baluja (1995) indicate that the
performance of statistical hill-climbing improves dramatically when multiple starting points
are chosen and the length of each run is reduced accordingly. At the end, one compares the
best solutions found by the individual statistical hill-climbing runs, retaining the overall best

one as the solution for the MRSH algorithm.

It is important to notice that, whether MRSH is successful at solving the TBD problem,
depends strongly on the choice of the perturbation operations and on the choice of the fit-

ness heuristic. In the case of TBD, the perturbations are generated through the five mutation

113

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

operators defined in Section 5.8.3 of Chapter 5. Because both the mutation operators and the
fithess evaluation function contain a significant amount of problem specific knowledge, one
can expect the simple MRSH algorithm to perform relatively well. Note also that in the cur-
rent implementation the multiple runs of the statistical hill-climbing algorithm are per-
formed in parallel, rather than sequentially. Each of the 24 Sparc workstations in the
experiment runs one instance of the statistical hill-climbing algorithm. At one second inter-
vals, the total number of evaluations and the best solutions so far from each of the runs are

recorded.

The third statistical search algorithm is the agent-based genetic algorithm described in the
previous chapter. The algorithm used in the experiments consists of 32 agents and one popu-
lation manager. Since fitness evaluation is the most computationally expensive aspect of the
genetic algorithm, each of the following 24 modification/evaluation agents runs on a sepa-
rate workstation (remember that modification agents also evaluate the newly created candi-

date designs before returning them to the population):

» 12 copies of the MutateRelativeOrientation agents
» 3 copies of the MutateModule agents

» 3 copies of the PermuteModule agents

» 3 copies of the AddDeleteModule agents

» 3 copies of the CrossOver agents

The choice of a large number of MutateRelativeOrientation agents is based on the analysis
of the exhaustive search in Sections 6.4.2 and 6.5.2, which indicates the importance of
changing the orientation of the modules once a promising module order has been deter-

mined.

There are six creation agents. They are only active at start-up so that they can share a work-
station with one of the modification agents without contending for the same CPU-time. In
addition to the 24 workstations used for the modification agents, one extra workstation hosts
the memory manager, the destroyer agent, and a displayer agent that outputs the best solu-

tion so far and some simple statistics about the current population of candidate solutions.

114

6.3 ANALYSIS TOOLS

The only algorithm parameter that we varied throughout the experiments is the population
size. The population size determines the selective pressure for the agent-based genetic algo-
rithm. At the extremes of the population size, the agent-based genetic algorithm behaves
similarly to other algorithms considered. For very large populations, the algorithm behaves
almost like a random search. It takes a long time to seed the population and much longer for
the population to converge to a solution. As a result, the genetic algorithm with a large pop-
ulation size is very robust but also very slow. On the other hand, a genetic algorithm with a
population of only one individual reduces to a single start statistical hill-climbing algorithm;

it improves quite rapidly but is very likely to get stuck in a local maximum. Depending on
the problem being solved the optimal size of the population may vary. We have not explored
this dependency in detail, but have chosen conservatively high estimates to achieve robust-

ness rather than fast convergence.

6.2.3 Computing Resources

One of the characteristics that complicates the TBD problem is that evaluating the fitness
heuristic is very computationally expensive. To complete the computations within a reason-
able amount of time, we used parallel implementations for all three search methods and exe-
cuted them on 24 networked Sun Sparc workstations (ten Sparc 5/110 workstations, eight
Sparc 20/61 workstations, and six Sparc 5/85 workstations). The combined computing

power of these 24 workstations is 548 Mflops (Mega floating point operations per second).

6.3 Analysis Tools

The data from the experiments performed in the next two sections provide information
about two different aspects of task based design: it defines the performance of the solution
approaches but it also characterizes the problems themselves. This section describes the cri-

teria that are used for this analysis.

6.3.1 Problem Characterization

The statistical search algorithms presented in the previous section not only provide a means

115

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

to solve the TBD problem, but they also are a source of information about the character of
the problem itself. In the previous chapter, we transformed the TBD problem into a search
problem with a heuristic fitness function to guide the search towards the best designs. Sec-
tion 5.3 lists several characteristics of the TBD problem from an engineering design per-
spective. However, after having transformed the design task into a search problem, one
should use additional measures that better characterize the complexity of the problem,

namely:

» Computation cost of the fitness evaluation
» Dimensionality of the search space
» Fraction of acceptably good designs in the search space

* Region of attraction of these designs

By comparing these characteristics for different TBD problems, it is possible to estimate the
relative problem complexity which in turn can be used to estimate the required computation

time.

Computation cost of the fithess evaluationit is clear that problems become more com-
plex as the evaluation cost of the fitness function increases. Within a given time interval, one
is able to perform fewer fitness evaluations when the computation cost is high, which

reduces the chance that a good solution will be found.

In the case of TBD, the issue is a bit more complicated because the cost for evaluating the
fitness function is not constant due to firegressive evaluationf the fitness heuristic

(weed out the bad designs quickly by testing for simple necessary conditions, while spend-
ing more time distinguishing subtle difference in good designs only). The effect of progres-
sive evaluation on the average computation cost for fitness evaluation is illustrated in Figure
6-1. For random search, the average time required for a fithess evaluation is constant. At any
time, the population from which a design is selected is the total population of designs con-
sisting mainly of relatively bad designs which require little time to evaluate. Initially, multi-

ple restart statistical hill-climbing also starts by selecting from the total population of

designs. However, the algorithm then limits itself to the population of direct “neighbors” of

116

6.3 ANALYSIS TOOLS

2000 T T T T T T T T T

1800

T
N\
1

1600 - .

T

=
N
o
o
T
\
1

JE
N
o
o

T

\
\

i

800 < - y

600 o T 4

number of function evaluations

=
o
o

T

N
\

\

i

7 ~
400 e GA 1

200

T
N
1

| | | | | | | | |

0
0 100 200 300 400 500 600 700 800 900 1000
time [sec]

Figure 6-1. The effect of progressive evaluation on the fitness evaluation time

the best solution found so far (a neighbor is a design obtained through a single mutation
operation). Because neighbors of good solutions are more likely to be good solutions also,
the computation time per function evaluation increases as the algorithm progresses to better
solutions. The same slow-down effect occurs for the agent-based genetic algorithm. The
large initial difference between GA and MRSH arises from the implementation of the agent-
based software; the agents are spawned sequentially, so that it takes about 150 seconds

before all agents are active and the full computing power is being used.

Dimensionality of the search spacelhis characteristic needs to be approached carefully: a
TBD problem with a large search space is not necessarily difficult to solve. When the size of
the search space is so small that an exhaustive search is feasible, the search problem is very
simple. On the other hand, when the search space is very large, the search problem tends to
be difficult. However, this is na@lwaysthe case. For instance, a linear programming prob-

lem with one hundred continuous variables has a huge search space, yet is relatively easy to

solve.

117

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

Fraction of acceptably good designs in the search spa&¥oblems for which only a small
fraction of the search space corresponds to acceptably good solutions tend to be more diffi-
cult) Even when the size of the search space is large, if the fraction of the search space
yielding acceptably good solutions is large, then it is relatively easy to find such a solution.
On the other hand, if this fraction is very small the problem tends to be difficult. However, if

a good fitness function exists that leads the algorithm to these acceptably good solutions
quickly, the search problem is still easy. Therefore, a small fraction of acceptable solutions
mayindicate a difficult problem, but one should investigate the characteristics of the fitness
function before drawing a final conclusion. Note also that, if an exhaustive search is not fea-
sible, the fraction of acceptably good designs can be estimated by randomly sampling the
search space, i.e., random search. The fraction of good designs in the sample is an unbiased

estimate of the fraction of good designs in the population.

Region of attraction of the acceptably good design8vhen the region of attraction of the
acceptably good solutions is small, it is difficult for hill-climbing algorithms to find such a
solution. In global optimization, the region of attraction of a global maximtim, ,ina
spaceA , is defined as the set of poiatsr(fD) O A such that for any starting point
x O attr(f0) the infinitely small step steepest ascent algorithm will convergE-bn (Torn
and Zilinskas 1989). Based on this definition, one can conclude that the probability that a

single run of the infinitely small step steepest ascent algorithm converdgés on equals:

p(f0y = Hlatr(f0] 61
(0 = By (6-1)
where u[Q] is the higher dimensional volume of the set Q. The probaB(lity) is an
important characteristic of a global optimization problenP(f0) = 1 , then the function
is either unimodal or all the global maxima have the same vdlde, . In both cases, the

problem can be easily solved with local optimization methods. On the other hRgé,)if

is close to zero, the problem will be very hard to solve.

(1) The definition of an “acceptably good solution” should be provided by the user; sometimes one is
satisfied with a feasible solution, other times one requires optimality. In general, one can define a fit-
ness valuef, , above which the solutions are considered to be acceptable.

118

6.3 ANALYSIS TOOLS

This conclusion can be extended to the case of discrete search spaces and statistical search
algorithms. Assume that one uses the (single start) statistical hill-climbing algorithm
described in Section 6.2.2. One can start this algorithm at randomly chosen starting points
and record how many times the algorithm reaches an acceptably good solution. The fraction
of the runs that converges to a good solution is an unbiased estimate of the probability,
P(f>f,), that a statistical hill-climbing run converges to an acceptably good solution.
Again, this probability characterizes the complexity of the search proble?(f & f) is
close to one, the problem can be solved with one or two runs of the statistical hill-climbing
algorithm—regardless of how small the fraction of acceptably good solution might be. If
P(f> f,) is close to zero, the problem is very difficult and one may have to repeat many
runs of the statistical hill-climbing algorithm to find a good solution. In this case, it may be

better to use a search method that can overcome local maxima, such as genetic algorithms.

From the probabilityP(f > f_) , that a single statistical hill-climbing run reaches an accept-
ably good solution, one can derive the probability that a run of the MRSH algorithm finds a
good solution. Assume that the MRSH algorithm consists of single start statistical hill-
climbing runs, then the probability that MRSH arrives at an acceptably good solution

equals:

Pursn = 1—-(1-P(f = f))" (6-2)

6.3.2 Performance Criterion

In addition to characterizing the problem, the data from the experiments also indicate how
well the agent-based genetic algorithm performs compared to random search and multiple

restart statistical hill-climbing.

The performance of an optimization algorithm should be expressed by the fitness value as a
function of time. In general, it is desirable for optimization algorithms togioadi solutions

quickly Thus, the two main attributes that define the performance of an algorithm are: time
and fitness value (or cost function value, search heuristic value, etc.). Sometimes, it is desir-

able to find a reasonably good solution quickly, while other times, it is preferred to find a

119

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

very good solution even when finding it requires a long time. By characterizing the perfor-
mance in terms of the fitness value as a function of time, one can choose the best available

algorithm given the time and computer resources that one has available.

It is common in the optimization and search literature to express the performance of an algo-
rithm with respect to theumber of function evaluationsistead of with respect to time.
Indeed, time itself is not an objective quantity for the performance evaluation of an algo-
rithm. The processing power of computers varies widely so that within the same amount of
time different computers can perform a different amount of computation. Moreover, the
agent-based design framework is motivated in part by the use of free idle-cycles on net-
worked workstations. That implies that even for one particular computer the computation
power that is available to us may vary depending on the usage by other users. These depen-
dencies can be avoided by using tiuenber of function evaluatiorss a hardware indepen-

dent measure of required computation time. However, this practice implicitly assumes that

one function evaluation requires a fixed amount of computation.

As is illustrated in Figure 6-1, in the case of TBD the computation cost of the fitness evalua-
tion varies from one solution candidate to another, dymdgressive evaluatioof the fit-

ness heuristic. If one were to use the number of function evaluations as a measure for
computing time, one would systematically undervalue the performance of random search
and multiple restart statistical hill-climbing with respect to the agent-based genetic algo-
rithm. Choosing the lesser of two evils, we will express the performance of the algorithms as
a function of computing time. By using the same set of computers for all our experiments,
any systematic biases are excluded (assuming that the usage of the workstations by other
users is randomly distributed and uncorrelated, so that it does not skew the results of the sta-

tistical analysis).

The performance comparison statistical search algorithms calls forsatistical evalua-

tion method. Genetic algorithms, random search, and multiple-restart statistical hill-climb-
ing are all three statistical search methods. How well a particular run of a statistical
algorithm performs, depends literally on the luck of the draw—the performance criterion is

itself a statistic with a certain probability density function. This further complicates the per-

120

6.3 ANALYSIS TOOLS

formance comparison. For instance, it is possible (even common) that algorithm A finds a
better solution than algorithm B for a particular run, while on average B does much better
than A. This problem can be overcome by comparing a large number of runs for each of the
algorithms. If for a given run algorithm A finds a larger fitness value than algorithm B, algo-
rithm A “wins.” If both algorithms perform equally well, then each will win 50% of the
time. Conversely, if algorithm A is better than algorithm B, A will win more than 50% of the
time. This approach is formalized mathematically in the Fisher sign test, which also deter-
mines a criterion for statistical significance. The Fisher sign test is the subject of the next

section.

In addition to theelative comparison between two statistical algorithms, one can also esti-
mate each individual algorithm’s ability to find thlesoluteglobal optimum. Of course, this
is only possible when this global optimum is known a priori or has been determined through

an exhaustive search.

6.3.3 Fisher Sign Tes?)

Assume that one wants to determine which of two search methods, A or B, yields the largest
fitness valuef , aftek function evaluations. Both A and B are statistical search methods
and f, andfg are random variables with a certain probability density function. These
probability density functions are unknown, and most likedy normal (Gaussian). There-

fore, one cannot compare the performance of the algorithms using any of the standard statis-
tical methods, such as the -test, that are based on the normal assumption. Instead, it is
better to use nonparametric statistics, i.e., methods that hold under relatively mild assump-
tions regarding the underlying populations. In particular, the Fisher test is well suited for our

analysis.

Assume that, to compare the performance of two statistical search algorithms, one executes

n runs of each algorithm and records the fitness valugs, fand Kkafter function evalu-

(2) This section borrows heavily from Chapter 3, Section 4 of Hollander and Wolfe (1973).

121

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

ations:
run number fa fg
1 X4 Y,
2 Xy Y,
n X, Y,
The setsX; and/; are then samples of the populatigns fand , respectively. One can

model the difference in fitness between method A and B as

where thee 's are unobservable random variablesBand , is the difference in performance
that we are trying to measure. Assume also thaethe 's are mutually independent (which is
true given that we use good random number generator), and thag each comes from a con-
tinuous population that has a median of zero, so that

Ple<0)=Pe>0 == i=1..n, (6-4)

NI

which can always be satisfied by choosthg to be the median of the popylZtijon
Although thee 's do not always come from a continuous population, Hollander and Wolfe
(1973) indicate that the Fisher test, described below, remains valid as long as the zero values

among theZ 's are discarded and the variable be redefined as the number of Aonzero 's.

The Fisher test proceeds by defining the indicator variables

0
01 if Z,>0

=0 " (6-5)
00 if Z,<0
0

122

6.3 ANALYSIS TOOLS

and the statisti® as the number of posidve 's:
n
B= Y ¢ (6-6)
i=1
For a one-sided test of the hypothdsis 6 = 0 versus the alterfatie catthe level

of significance, the Fisher test is:

rejectH, if B=Db(a,n, %)
) (6-7)
acceptH, if B<b(a,n, Z)

where the constarii(a, n, 1/2) is the upmer percentile point of the binomial distribution

with sample sizen ang = 1/2 ,thatis(a,n,1/2) can be determined from

n!

_ i <
a= E'?D_ZB(n—i)!i!' (6-8)

Justification for the Fisher test comes from the fact that, if both algorithms were equally
good, theZ 's would be positive half of the time on average, and the statistic would be dis-
tributed according to a binomial distribution with= 1/2 , which peaks/at . Equation
(6-7) reflects the fact th& is more and more unlikely to equal zero when the sBatistic

becomes larger tham'2

It is important to pause here and carefully consider what the null hypothigsié, = 0
means. Given that, by definitio, is the median of the popul&oh , one can conclude
that P(X; >Y;) = P(X;<Y,) = 1/2, that is, it is equally likely that algorithm A yields a
larger fitness value that algorithm B, as it is for algorithm B to yield a larger fitness value
than algorithm A. However, one cannot make any conclusions about the size of the differ-
ences,|Z;| = |Y;=X;| . It may well be that the probability density functiod B} is
skewed, which could mean, for instance, that algorithm A tends to perform very poorly

when it is outperformed by B, while B is only marginally worse when it is outperformed by

123

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

A. The Fisher sign test does not consider the size of the difference and concludes that, as

long as the median of the distribution equals zero, the algorithms perform equally well.

With the presentation of the Fisher sign test, we completed the list of all the analysis tools
that we will apply in the next sections to two TBD problems: a non-redundant non-fault tol-

erant task, and a redundant fault tolerant task.

6.4 Non-Redundant Manipulator Design

6.4.1 Problem Description

The goal is to design a 3-DOF manipulator that can perform the task of writing “RMMS” on
a white board without colliding with itself or with the white board, and without violating
any of the kinematic and dynamic constraints imposed by hardware limitations of the indi-
vidual modules. We do not consider the orientation of the end-effector, so that three DOFs
are sufficient to perform this task. For a detailed description of the trajectory refer to Section
2.4 in Chapter 2.

The modules with which the candidate design solutions can be built are the seven RMMS
modules that are currently available: a base module, an end-effector module, three pivot

joint modules, one rotate joint module, and one link module, as illustrated in Figure 6-2.

6.4.2 Problem Characterization

To characterize this instance of the TBD problem and to establish ground truth for the per-
formance analysis of the three statistical search methods, an exhaustive search of the design
space is performed. This is possible because the set of 3-DOF manipulators that can be con-
structed from the seven modules in the inventory is relatively small. When taking into
account that a legal manipulator configuration has to start with base and end with an end-
effector module, and that the relative orientation of axially symmetric modules can be arbi-
trarily chosen, one can construct 21,120 different 3-DOF manipulators. These are all the

manipulators considered by the three statistical methods considered. However, for the

124

6.4 NON-REDUNDANT MANIPULATOR DESIGN

exhaustive search, we reduced the search space further by including the knowledge that the
three pivot joint modules are functionally equivalent. This results in a set of 3,520 different
manipulators, which one can group into twenty cases to be evaluated in parallel on twenty
workstations. Each of the twenty cases corresponds to one possible ordering of the manipu-
lator modules, as is shown in Figure 6-3. The complete set of 3-DOF configurations can be
generated by cycling through all possible combinations of relative orientations: 512 for
cases one through five, 64 for all the other cases (512*5 + 64*15 = 3520).

The fitness evaluations for all manipulator configurations are depicted per case in Figure

6-4. This data provides some interesting insights:

» Cases 16 through 20 have only fitness values of -100,000 or less (the higher the
fitness value the better). A careful look at these designs shows that the last joint
module is a rotate module which cannot change the position of the end-effector.
With only two useful DOFs, this manipulator configuration cannot possibly fol-
low a three dimensional trajectory.

« For case seven, all 64 manipulators yield a feasible solution. The design has a
spherical shoulder followed by an arm consisting of two links of equal length

(The Puma’s elbow configuration belongs to this case). The data indicate that

.

End-effector

Rotate Joint Pivot Joint
(3 modules)

Base Link

Figure 6-2. Inventory of modules

125

CHAPTER6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

case 17 case 18

Figure 6-3. Different module orders for 3-DOF manipulators.

Each of these cases represents a group of designs obtained by cycling
through all the possible combinations of relative orientations. (512
combinations for cases 1-4; 64 combinations for the other cases)

126

6.4 NON-REDUNDANT MANIPULATOR DESIGN

this manipulator can perform the task for all possible twist angles between the

second and the third joint.

Case eight is similar to case seven but with unequal link lengths. The result is
that for a few twist angles the manipulator design fails to satisfy all the con-

straints.

All of the near optimal designs appear in case 1. The energy consumption for
this group of manipulator designs is considerably less than that for the other fea-
sible designs. The reason is that the designs in case 1 only have five modules
while the other feasible designs have six modules. Remember that each module
uses 16.2 W to power the on-board electronics, so that manipulator configura-

tions with fewer modules consume less energy.

Out of 3,520 candidate design solutions, 374 designs can perform the task with-

out violating any constraints—a fraction of 10.6%.

-3500

v s
R
e o

—4000|

~
o,

Ny
]
1
!

-4500

-5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

evaluation value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
case number

Figure 6-4. Fitness evaluations for all 3-DOF manipulators.

127

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

””” Y
R VT
— module relative
] module .)
,,,,,, number orientation
— 1 base 0
2 pivot joint 225
3 pivot joint 270
1
4 pivot joint 315
5 end-effector 0

Base Position = (0, 0, 0)

Figure 6-5. The optimal solution.

The optimal solution, with an energy consumption of only 3,721 Joules (and a fitness value
of -3,721), is shown in Figure 6-5. Unlike most traditional manipulators, its first rotation
axis is horizontal and at a 45 degree angle with respect to the white board on which
“RMMS” is written. Beyond the fact that this manipulator configuration has only five mod-
ules, it is not intuitively clear why this design performs better than other designs. It seems
that we are not sufficiently familiar with manipulators that have 45 degree twist angles to

gain intuitive understanding of their performance.

Based on the exhaustive search, one can evaluate the four problem characteristics presented

in Section 6.3.1. (Only the optimal configuration is considered “acceptably good.”)

» The computation cost of a fitness evaluat®®8: seconds on average.

* The size of the search spa&520 designs (21,120 considered by the search

128

6.4 NON-REDUNDANT MANIPULATOR DESIGN

algorithms)
» The fraction of acceptably good desigths3,520 = 0.028%.

» The fraction of statistical hill-climbing runs reaching an acceptably good
design:2.1%

The conclusion is that this TBD problem is relatively simple because the search space is
small, and the cost of evaluating a candidate solution is low. Yet the heuristic function is
rather poor (contains many local maxima) because only 2.1% of the statistical hill-climbing

runs reach the global maximum.

6.4.3 Performance Evaluation

Besides the exhaustive search, we used three statistical search algorithms to solve this TBD
problem: random search, multiple-restart statistical hill-climbing, and an agent-based
genetic algorithm. To be able to make statistically significant conclusions, we performed
thirty runs for each of the three algorithms, and recorded for each run the maximum fitness
value obtained as a function of the computing time—up to 2,000 seconds—on the fixed set

of 24 Sparc workstations.

Figure 6-6 shows that a genetic algorithm with a population of 200 individuals performs the
best in the long term; the other algorithms are either too slow, or lack the robustness. As one
might expect, random search is unacceptably slow. However, even though it is inefficient, it
is a reliable method because for an infinite number of function evaluations, random search
will find the global optimum with probability one. The same cannot be said about multiple-
restart statistical hill-climbing (labeled MRSH). Since it is a pure hill-climbing algorithm it
tends to get stuck in local maxima; after 500 seconds no additional runs reached the global
optimum. No matter how many more function evaluations one performs, the MRSH algo-
rithm cannot escape from the local maxima anymore (assuming that one does not start addi-
tional hill-climbing runs). In the case of a genetic algorithm the performance depends on the
size of the population. The trade-off between robustness and convergence speed, predicted
in Section 6.2.2, is confirmed by the data depicted in Figure 6-6. The genetic algorithm with

a population of 50 individuals (labeled GA-50) converges much faster than the genetic algo-

129

CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

rithm with a population of 200, but gets stuck in local maxima more easily.

When the global optimum is unknown, one can still compare the performance of the agent-
based genetic algorithm relative to benchmark statistical algorithms such as random search
and multiple restart statistical hill-climbing. Figure 6-7 shows the probability that an agent-
based genetic algorithm with a population of 200 individuals (labeled GA-200) outperforms
(i.e., finds a design with a higher fitness value) a random search, multiple restart statistical
hill-climbing, and a genetic algorithm with a population of 50 individ{BIafter a slow

start, GA-200 easily outperforms random search; in seventy to eighty percent of the runs,
GA-200 was able to find a design with a fitness value higher than the best design found by
random search. Likewise, multiple restart statistical hill-climbing performs better than GA-
200 in the beginning, but it is well outperformed by GA-200 after 1,000 seconds or more.
The genetic algorithm with a population of fifty individuals (GA-50) is also more successful

than GA-200 for short runs, but GA-200 catches up and seems to perform slightly better

100 T T T T T T T T T

90

T

70F

60

50+

40

T

301

20

percentage of runs attaining global optimum

0 Ll 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time [sec]

Figure 6-6. Percentage of runs that attained the global optimum.

(3) Figure 6-7 is based on the same data used to generate Figure 6-6.

130

6.4 NON-REDUNDANT MANIPULATOR DESIGN

0.9

T
1

0.8

0.7

o
)

estimated probability
o o
N vl

o
w

0.2

0.1

| | | | | | | | |

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time [sec]

Figure 6-7. The probability that the agent-based genetic algorithm
outperforms other statistical algorithms.

after 1,600 seconds.

The Fisher sign test confirms the statistical significance of the performance differences
reported in the previous paragraph. Remember that the null hypothesis for the Fisher sign
test is that, for a given number of function evaluations, both algorithms have an equal proba-
bility of finding a fitness value larger than then the fitness value obtained by the other algo-
rithm. Figure 6-8 indicates the largest level of significance at which one can reject this null
hypothesis in favor of the hypothesis that one algorithm is better than the other, that is, has a
higher probability of achieving the larger fitness value. It is common to reject the null
hypothesis if the level of significance is below 0.05. According to that criterion, one can
conclude that both random search and MRSH do better that GA-200 initially, but that after
1,000 seconds the roles are reversed and both are outperformed by GA-200. With respect to
the comparison of GA-50 and GA-200, it would be better to perform more experiments to
obtain statistically significant results, even though Figure 6-6 seemed to indicate that GA-

200 performed better after 2,000 seconds.

131

CHAPTER6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

132

level of significance

level of significance

-6

10

10

GA-200 > MRSH]

|
400 600

| | | | | |
800 1000 1200 1400 1600 1800 2000
time [sec]

0.05 significance level

MRSH > GA-200 E
— — — — random search > GA-200

~~~~~~~~ GA-50 > GA-200 5

200

|
400 600

Figure 6-8.

| | | | | |
800 1000 1200 1400 1600 1800 2000
time [sec]

Results of the Fisher sign test.



6.5 FAULT TOLERANT MANIPULATOR DESIGN

In conclusion, the TBD problem of finding a non-redundant manipulator to write “RMMS”
on a white board was a relatively simple problem. However, the heuristic fitness function
contained a large number of local maxima, so that MRSH was easily outperformed by the

more robust agent-based genetic algorithm.

6.5 Fault Tolerant Manipulator Design

6.5.1 Problem Description

In this section, we explore the performance of the agent-based TBD software for the design
of afault tolerantmanipulator. The task is the same as the one considered in Section 6.4:
trace the letters “RMMS” on a white board. Because fault tolerance requires redundancy, we
only consider the 4-DOF manipulators that can be built with the seven existing RMMS mod-

ules.

6.5.2 Problem Characterization

The number of different 4-DOF manipulators that can be constructed with the seven RMMS
modules is 12,288 (the search space of the statistical algorithms contains 73,728 individuals,
because the algorithms do not recognize the functional equivalence of the three pivot mod-
ules). These possible designs can be divided into 24 cases, one for each possible ordering of
the manipulator modules, as illustrated in Figure 6-9. Each case contains 512 candidate
designs, obtained by cycling through all possible combinations of relative orientations for

the three non-axially symmetric modules (512 = 8*8*8).

The fitness evaluations for all 12,288 manipulators, sorted by case, are depicted in Figure

6-10. These results support the following interpretation:

e The manipulator designs in cases 19 through 24 all have a fitness value of -
100,000 or less. Because the last DOF is aligned with the end-effector, it loses
the ability to change the end-effector position. Therefore, the effective number

of DOFs reduces to three, which is insufficient for fault tolerant task execution.

133



CHAPTER6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

case 19 case 20 case 21 case 22 case 23 case 24

Figure 6-9. The different module orders for 4-DOF manipulators

Each of these cases represents a group of 512 designs obtained by
cycling through all the possible combinations of relative orientations.

134



6.5 FAULT TOLERANT MANIPULATOR DESIGN

-5000
-5100
-5200 e
-5300| |o
5400

-5500

(]

1 2 3 45 6 7 8 9 10111213 14151617 18 19 20 21 22 23 24

-5600

-9.95

evaluation value

-9.96

—0.07|* |}
[ !"‘I: 3
A
-9.98 fgh{Eh & ¢

-9.99

1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24
case number

-10

Figure 6-10. Fitness evaluations for all 4-DOF manipulators.

* There are only 22 different feasible solutions—designs that do not violate any
task constraints. Their fithess values range from -5,020 to -5,578 (corresponding

to energy consumption levels of 5,020 to 5,578 Joules).

» Consider a group of eight designs that differ only in the relative orientation of
the pivot joint that follows the rotate joint module. If the rotate joint did not have
any joint limits, all eight designs would be perfectly equivalent, because a rota-
tion of the rotate module by some multiple of 45 degrees would result in the
exact same physical posture for all eight designs. Based on this fact, the 22 fea-
sible solutions can be further reduced to a set of only six truly different designs,
which are listed in Table 6-1 and depicted in Figure 6-11. Notice that, because
the rotate joint does have joint limits, some of the eight otherwise equivalent

designs become infeasible due to joint limit violations.

e Within each of the six groups of feasible solutions, the fithess value differs

slightly even though the designs are almost perfectly equivalent. Part of that

135



CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

module relative module relative
module type orientation type orientation
number
case 2 1 2 3 4 case 8 5 6
1 base 0 0 0 0 base 0 0
2 rotate joint | O 0 0 0 pivotjoint | 270 | 270
3 pivot joint | 45/ | not | not | 135/| rotate joint 0 0
90/ | 90/ | 225/ | 225/
135 | 135 | 270 | 270
4 pivot joint 45 | 135| 45| 315 pivotjoint| 450 135
180/
225
5 pivot joint 45 45 90 | 225 pivotjoint] 225 90
6 link 0 0 0 0 link 0 0
7 end-effector] 0O 0 0 0 | end-effector| O 0

136

Table 6-1. The six different 4-DOF fault tolerant manipulator designs.

variation is due to a random element in the fitness evaluation function. The ini-
tial postures used to generate the polygonal approximation of the self-motion
manifolds are determined randomly to increase the robustness of the algorithm.
This small variation results in a slightly different desired trajectory, which in
turn results in a different energy consumption.

Except for one solution, all the feasible solutions contain twist angles of 45
degrees. This again makes this design task difficult to solve for the human, who
tends to lack intuitive knowledge about the kinematics of manipulators with 45
degree twist angles. Moreover, it is our impression that people also lack good
intuition with respect to the fault tolerance requirement.

There is a correlation between the fithess value and the case number; candidate
solutions within the same case attain a similar level of performance. For
instance, the two cases containing feasible solutions (case 2 and case 8) contain

also many other solutions that satisfy almost all the constraints, and very few



6.5 FAULT TOLERANT MANIPULATOR DESIGN

S ke
v v
Solution 1 Solution 2 Solution 3

H_vrMS H_wMS

QN
7 & 2 7

vX X
Solution 4 Solution 5 Solution 6

Figure 6-11. The six types of fault tolerant solutions.

137



CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

solutions with a fitness value of -100,000 or less. One can conclude that it is
important to include a relatively large number of MutateRelativeOrientation
agents, to explore the other good designs within the same case.

* The highest fitness value (-5020) is obtained by solution 3, described in Figure
6-11 and Table 6-1.

In addition to the above observations, it is interesting to consider the four problem character-
istics presented in Section 6.3.1. As mentioned earlier, the optimal solution to this problem
is a set of six solutions that have indistinguishable fitness values due to the random element
in the fitness evaluation. (To take this random element into account, an “acceptably good”

solution has a fitness value larger than —5,030). The four problem characteristics are:

» The computation cost of a fitness evaluatibh5 seconds on average.

» The size of the search spade,288 designs (73,728 designs considered by the

search algorithms)
» The fraction of acceptably good desig64t2,288 = 0.049%.

» The fraction of statistical hill-climbing runs reaching an acceptably good
design:11.8%

The conclusion is that, even though this TBD problem has a larger search space and a higher
evaluation cost than the non-fault-tolerant TBD problem, it is easier to solve because the
fraction of acceptably good designs is larger and especially because the fraction of good sta-

tistical hill-climbing runs is very high.

The fact that the fraction of good statistical hill-climbing runs is so high indicates that the
fitness function does an excellent job of leading the search algorithm towards designs that
satisfy the fault tolerance requirement. Once a design is fault tolerant, it is very likely to be a
member of “case 2", so that after a few mutations of the relative orientations, an optimal

design is reached.

After having characterized the TBD problem itself, the next section proceeds by analyzing

the performance of the three statistical search algorithms considered.

138



6.5 FAULT TOLERANT MANIPULATOR DESIGN

6.5.3 Performance Analysis

In addition to the exhaustive search, we performed 30 runs for each of the three statistical
search algorithms: random search, multiple restart statistical hill-climbing, and the agent-
based genetic algorithm. In Figure 6-12, the results from these experiments are compared to
the results from the exhaustive search. More specifically, for each of the statistical algo-
rithms, the percentage of runs attaining the global optimum, found in the exhaustive search,
is plotted as a function of computing time. The agent-based genetic algorithm with a popula-
tion of 50 individuals clearly performs better than multiple restart statistical hill-climbing
and random search (at least after it has overcome the slow start caused by the software

implementation).

The comparison between Figure 6-12 and the equivalent graph of the first example (Figure
6-6), confirms that the convergence properties of the algorithms depend not only on the eval-
uation cost and the fraction of optimal designs, but also on the nature of the fithess heuristic
as characterized by the fraction of statistical hill-climbing runs attaining the global maxi-

mum. First, notice that the performance of random search is better for example one. Even

100 T T T T T T T T T

N0

80

70

60

T

50

T

40

30

percentage of runs attaining global optimum

201

10

T

|

Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time [sec]

|

Figure 6-12. Percentage of runs attaining the global optimum.

139



CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

1 T T T T T T . . . _
0.9 GA-50>randomsearch - ; — — — — —
=== - A — A
0.8F ) : |
- - - —
|
|
T =Y GA-50>MRSH |

o
[e)}
T
i

estimated probability
© o o o
N w N &)
T T | I
1 1 1 1

©

=
T
i

/ | | | | | | | | | J

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time [sec]

Figure 6-13. Relative comparison between statistical algorithms.

though the fraction of optimal solutions is larger for the fault tolerant example, the time
required to evaluate a solution is so much smaller for the first example that random search
performs better. Similarly, MRSH and GA-50 converge faster initially for the first example
because less time is required to evaluate the designs; yet, both algorithms get stuck more
easily at suboptimal solutions for the non-redundant example, so that after 2,000 seconds a
higher percentage of optimal solutions has been achieved in the fault tolerant example.
Indeed, the fitness function for the fault tolerant example guides the search algorithms more
directly towards the optimal solution than in the non-redundant example, without encounter-

ing too many local maxima along the way.

The last part of the performance analysis for the fault tolerant example focuses again on the
relative comparison between the statistical algorithms using the Fisher sign test. Figure 6-13
shows the estimated probability that the agent-based genetic algorithm with a population of
50 individuals reaches a higher fitness value than random search, or multiple restart statisti-

cal hill-climbing, respectively. Although the graph is based on the same data used to gener-

140



6.6 SUMMARY

ate Figure 6-12, it does not unambiguously favor GA-50. Unlike Figure 6-12, it clearly
shows that GA-50 is initially outperformed by both MRSH and random search (again, this is
due to the sequential spawning of the agents causing a slow start of the agent-based genetic
algorithm). This initial weakness of GA-50 was impossible to discern in Figure 6-12
because none of the three algorithms had been very successful at reaching the global opti-
mum. Both graphs unambiguously indicate that GA-50 has caught up with the other two
algorithms after 700 seconds, and from then on continues to outperform them. These con-
clusions are supported by the results of the Fisher sign test shown in Figure 6-14. Neverthe-
less, it would be good to gather some additional data on the comparison between GA-50 and
MRSH.

6.6 Summary

This chapter presented an analysis of the TBD problem itself and of the three statistical
search algorithms used to solve the TBD problem: random search, multiple restart statistical

hill-climbing, and the agent-based genetic algorithm introduced in the previous chapter.

The analyses were performed for two relatively simple TBD problems for which the design
space was small enough to make an exhaustive search feasible. For both problems, the
exhaustive search provided some interesting insights, the most important of which are that
there is a correlation between the module order and the fitness value (designs within the
same case, have similar fitness values), and that the optimal designs are counter intuitive to

the human designer.

We further characterized each of the two problems based on four problem characteristics:
the cost of a fitness evaluation, the size of the search space, the fraction of acceptably good
solutions, and the fraction of single start statistical hill-climbing runs to reach an acceptably
good solution. Especially this last characteristic is a strong indicator of the problem’s com-
plexity. If few statistical hill-climbing runs reach acceptably good solutions, then the fitness

heuristic tends to contain many local maxima. In that case, it is best to use an algorithm that

141



CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

0.05 significance level

GA-50 > MRSH

()
o
C
©
(8]
=
o
210 °F | 4
(2]
2
o
(]
>
a

.- - - -

-6 L L L L L

1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of evaluations

0.05 significance level

level of significance
=
o
T

107} MRSH > GA-50 E
in - — — — random search > GA-50
[ |

107° 3 j E
i
[ |
[

10— : l

1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of evaluations

Figure 6-14. Results of the Fisher sign test.

142



6.6 SUMMARY

can avoid local maxima, such as the agent based genetic algorithm introduced in the previ-

ous chapter.

This conclusion was confirmed by the empirical performance analysis of the three statistical
search algorithms. The genetic algorithm performed significantly better than the multiple
restart statistical hill-climbing algorithm, especially in the first example for which the frac-

tion of statistical hill-climbing runs that reached an acceptably good solution was small. The

random search algorithm performed unacceptably poorly in both examples.

143



CHAPTER 6: ANALYSIS OF THE TASK BASED DESIGN PROBLEM

144



Chapter 7

A Fault Tolerant Manipulator for a
Satellite Docking Operation

7.1 Introduction

In the previous chapter, we analyzed the performance of the agent-based design framework
for two relatively simple design tasks. This allowed us to perform an exhaustive search of
the design space, and to establish a ground truth against which to compare the solutions
found by the design system. In this chapter, we give up the luxury of knowing the optimal
solution in order to really test the performance limits of the agent-based genetic algorithm.
We formulate a highly constrained comprehensive task to be executed with a manipulator
built from a large inventory of modules. The result is a design problem with a very large

design space and very small set of feasible solutions.



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

7.2 Problem Description

The setting for the manipulation task that we consider in the chapter is aboard the Space
Shuttle Endeavor. The space shuttle has been sent into space to retrieve a faulty satellite, and
bring it back to earth. Luckily, the satellite is equipped with an external handle that is well
suited for grasping by a robot manipulator, so that the NASA engineering staff has decided
to use a manipulator arm for the docking operation. However, there is one big concern,
namely, the reliability of the manipulator. If the manipulator were to fail while grasping the
satellite, or while pulling it into the cargo bay, both the satellite and the shuttle could be
damaged. Or, even without causing any collision damage, it would be possible for the
manipulator to get stuck without being able to continue its task successfully, or being able to
abort the task and release the satellite. To avoid these complicated and possibly dangerous
scenarios, NASA decides to use a redundant manipulator with fault tolerant capabilities,
and, to speed up the design and deployment process, the manipulator will be built from
reconfigurable manipulator modules. A reconfigurable and modular manipulator system has
the additional advantage of being easily repairable in space. For instance, if a joint module
fails due to the vibrations during take-off, it could be replaced in space by one of the spare

modules on board.

The plan for the retrieval mission is as follows: On earth, a redundant 7-DOF manipulator
will be assembled from reconfigurable manipulator modules. This arm will be stowed in the
cargo bay of the space shuttle, in its pre-assembled configuration. Once in orbit, the captain
of the shuttle will maneuver to a position close to the satellite that is being retrieved; but far
enough away to avoid damaging the space shuttle. After making sure that all manipulator
modules are still operative, the RMMS will be deployed into the initial posture for the dock-
ing task, with the end-effector 0.5m in front of the satellite. From this point on the task
becomes critical and can no longer be aborted. The manipulator is switched into fault toler-
ant mode, which guarantees that it will be able to complete the docking operation even if
one of its joints were to fail during the task. The manipulator continues its task by moving

forward and grabbing the satellite by its special purpose external handle, and pulling it into

146



7.2 PROBLEM DESCRIPTION

the storage unit in the cargo bay of the space shuttle.

In order to execute this task fault tolerantly, the operation needs to be carefully planned
beforehand. We will use the agent-based design framework, presented in Chapter 5, not only
to design a fault tolerant manipulator, but also to determine the appropriate position and ori-
entation of the space shuttle relative to the satellite, and to plan the corresponding fault toler-

ant joint space trajectory to be followed by the manipulator before any joint failures occur.

The satellite is cylindrical in shape, with a diameter of 1m and a height of 1.5m. It weighs
1000kg. The handle by which it will be attached to the robot manipulator is located 0.75m
from the bottom. The final position of the satellite is in the middle of the cargo bay, 9m back
from the cockpit wall. The manipulator base is also positioned in the middle of the cargo
bay, but only 2m behind the cockpit wall or 7m in front of the satellite storage unit. To insert
the satellite into its storage unit successfully, it is important that the final descent be straight
down. Therefore, there is an approach point included in the trajectory, which is 0.75m above
the satellite storage unit. Thus, the complete manipulator trajectory is defined by four points

(and the corresponding times), as shown in Figure 7-1:

» Start point (time=0sec)0.5m directly in front of the satellite; the orientation

aligned up with the orientation of the satellite handle.

« Connection point (time=10se@t the satellite handle.

» Approach point (time=40sec).75m directly above the satellite storage unit;
the orientation aligned with the orientation of the final position.

» Storage point (time=50secym behind the manipulator base, in the middle of

the cargo bay.

Note that the start point and the connection point are defined relative to the initial position of
the satellite (which is also the world origin), while the approach point and the storage point
are defined relative to the manipulator base. Because the position and orientation of the
manipulator base (that is, the space shuttle) are design variables, the Cartesian trajectory
varies from one design to another. It is part of the design task to determine the optimal posi-

tion and orientation of the space shuttle with respect to the satellite. We have restricted the

147



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

Figure 7-1. The Cartesian trajectory.

The coordinate frames indicated the desired position
and orientation of the end-effector of the manipulator.

base position to be within a cube 24 x 24x 24 meters centered around the connection
point, while there are no restrictions on the orientation of the space shuttle. This ensures that
the design system does not waste too much time exploring designs for which the satellite is
positioned totally out of the range of the manipulator. On the other hand, we have also
restricted the position of the space shuttle to assure that the satellite is not too close to the
shuttle, which would make the initial approach maneuver too dangerous. We require that the

center of the satellite be more than 3m removed from any part of the space shuttle.

Unlike the two tasks we considered in the previous chapter, this task prescribes the desired
positionand orientationof the manipulator’s end-effector. Therefore, to perform this task
fault tolerantly, the manipulator neesavenDOFs. We have included two 3-roll wrists in

the inventory of manipulator modules to provide the necessary orientational capabilities. In

148



7.3 RESULTS AND INTERPRETATION

total, the inventory contains 23 moduf&s:

* 4 pivot joint modules with varying torque characteristics,

* 4 rotate joint modules with varying torque characteristics,

e 10 link modules with varying lengths,

» 2 corner link modules (with a 90 degree bend) with varying lengths,
» 2 wrist modules (each with three DOFs) with varying lengths,

« 1 base module mounted in the space shuttle cargo bay.

7.3 Results and Interpretation

7.3.1 Problem Characterization

The most important difference between this design task and the tasks considered in the pre-
vious chapter is the size of the search space. The search spaces for the examples in Chapter
6 contained 21,120 and 73,728 candidate manipulator designs, respectively. This relatively
small size allowed the performance of an exhaustive search, and therefore a more complete

analysis. In this example, we consider an inventory of 23 modules, yielding a total of
z 23! 43
= b | = -
N .2_1(23_0!8 1.7x10 (7-1)

possible configurations. Even when including the knowledge that a legal configuration has
to start with a manipulator base and end with an end-effector, that it should have seven
DOFs, and that axially symmetric modules have a zero relative orientation, the number of

configurations is still extremely larg@"

N = 3x10%°. (7-2)

(1) Complete specifications of all the modules can be found in Appendix A.
(2) This is the number of configuration considered by all the solution methods.

149



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

In addition to the size of this discrete search space, one has to consider the six continuously
varying parameters defining the position and orientation of the space shuttle with respect to

the satellite.

In addition to the large search space, this TBD problem is complex due to the high computa-
tion cost of a function evaluation. As is shown in Figure 7-2, the average computation cost
for the fitness evaluation of a random design is relatively small. The random search algo-
rithm performed approximately 12,000 fitness evaluations per hour on 24 Sparc worksta-
tions, which corresponds to 7.2 seconds per fithess evaluation on one Sparc workstation.
However, as is illustrated in the next paragraph, the vast majority of the randomly chosen
designs are very poor, so that the progressive fithess evaluation requires very little time. On
the other hand, the average computation cost for the designs considered by the agent-based
genetic algorithm is approximately 62 seconds on one Sparc workstation (8340 evaluations

in 6 hours on 24 Sparc workstations). Moreover, towards the end of the algorithm’s execu-

14000 - w w w w —
i 7
/ -7
/ e
I ///
12000 j .
! Pid
/ //’
/ B -
/ MRSH _-
£ 10000 / i
2 ] d
S ' random search e
‘_g i pral
© 80001 / e 8
c / e
S i e
3= i -
< / .
2 / ot
£ 60001 A
° i e GA
(0] i -’
Qo j e
: /
2 4000f - 7 4
/ i
i Vs
/ 7
! //
/ rd
2000}/ .~ B
///
"
/
/
O Il Il Il Il Il
0 1 2 3 4 5 6
time [hours]

Figure 7-2. The number of fitness evaluations as a function of time.

150



7.3 RESULTS AND INTERPRETATION

tion, when the better designs are being evaluated, the average evaluation cost increases to

100 seconds.

To determine the fraction of the design space containing feasible solutions, a random search
has been executed; an exhaustive search is impossible due to the size of the search space.
Even though the search space is very large, it could be that a large percentage of all candi-
date design are acceptably good solutions (for this example, a feasible solution, which does
not violate any task constraints, is considered to be acceptably good). If this were the case, a
random search would find one of those feasible solutions quickly. However, for the satellite
docking operation, the random search found amigfeasible solution after 750,000 func-

tion evaluations (42 hours on 24 Sparc workstations). The probability density function of the
fitness values is shown in Figure 7-3. About 81% of the solution candidates are unable to
reach the end point of the desired Cartesian trajectory, that is, the storage point or point 4 in

Figure 7-1. Remember that the determination of the fault tolerant trajectory starterad the

x 10

2.5 .

T

T

15 .

0.5

il

0
-10.4 -10.2 -10 -9.8 -9.6 -9.4 -9.2 -9

-6

x 10

PDF in [per fitness value]

151 8

0.5 .

0 1 1 1 AAM AA Al 1A
-10.4 -10.2 -10 -9.8 -9.6 -9.4 -9.2 -9
fitness value x 10°

Figure 7-3. Probability density function of the fitness value.

151



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

point of the Cartesian path and works its way forward to the start of the path. If a manipula-
tor cannot reach the final point of the path, the fault tolerant trajectory planning algorithm
exits immediately, resulting in a fitness value of less tHE®D,000 . This group of designs
is followed by the designs theanreach the storage point, but only in postures that violate
the secondary requirements. This is a fairly large group of designs that all have the same fit-
ness value of just over —100,000, resulting in a tall spike in the probability density function.
The next group of designs, with fithess values between -100,000 and -90,000, are designs
for which the set of acceptable postures for a fault tolerant trajectory reduces to the empty
set before the initial point of the Cartesian path has been reached. The closer the fault toler-
ant trajectory algorithm gets to the initial point, the higher the fitness value. According to the
probability density function, the probability for a fithess value larger than -95,000 is
extremely small (8 solutions out of 750,000). There are two more groups of designs left: the
fault tolerant designs that cause a torque limit violation during the simulation (no solutions

found in this group), and finally, the feasible designs (one solution out of 750,000).

The next step in the characterization of this TBD problem is to determine the probability
that a single start statistical hill-climbing algorithm reaches a feasible solution. Even though
only a very small fraction of the design space contains feasible designs, it could still be pos-
sible that the TBD problem is relatively simple, namely, if a heuristic function existed that
would lead the hill-climbing algorithm directly to the region containing the feasible designs.
One can check whether the fitness function for the satellite docking problem exhibits this
property by performing a large number of statistical hill-climbing runs. In the experiments
for this problem, only 8 out of 480 single start statistical hill-climbing runs converged to a
feasible solution—that is approximately 1.7%. All the other runs got stuck in an infeasible
local maximum. Although 1.7% is not extremely small, it does indicate that it is best to use

an algorithm that can avoid local maxima—for instance, the agent-based genetic algorithm.
In conclusion, the TBD problem for the satellite docking operation is characterized by:

* avery large search space
» a high computation cost for evaluating the fitness of a candidate design

» avery small fraction of feasible designs

152



7.3 RESULTS AND INTERPRETATION

« a small probability of reaching these feasible designs through statistical hill-

climbing.

The combination of these characteristics result in a very challenging design problem, for
which one can expect a high computation cost for finding a feasible solution. This will be
further investigated in the next section in which the performance of MRSH is compared with

that of the agent-based genetic algorithm.

7.3.2 Performance Analysis of the Statistical Search Algorithms

Unlike the performance analysis in the previous chapter, this section compares the perfor-
mance of multiple restart statistical hill-climbing and the agent-based genetic algorithm
only; random search is not included because it performs so poorly. The MRSH algorithm is
the same as the one in the previous chapter: 24 single start statistical hill-climbing algo-
rithms running in parallel on 24 Sun Sparcs. The agent-based genetic algorithm is slightly
different from the one in the previous chapter; the group of agents has been recomposed to
include the MutateBasePosition agent. In total there are now 46 agents: 20 creation agents, 3
crossover agents, 3 MutateModule agents, 3 AddDeleteModule agents, 3 PermuteModule
agents, 3 MutateBasePosition agents, 9 MutateRelativeOrientation agents, one destroyer
agent, and one displayer agent. These agents run on the same set of 24 Sun Sparcs—one

modification agent per workstation.

Because this satellite docking example is so complicated, the solution process requires a
large amount of computation. A single run of the MRSH or the GA lasts 6 hours on 24 Sparc
workstations. If one were to use one single Sparc 20, the experiment would last 6 days,
which would be absolutely unacceptable. This clearly illustrates the need for a distributed

implementation of the design system.

The analysis consists of two components: comparison based abysalnteand arelative
performance criterion. The absolute performance criterion, illustrated in Figure 7-4, is the
ability of the algorithms to reach a feasible solution. Because the design space for this exam-
ple is too large for an exhaustive search, it is impossible to determine the absolute global

optimum. However, since the differences in power consumption between the feasible solu-

153



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

tions are relatively small, it makes sense to consider any feasible solutions to be acceptably
good. This is also convenient because, as we pointed out in Chapter 5, a feasible solution

can be recognized by its fitness value which is always larger than —20,000.

As Figure 7-4 indicates, the agent-based genetic algorithm is much more likely than the
multiple restart statistical hill-climbing algorithm to achieve a feasible solution. The genetic
algorithm failed to reach a feasible solution only in five out of twenty runs. In four of those
five runs, it was successful at planning a fault tolerant trajectory, but the execution of this
trajectory resulted in a torque limit violation, so that the design did not meet all the task
requirements. The MRSH algorithm reached a feasible solution only in seven out of twenty
runs, and failed to even plan a fault tolerant trajectory in the remaining thirteen runs. This
35% success rate corresponds to the rate predicted by the results from the single start statis-
tical hill-climbing. The single start statistical hill-climbing algorithm reached a feasible

solution in 8 out of 480 runs, that is, in 1.7% of the runs. For a MRSH algorithm starting at

100 T T T T T

N0 .

70

T

60

50

T

30

percentage of runs attaining a feasible solution

10

T

time [hours]

Figure 7-4. Percentage of the runs attaining a feasible solution.

154



7.3 RESULTS AND INTERPRETATION

24 random points, the success rate should be:

P(success= 1—(1-0.01%24= 0.34, (7-3)

which corresponds closely to the 35% obtained in the experiment.

According to the relative performance criterion, the agent-based genetic algorithm also out-
performs the MRSH algorithm. For the relative performance criterion, the two algorithms
are compared in a tournament, run by run. The algorithm that achieves the highest fithess
value in a particular run wins. Figure 7-5 depicts, as a function of time, the probability that
the agent-based genetic algorithm achieves a higher fithess value than the MRSH algorithm.
Initially, the two algorithms perform almost equally well—that is, their fitness value
increases at an almost equal pace. Yet, as Figure 7-4 indicates, it is very unlikely that either
algorithm reaches a feasible solution at this stage. It is only after about three hours, that the
genetic algorithm starts to perform better than MRSH. That is, the probability that it finds a

candidate design with a fitness value larger than the one found by MRSH is between 80%

© © o o
[ ~ [ee] ©
T T T T
i i i

probability that GA > MRSH
o o
IN ol
T
1 1

o
w
I

0 | | | | |
0 1 2 3 4 5 6

time [hours]

Figure 7-5. Relative comparison between GA and MRSH.

155



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

0.05 significance level

level of significance
=
o
1

107 3

10'4 | | | | |
0 1 2 3 4 5 6

time [hours]

Figure 7-6. Results of the Fisher sign test.

and 90%. Figure 7-6 confirms that this difference in performance is statistically significant

according to the Fischer sign test.

In conclusion, three hours into the experiment, the agent-based genetic algorithm performs
significantly better than the MRSH algorithm: the chance that the GA achieves a higher fit-
ness value than MRSH is more that 80%. Moreover, after six hours, the agent-based genetic

algorithm finds a feasible solution with a probability of 75%.

7.3.3 Interpretation of the Optimal Design

So far the focus has been on the solution process. In this section, we take a closer look at the
result of this process, namely, the optimal design found by the agent-based genetic algo-

rithm.

The optimal manipulator configuration is depicted in Figure 7-7. It consists of only eight
modules, as listed in Table 7-1. All the other designs found by the agent based design system

had more than eight modules. Since the energy consumption (which is the optimality crite-

156



7.3 RESULTS AND INTERPRETATION

-

Figure 7-7. The optimal design found by the agent-based design system.

The two figures at the bottom are taken by a camera which is positioned to the
right of the cockpit. They show the manipulator in the initial and final posture.

157



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

rion) depends on the number of modules (energy consumed by the module electronics),
designs with fewer modules are preferred over the others. An additional benefit is that

designs with fewer modules tend to have a simpler structure.

Given that the design system does not include any explicit guidelines as to what a good
manipulator should look like, it is surprising how much sense this manipulator design makes

from the perspective of a human designer:

» The four positional DOFs of the manipulator are very equally distributed over
the length of the manipulator (the last link only looks shorter in Figure 7-7
because of perspective distortion). The Denavit Hartenberg parameters shown in
Table 7-2 indicate that the three links are almost equal in length: 3.469m,
3.654m, and 3.289m. This is very important from a fault tolerant perspective. If,
for instance, the first link were much longer than the others, a failure in the first

DOF would severely restrict the positioning capabilities of the manipulator.

» The total length of the manipulator is about 11m. This allows the manipulator to

module| serial relative joint

number| number| orientation type comment
1 sn50 270 pivot jointl Tmax = 400Nm
2 sn76 0 link length = 2m
3 sn6l 0 rotate joinf Tmax = 600Nm
4 sn52 90 pivot joint| Tmax = 600Nm
5 sn77 0 link length = 3m
6 sn51 270 pivot jointl Tmax = 600NmM
7 sn75 0 link length = 2m
8 sn9l 0 3-roll wristf  length = 1.5m

Table 7-1. The module configuration of the optimal design.

158



7.3 RESULTS AND INTERPRETATION

DOF i d, a of
1 -0.137 0 W2
2 -3.469 0 W2
3 -0.275 3.654 —Tt/2
4 -0.275 0 W2
5 3.289 0 W2
6 0 0 W2
7 0 0 0

Table 7-2. Denavit Hartenberg parameters of the optimal manipulator design.

reach the initial and final position of the satellite without being fully stretched
out or folded back—both of which would be detrimental to the fault tolerant

capabilities of the manipulator.

The DOFs are strongly coupled, as is required for fault tolerance. The twist
angles between the pivot joints are all 90 degree angles, and by including a
rotate joint between the first and the second pivot modules, the second half of
the manipulator can be pointed in any direction. (One could consider the rotate

joint followed by a pivot joint to be a 2-DOF spherical joint.)

The first rotation axis is perpendicular to the axis of the space shuttle, allowing
the first link to move along a plane in the middle of the cargo bay. This makes
sense because both the initial and final position of the satellite are in the middle

of the cargo bay.

The base position of the manipulator, i.e., the position and orientation of the
space shuttle with respect to the satellite, is chosen very carefully. The satellite
is positioned almost exactly in the middle of the cargo bay (y-coordinate =
—0.18m), 8.36m behind the manipulator base, and 3.85m above the space shut-
tle. This means that the satellite is as close to its final position as it is allowed to

be (3m removed from any part of the space shuttle). Furthermore its orientation

159



CHAPTER 7: A FAULT TOLERANT MANIPULATOR FOR A SATELLITE DOCKING OPERATION

is such that only a small rotation is required to move it to its final position in the

storage unit.

7.4 Summary

In this chapter, we analyzed a comprehensive TBD example: a manipulator designed for a
satellite docking operation aboard the space shuttle. This TBD problem was extremely chal-
lenging due to the large design space, the high cost of evaluating a candidate design, and the
small fraction of feasible designs in the design space. Moreover, the MRSH algorithm per-
formed poorly because there are a relatively large number of local maxima in the fithess
heuristic. Nevertheless, in almost 80% of the runs, the agent-based genetic algorithm was

able to find a feasible solution.

The resulting optimal solution consists of eight manipulator modules and incorporates many
of the general criteria for fault tolerant design described in Chapter 3, even though none of

these criteria was explicitly included in the design system.

160



Chapter 8

Conclusions

In this thesis, we have developed all the main components of a rapidly deployable fault tol-
erant manipulator system: the reconfigurable and modular hardware, the control software,
the global fault tolerant trajectory planning algorithm, and the agent-based design frame-
work which is the linchpin of the system. In this chapter, we summarize the main contribu-

tions and outline the directions for future work in this area.

8.1 Contributions

To achieve the goal of a rapidly deployable fault tolerant manipulator system, we made the

following contributions:
Rapidly Deployable Systems:

« We developed the hardware of a reconfigurable modular manipulator system:

the RMMS.



CHAPTER 8: CONCLUSIONS

* We implemented and tested a distributed reconfigurable control system that
automatically adapts itself to the current manipulator configuration by building
configuration independent kinematic and dynamic manipulator models.

* We seamlessly integrated RMMS simulation software with the real-time control

software and hardware.
Manipulator Fault Tolerance:

* We formulated a simple yet comprehensive scenario for fault tolerance; it can
handle a large variety of faults with one single recovery mechanism: immobilize
the failing degree-of-freedom (DOF) by enabling its brake, and continue the
task with the remaining DOFs.

* We proved that two degrees-of-redundancy are necessary and sufficient for gen-
eral purpose fault tolerance.

* We provided an 8-DOF template for general purpose fault tolerant manipulator.

* We proved that, under certain conditions, one degree-of-redundancy is neces-
sary and sufficient for task specific fault tolerance.

» Based on the idea that one can achieve fault tolerance by avoiding unfavorable
joint anglesbeforefailure, we developed a global fault tolerant trajectory plan-
ning algorithm.

* We developed an efficient implementation of the global fault tolerant trajectory
planning algorithm, which is used to evaluate the fault tolerant properties of
candidate manipulator designs in an agent-based design framework.

* We implemented a fault tolerant recovery mechanism that allows a manipulator
to continue its task uninterruptedly when a simulated joint failure occurs. We

demonstrated this controller on the RMMS.
Task Based Design:

* We considered a very complete definition of the TBD problem, including energy
consumption as an optimality criterion, and all of the following task constraints:

trajectory reachability, joint position limits, joint velocity limits, joint torque

162



8.2 FUTURE DIRECTIONS

limits, singularity avoidance, obstacle collision, and self-collision.

« We formulated an integrated solution approach to the TBD problem, based on
Genetic Algorithms. This approach considers simultaneously the manipulator
kinematics and dynamics, trajectory planning, and control.

« We included problem specific knowledge in the genetic algorithm to reduce the
size of the search space.

 We introduced the concept of “progressive evaluation,” which drastically
reduces the average computation cost of fithess evaluations.

* We introduced an agent-based implementation of the genetic algorithm, which
increases the computational power through distributed computing, and provides
a modular composable framework for adapting the design system to the design
task at hand.

* We performed a detailed performance analysis of the agent-based design frame-
work, by comparing it to exhaustive search, random search, and multiple restart
statistical hill-climbing.

* We proposed the Fisher sign test, to compare the performance of statistical
search algorithms.

* We solved a comprehensive TBD problem, which consists of designing a modu-
lar fault tolerant manipulator for a satellite docking operation with the space
shuttle. The design task includes the determination of the optimal position and
orientation of the space shuttle with respect to the satellite, and the determina-

tion of the corresponding fault tolerant trajectory.

8.2 Future Directions

8.2.1 The RMMS Hardware and Controller

* A Computed Torque Controller: At this point, the dynamic model of the
RMMS is only used to compute a gravity compensation feed forward torque.

Better results could be obtained by implementing a complete computed torque

163



CHAPTER 8: CONCLUSIONS

scheme, including inertial, centrifugal, Coriolis, and even friction torques. In
addition to changing the control structure at each of the joint modules, the
implementation a computed torque controller would require accurate identifica-
tion of all the inertial and friction parameters. Because the friction parameters
for each individual joint tend to depend on the manipulator configuration and
the end-effector load, it may even be necessary to identify these parameters on-
line, and include them in a simple adaptive controller. In collaboration with the
students in Dr. Yangsheng Xu’s Robot Control class, we have already obtained
some promising preliminary results with this new controller.

A Reconfigurable Distributed Control Structure: The RMMS controller is
implemented in a distributed fashion: the PID control for each individual joint is
performed on the local microprocessor. The current implementation allows the
user to change the PID gains of each controller, but the control structure itself is
fixed—it is stored on an EPROM. If one would like to change the control struc-
ture, for instance to sliding mode control or force control, one would have to
reprogram the EPROMSs, which is very time consuming. To further increase the
reconfigurability of the RMMS, it would be good to develop a small kernel that
allows the user to download a new control program over the LAN connecting all
the RMMS modules.

Additional RMMS Hardware: The seven modules that have been built so far
allow us to demonstrate the elementary capabilities of the RMMS. However,
one important capability is missing: controlling the orientation of the end-effec-
tor. The usefulness of the RMMS would be greatly increased with the addition

of a 3-DOF wrist module.

8.2.2 Fault Tolerance

164

Extending the Fault Tolerant Trajectory Planning Algorithm: A key com-

ponent of our approach to the design of fault tolerant manipulators, is the fault
tolerant trajectory planning algorithm presented in Chapter 4. Incorporating this
algorithm in the task based design framework, requires a very robust implemen-

tation (the algorithm should also work for degenerate candidate designs gener-



8.2 FUTURE DIRECTIONS

ated by the creation and modification agents). This has not yet been
accomplished for manipulators with two degrees-of-redundancy. Moreover, as
we indicated in Chapter 4, the algorithm is limited to two degrees-of-redun-
dancy because of its computational complexity. It is an interesting challenge to
develop fault tolerant trajectory planning algorithms for manipulators with more
than two degrees-of-redundancy, and in particular, for hyper-redundant manipu-
lators. Due to the large number of DOFs of hyper-redundant manipulators, the
crippling effect of one single joint failure can be expected to be rather small.
Consequently, it may be possible to achieve a guarantee for fault tolerance based

only on a local rather than a global planning strategy.

Fault Detection and Identification and Supervisory Control: In this thesis,

we have limited ourselves to fault recovery and design of fault tolerant manipu-
lators. We assumed that the controller is notified when a failure and subsequent
immobilization has occurred in one of the joints. However, thus far, we have no
means of detecting faults, nor do we have means of assessing the impact of sub-
component failure on the healthiness of the overall system. Two things are miss-
ing: Fault Detection and Identification (FDI) algorithms that monitor the health

of subcomponents, and an intelligent supervisory controller that controls the
fault recovery mechanism and can decide to shut down the system when all

redundancy provisions have been exhausted.

Distributed Fault Tolerant Control of the RMMS: The current fault recovery
mechanism of the RMMS is based on a centralized implementation. The core of
the algorithm resides on the Chimera real-time processors, so that a failure in
the communication between one of the modules and the Chimera hardware is
catastrophic. However, the distributed computing facilities of the RMMS are
well suited for a hierarchical fault tolerant supervisory controller, which would
contain faults locally and only send error signals to higher levels when all the

low level redundancy provisions have been exhausted.

Fault Tolerance of Mechatronic Systems:Research on fault tolerance has

been mainly limited to computing systems. This thesis demonstrates that some

165



CHAPTER 8: CONCLUSIONS

of the same concepts can be applied to electro-mechanical systems. A promising
example could be an agile manufacturing system. Currently, if one of the sta-
tions of an assembly line fails, the whole line stops as soon as the buffers are
depleted (fault intolerance). Even though the mean-time-between-failures statis-
tics for manufacturing equipment in advanced serial-process factories remain
quite good, downtime still occurs during feeder jams, part exhausts, and
machine malfunctions. By including extra flexibility in the assembly stations,
and by providing parallel transportation segments, it would be possible for the
assembly line to reconfigure itself when one of the assembly stations fails. One
such fault tolerant assembly line is the “Fusion Factory” at Motorola (Strobel
and Johnson 1993). This prototype demonstrates that fault tolerance of large
mechatronic systems is feasible and even cost effective. Further research could
focus on optimal assembly line layout and distribution of the functionality over
the assembly stations to reduce the redundancy to a minimum while still main-

taining fault tolerance.

8.2.3 Task Based Design

166

High Level Task Descriptions: The current definition of the TBD problem
requires a very low level description of the task. Often, it would be more conve-
nient for the user to provide a high level task description, such as “assemble this
motor.” In order to create a suitable manipulator for such a high level task, one
would first have to translate this high level task description into low level primi-
tives. This can be achieved for instance with CASPER (Carnegie Mellon
ASsembly Planner and ExecutioneR). However, to create a low level assembly
description, CASPER uses the kinematic structure of the manipulator as a con-
straint, so that there exists a strong coupling between the task level planner and
the TBD problem. Therefore, it may be necessary to integrate both problems
into one framework. Further research is required to investigate this problem.
Determination of the Parameters of the Agent-Based Design Framework:

The agent-based genetic algorithm that we presented in Chapter 5 contains cer-

tain parameters that need to be chosen by the user, namely, the population size



8.2 FUTURE DIRECTIONS

and the composition of the group of agents. The choice of these parameters will
affect the performance of the algorithm. A carefully executed sensitivity analy-

sis is needed to aid the user in determining the optimal parameters for a given
problem. In this thesis, we did not conduct any sensitivity analysis, because of
the enormous time and computation requirements needed to perform this analy-
sis in a statistically sound manner. Instead we made a conservative choice, pre-

ferring robustness over convergence speed.

Design of Complex Electro-Mechanical SystemsEven though the agent-
based design framework, was developed to solve the TBD problem, it is based
on general principles that will allow it to be applied in other design areas. In par-
ticular, the design of complex electro-mechanical systems displays some strik-
ing parallels: it requires an integrated design approach that simultaneously
considers electrical and mechanical aspects of the design; the design space is
also very large, and the design process will most like require a very large
amount of computation. Nevertheless certain key differences will have to be
addressed. For instance, the design space is not as well defined as for TBD (no
longer structure configuration task). Also, for electro-mechanical design, there
does exist a large amount of design knowledge, so that one will have to provide

a framework for including this knowledge into the design system.

A Framework for Including Problem Specific Knowledge in Agent-Based
Genetic Algorithms: In Chapter 5, we indicated how the inclusion of problem
specific knowledge can drastically improve the performance of the agent-based
genetic algorithm. We included problem specific knowledge to reduce the size
of the search space, and to reduce the cost of the fithess evaluation. Yet, this
knowledge was included in a rather ad hoc manner. There does not exist a
framework for including knowledge systematically, or for including new addi-
tional knowledge easily. Further research is required to provide simpler mecha-

nisms to translate existing human knowledge into new agents.

Including Learning Strategies in Agents:Instead of creating agents based on

existing human knowledge, it would be an interesting extension to have the

167



CHAPTER 8: CONCLUSIONS

agent acquire new knowledge themselves. By observing the design process—
guided by the interactions of all the agents as a group—the individual agents
could learn certain general characteristics of the problem and use this knowl-
edge to improve their actions and guide the search more quickly towards prom-

ising areas of the search space.

8.3 Conclusions

In this thesis, we have developed a rapidly deployable fault tolerant manipulator system.
Such a system combines reconfigurable hardware with support software to enable the user to
rapidly configure and deploy a fault tolerant manipulator that is optimally suited for a given

task.

The central building block of a rapidly deployable system is the reconfigurable modular
hardware: the RMMS. We have built seven RMMS modules that can be easily configured
into a large number of different manipulators. The control software that we have developed
supports configuration independent programming and control of the RMMS by automati-

cally adapting itself to the current manipulator configuration.

For the deployment of manipulator systems in critical task, for instance in hazardous or
remote environments, we proposed to include fault tolerance into the manipulator system.
We proved that, to achieve fault tolerance with a minimum number of redundant, it is impor-
tant to consider trajectory planning and redundancy resolution at the design stage. To
accomplish this, we developed a global fault tolerant trajectory planning algorithm with
which it is possible to guarantee that a task can be completed even if one of the DOFs of the

manipulator system fails and is immobilized.

The most important part of this thesis is the development of the agent-based design frame-
work for Task Based Design. In TBD all the components of a rapidly deployable fault toler-
ant manipulator system are tied together: the reconfigurable hardware, the control software,

fault tolerance, and trajectory planning. To solve this design problem, we have formulated

168



8.3 GONCLUSIONS

an integrated solution approach implemented in an agent-based genetic algorithm. Our
agent-based design framework, combines an effective search strategy with the high comput-
ing performance of distributed networked workstations. The effectiveness of the search was
improved by including problem specific knowledge in the agents, reducing the size of the

search space and reducing the cost of evaluating the fithess heuristic.

We have performed an extensive analysis of the TBD problem based on two relatively sim-
ple tasks which allowed for an exhaustive search. The data from this exhaustive search pro-
vided additional insight into the TBD problem and served as a baseline for the further
performance analysis. We formulated four problem characteristics that allow one to com-
pare the complexity of different TBD problems. We further compared the performance of
the agent-based genetic algorithm with two other statistical search algorithms: random
search and multiple restart statistical hill-climbing. The conclusion is that the agent-based
genetic algorithm outperforms both other algorithms, especially when the fraction of statis-

tical hill-combing runs that reach the global optimum is small.

Finally, we used the agent-based design framework to solve a comprehensive TBD problem
for a satellite docking operation with a manipulator mounted inside the space shuttle cargo
bay. Even though this is a very challenging problem, the agent-based genetic algorithm was

able to find a feasible solution consistently.

169



CHAPTER 8: CONCLUSIONS

170



Appendix A: Module Description Files

A.1 The RMMS modules

The following module description files, describe the seven RMMS modules that have been
built so far. a base module, an end-effector module, three pivot modules, a rotate module,
and a link module. The same module description files are used in the TeleGrip simulation

software, and in the task based design examples in Chapter 6.

File sn00.cfig:

# This cfig file describes an RMMS base module
# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

# sn00 | base | 0| hight 0
SERIAL_NR sn00
MOD_TYPE base
AXIAL_SYM yes
MOD_NDOF 0

# end with the last transformation matrix

MASS 500.0 #in kg
CENTER_MASS 0.0 0.0 0.0 #inm
INERTIA_MOMENT 0 0 0 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.0 0.0 0.00.0 1.0 0.00.00.0
CAD_MODEL sn00.0

EOF



APPENDIX A: M ODULE DESCRIPTIONFILES

File sn01.cfig:

# This cfig file describes an RMMS pivot joint module
# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

#H:

#sn01 | pivot joint | 1 | Tmax =270 Nm; Qmin/max = -/+ 185 deg
SERIAL_NR sn01

MOD_TYPE module

AXIAL_SYM no

MOD_NDOF 1

# for every DOF include the following data:

MASS 5.36 #1in kg
CENTER_MASS 0.039 0.0 0.1625 #inm
INERTIA_MOMENT 0.02 0.02 001 O 0 0 #in kgm2
T_MATRIX 001010-10 0 0.06865 0 0.1825
CAD_MODEL sn01.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 #in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 # in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -270.0 #in Nm

T_MAX 270.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 8.0 #in kgm2
POWER_PAR 0.001 #in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE  4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

MASS 5.36 #in kg
CENTER_MASS 0.02 0.0 -0.03 #inm
INERTIA_MOMENT 0.01 0.01 0.02 O 0 0 #in kgm2
T_MATRIX 00-101010 0 0.14450-0.06865
CAD_MODEL sn01.1

EOF

File sn02.cfig:

172

# This cfig file describes an RMMS pivot joint module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#H:

# sn02 | pivot joint | 1 | Tmax =270 Nm; Qmin/max = -/+ 185 deg
SERIAL_NR sn02
MOD_TYPE module



A.1 THE RMMS MODULES

AXIAL_SYM no
MOD_NDOF 1

# for every DOF include the following data:

MASS 5.36 #in kg
CENTER_MASS 0.039 0.0 0.1625 #inm
INERTIA_MOMENT 0.02 0.02 0.01 O 0 0 #in kgm2
T_MATRIX 001010 -10 0 0.06865 0 0.1825
CAD_MODEL sn02.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 #in radians (+/- 165)
Q_MAX 2.8797933 # in radians
QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 # in rad/sec

T_MIN -270.0 #in Nm

T_MAX 270.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 8.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.6259e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1379491
TACHO_OFFSET -0.9483085

# end with the last transformation matrix

MASS 5.36 #in kg
CENTER_MASS 0.02 0.0 -0.03 #inm
INERTIA_MOMENT 0.01 0.01 0.02 0 0 0 #in kgm2
T_MATRIX 00-101010 0 0.14450-0.06865
CAD_MODEL sn02.1

EOF

File sn03.cfig

# This cfig file describes an RMMS link module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#sn03 | link | 0 | Length = 163mm
SERIAL_NR sn03

MOD_TYPE module

AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 2.13 #in kg

CENTER_MASS 0.0 0.0 0.081 #inm
INERTIA_MOMENT 0.007 0.007 0.005 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 0.163
CAD_MODEL sn03.0

EOF

173



APPENDIX A: M ODULE DESCRIPTIONFILES

File sn04.cfig:

# This cfig file describes an RMMS pivot joint module
# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

#H:

#sn04 | pivot joint | 1 | Tmax =270 Nm; Qmin/max = -/+ 185 deg
SERIAL_NR sn04

MOD_TYPE module

AXIAL_SYM no

MOD_NDOF 1

# for every DOF include the following data:

MASS 5.36 #1in kg
CENTER_MASS 0.039 0.0 0.1625 #inm
INERTIA_MOMENT 0.02 0.02 001 O 0 0 #in kgm2
T_MATRIX 001010-10 0 0.06865 0 0.1825
CAD_MODEL sn04.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 #in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 # in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -270.0 #in Nm

T_MAX 270.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 8.0 #in kgm2
POWER_PAR 0.001 #in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5861927e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1298002
TACHO_OFFSET -0.938335

# end with the last transformation matrix

MASS 5.36 #in kg
CENTER_MASS 0.02 0.0 -0.03 #inm
INERTIA_MOMENT 0.01 0.01 0.02 O 0 0 #in kgm2
T_MATRIX 00-101010 0 0.14450-0.06865
CAD_MODEL sn04.1

EOF

File sn05.cfig:

174

# This cfig file describes an RMMS rotate joint module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#H:

# sn05 | rotate joint | 1 | Tmax = 280 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn05
MOD_TYPE module



A.1 THE RMMS MODULES

AXIAL_SYM  vyes
MOD_NDOF 1

# for every DOF include the following data:

MASS 5.8 #in kg
CENTER_MASS 0.0 00 0.14 #inm
INERTIA_MOMENT 0.04 0.04 0.006 0O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.00.0 0.0 0.0 -1.0 0.0 0.0

0.2037

CAD_MODEL sn05.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 # in rad/sec

T_MIN -280.0 #in Nm

T_MAX 280.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 8.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.642445e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1172407
TACHO_OFFSET -0.94938

# end with the last transformation matrix

MASS 5.8 #in kg
CENTER_MASS 0.0 0.0 -0.0563 #inm
INERTIA_MOMENT 0.04 0.04 0.006 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.0 0.0 0.00.0 -1.0 0.00.0-
0.2037

CAD_MODEL sn05.1

EOF

File sn08.cfig:

# This cfig file describes an RMMS pointer module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

I
H
H

#sn08 | pointer | 0| length = 163 mm
SERIAL_NR sn08

MOD_TYPE end-effector
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 2 #in kg
CENTER_MASS 0.0 0.0 0.02 #inm
INERTIA_MOMENT O 0 0 0 0 0 #in kgm2

175



APPENDIX A: M ODULE DESCRIPTIONFILES

T_MATRIX 1.0 0.0 0.0 0.0 1.0 0.0 0.00.0 1.0 0.00.00.163
CAD_MODEL sn08.0
EOF

A.2 The Space Shuttle Modules

The next set of modules are used for the satellite docking example in Chapter 7.
File sn50.cfig

# This cfig file describes a Space Shuttle pivot joint module

# we need the following 3 line as a description for TELEGRIP

# name | type |ndf| info

#sn50 | pivot joint | 1 | Tmax = 400 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn50

MOD_TYPE module

AXIAL_SYM no

MOD_NDOF 1

# for every DOF include the following data:

MASS 6.0 #in kg
CENTER_MASS 0.078 0.0 0.325 #inm
INERTIA_ MOMENT 0.08 0.08 0.04 O 0 0 #in kgm2
T_MATRIX 001010-100 0.1373 0 0.365
CAD_MODEL sn50.0

JOINT_TYPE revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -400.0 #in Nm

T_MAX 400.0 #in Nm

CcouLomMmB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 8.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

MASS 6.0 #in kg
CENTER_MASS 0.04 0.0 -0.06 #inm
INERTIA_MOMENT 0.04 0.04 0.08 O 0 0 #in kgm2
T_MATRIX 00-1010100 0.2890-0.1373
CAD_MODEL sn50.1

EOF

176



A.2 THE SPACE SHUTTLE MODULES

File sn51.cfig:

# This cfig file describes a Space Shuttle pivot joint module
# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

#sn51 | pivot joint| 1 | Tmax = 600 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn51

MOD_TYPE module

AXIAL_SYM no

MOD_NDOF 1

# for every DOF include the following data:

MASS 8.0 #1in kg
CENTER_MASS 0.078 0.0 0.325 #inm
INERTIA_MOMENT 0.1 0.1 0.05 O 0 0 #in kgm2
T_MATRIX 001010-100 0.1373 0 0.365
CAD_MODEL sn51.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 #in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -600.0 #in Nm

T_MAX 600.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 10.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

MASS 8.0 #in kg
CENTER_MASS 0.04 0.0 -0.06 #inm
INERTIA_MOMENT 0.05 0.05 01 O 0 0 #in kgm2
T_MATRIX 00-101010 0 0.2890-0.1373
CAD_MODEL sn51.1

EOF

File sn52.cfig:

# This cfig file describes a Space Shuttle pivot joint module

# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

# sn52 | pivot joint | 1 | Tmax = 600 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn52

MOD_TYPE module

177



APPENDIX A: M ODULE DESCRIPTIONFILES

AXIAL_SYM no
MOD_NDOF 1

# for every DOF include the following data:

MASS 8.0 #in kg
CENTER_MASS 0.078 0.0 0.325 #inm
INERTIA_MOMENT 0.1 0.1 0.05 O 0 0 #in kgm2
T_MATRIX 001010-100 0.1373 0 0.365
CAD_MODEL sn52.0

JOINT_TYPE revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 # in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -600.0 #in Nm

T_MAX 600.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 10.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

MASS 8.0 #in kg
CENTER_MASS 0.04 0.0 -0.06 #inm
INERTIA_MOMENT 0.05 0.05 01 O 0 0 #in kgm2
T_MATRIX 00-101010 0 0.2890-0.1373
CAD_MODEL sn52.1

EOF

File sn53.cfig

178

# This cfig file describes a Space Shuttle pivot joint module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#sn53 | pivot joint | 1 | Tmax = 800 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn53

MOD_TYPE module

AXIAL_SYM no

MOD_NDOF 1

# for every DOF include the following data:

MASS 10.0 #in kg
CENTER_MASS 0.078 0.0 0.325 #inm
INERTIA_MOMENT 0.12 0.12 0.07 O 0 0 #in kgm2
T_MATRIX 001010-100 0.1373 0 0.365
CAD_MODEL sn53.0

JOINT_TYPE revolute # revolute or prismatic



A.2 THE SPACE SHUTTLE MODULES

Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -800.0 #in Nm

T_MAX 800.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 12.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

MASS 10.0 #inkg
CENTER_MASS 0.04 0.0 -0.06 #inm
INERTIA_MOMENT 0.07 0.07 012 0 0 0 #inkgm2
TMATRIX 00-1010 10 0 0.2890-0.1373
CAD_MODEL  sn53.1

EOF

File sn60.cfig:

# This cfig file describes a Space Shuttle rotate joint module
# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

H

# sn60 | rotate joint | 1 | Tmax = 400 Nm; Qmin/max = -/+ 165 deg

SERIAL_NR
MOD_TYPE
AXIAL_SYM
MOD_NDOF

sn60
module
yes
1

# for every DOF include the following data:

MASS

6 #in kg
CENTER_MASS 0.0 0.0 0.28 #inm
INERTIA_MOMENT 0.16 0.16 0.01 O 0 0 #in kgm2

T_MATRIX 1.0 0.0 0.0 0.0 -1.00.0 0.0 0.0 -1.0 0.0 0.0
0.4074

CAD_MODEL sn60.0

JOINT_TYPE revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 #in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -400.0 #in Nm

T_MAX 400.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 8.0 #in kgm2

179



APPENDIX A: M ODULE DESCRIPTIONFILES

POWER_PAR 0.001 #in sec/(kgm2)
MOTOR_SCALE 0.03448

RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.642445e-4

MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1172407
TACHO_OFFSET -0.94938

# end with the last transformation matrix

MASS 6.0 #in kg
CENTER_MASS 0.0 0.0 -0.1126 #inm
INERTIA_MOMENT 0.16 0.16 0.024 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.0 0.0 0.00.0 -1.0 0.00.0 -
0.4074

CAD_MODEL sn60.1

EOF

File sn61.cfig

180

# This cfig file describes a Space Shuttle rotate joint module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#sn61 | rotate joint | 1 | Tmax = 600 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn6l

MOD_TYPE module

AXIAL_SYM yes

MOD_NDOF 1

# for every DOF include the following data:

MASS 8 #in kg
CENTER_MASS 0.0 0.0 0.28 #inm
INERTIA_MOMENT 0.2 0.2 0.015 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.00.0 0.0 0.0 -1.0 0.0 0.0
0.4074

CAD_MODEL sn61.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 # in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -600.0 #in Nm

T_MAX 600.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 10.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.642445e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1172407
TACHO_OFFSET -0.94938



A.2 THE SPACE SHUTTLE MODULES

# end with the last transformation matrix

MASS 8.0 #in kg
CENTER_MASS 0.0 0.0 -0.1126 #inm
INERTIA_ MOMENT 0.2 0.2 003 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.0 0.0 0.00.0 -1.0 0.00.0-
0.4074

CAD_MODEL sn6l1.1

EOF

File sn62.cfig:

# This cfig file describes a Space Shuttle rotate joint module

# we need the following 3 line as a description for TELEGRIP

# name |type |ndf| info

# sn62 | rotate joint | 1 | Tmax = 600 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn62

MOD_TYPE module

AXIAL_SYM yes

MOD_NDOF 1

# for every DOF include the following data:

MASS 8 #in kg
CENTER_MASS 0.0 0.0 0.28 #inm
INERTIA_MOMENT 0.2 0.2 0.015 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.00.0 0.0 0.0 -1.0 0.0 0.0

0.4074

CAD_MODEL  sn62.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 #in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -600.0 #in Nm

T_MAX 600.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 10.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.642445e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1172407
TACHO_OFFSET -0.94938

# end with the last transformation matrix

MASS 8.0 #in kg
CENTER_MASS 0.0 0.0 -0.1126 #inm
INERTIA_MOMENT 0.2 0.2 0.03 O© 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.0 0.0 0.00.0 -1.0 0.00.0 -
0.4074

CAD_MODEL sn62.1

EOF

181



APPENDIX A: M ODULE DESCRIPTIONFILES

File sn63.cfig:

# This cfig file describes a Space Shuttle rotate joint module
# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

#H:

# sn63 | rotate joint | 1 | Tmax = 800 Nm; Qmin/max = -/+ 165 deg
SERIAL_NR sn63

MOD_TYPE module

AXIAL_SYM yes

MOD_NDOF 1

# for every DOF include the following data:

MASS 10 #in kg
CENTER_MASS 0.0 0.0 0.28 #inm
INERTIA_MOMENT 0.25 0.25 0.02 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.00.0 0.0 0.0 -1.0 0.0 0.0
0.4074

CAD_MODEL sn63.0

JOINT_TYPE revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -800.0 #in Nm

T_MAX 800.0 #in Nm

COULOMB 8.0 #in Nm

VISCOUS 32.0 # in Nmsec/rad
I_ARMATURE 12.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.642445e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1172407
TACHO_OFFSET -0.94938

# end with the last transformation matrix

MASS 10.0 #in kg
CENTER_MASS 0.0 0.0 -0.1126 #inm
INERTIA_MOMENT 0.25 0.25 0.036 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 -1.0 0.0 0.00.0 -1.0 0.00.0 -
0.4074

CAD_MODEL sn63.1

EOF

File sn70.cfig:

182

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#sn70 | link | 0| Length = 0.25m



A.2 THE SPACE SHUTTLE MODULES

SERIAL_NR sn70
MOD_TYPE module
AXIAL_SYM yes
MOD_NDOF 0

# end with the last transformation matrix

MASS 25 #in kg
CENTER_MASS 0.0 0.0 0.125 #inm
INERTIA_MOMENT 0.23 0.23 0.05 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 0.25
CAD_MODEL sn70.0

EOF

File sn71.cfig:

# This cfig file describes a Space Shuttle link module

# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

#sn71 | link | 0| Length = 0.25m

SERIAL_NR sn71

MOD_TYPE module

AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 25 #in kg
CENTER_MASS 0.0 0.0 0.125 #inm
INERTIA_MOMENT 0.23 0.23 0.05 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 0.25
CAD_MODEL sn71.0

EOF

File sn72.cfig:

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

#sn72 | link | 0 | Length = 0.5m
SERIAL_NR sn72

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 3.75 #in kg
CENTER_MASS 0.0 0.0 0.25 #inm
INERTIA_MOMENT 0.7 0.7 0.075 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 0.5

183



APPENDIX A: M ODULE DESCRIPTIONFILES

CAD_MODEL sn72.0
EOF

File sn73.cfig:

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#H:

#sn73 | link | 0| Length = 1m
SERIAL_NR sn73

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 5.0 #in kg
CENTER_MASS 0.0 0.0 0.5 #inm
INERTIA_ MOMENT 28 28 01 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 1.0
CAD_MODEL sn73.0

EOF

File sn74.cfig:

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

#H:

#sn74 | link | 0| Length = 2m
SERIAL_NR sn74

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 10.0 #in kg
CENTER_MASS 0.0 0.0 1.0 #inm
INERTIA_MOMENT 20.0 200 0.2 O 0 0 #in kgm2
T _MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 2.0
CAD_MODEL sn74.0

EOF

File sn75.cfig:

184

# This cfig file describes a Space Shuttle link module



A.2 THE SPACE SHUTTLE MODULES

# we need the following 3 line as a description for TELEGRIP

#name |type [ndf| info
#sn75 | link | 0 | Length = 2m
SERIAL_NR sn75

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 10.0 #in kg
CENTER_MASS 0.0 00 1.0 #inm
INERTIA_MOMENT 200 200 02 0 O O #inkgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 2.0
CAD_MODEL  sn75.0
EOF

File sn76.cfig:

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP

# name |type |ndf| info
#sn76 | link | 0 | Length = 2m
SERIAL_NR sn76

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS

T_MATRIX

CAD_MODEL

EOF

File sn77.cfig:

10.0
CENTER_MASS
INERTIA_MOMENT 20.0 20.0 0.2 O 0 0

#in kg
#inm
#in kgm2

00 00 10

1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 2.0

sn76.0

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP

#name |type [ndf| info
#sn77 | link | 0 | Length = 3m
SERIAL_NR sn77

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

185



APPENDIX A: M ODULE DESCRIPTIONFILES

MASS 15.0 #in kg
CENTER_MASS 0.0 0.0 1.5 #inm
INERTIA_MOMENT 65.0 65.0 03 O 0 0 #in kgm2
T _MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 3.0
CAD_MODEL sn77.0

EOF

File sn78.cfig:

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

H

#sn78 | link | 0| Length = 3m
SERIAL_NR sn78

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 15.0 #1in kg
CENTER_MASS 0.0 0.0 1.5 #inm
INERTIA_MOMENT 65.0 650 03 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 3.0
CAD_MODEL sn78.0

EOF

File sn79.cfig:

# This cfig file describes a Space Shuttle link module
# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

#sn79 | link | 0| Length = 3m
SERIAL_NR sn79

MOD_TYPE module
AXIAL_SYM yes

MOD_NDOF 0

# end with the last transformation matrix

MASS 15.0 #in kg
CENTER_MASS 0.0 00 15 #inm
INERTIA_MOMENT 65.0 650 03 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 3.0
CAD_MODEL sn79.0

EOF

186



A.2 THE SPACE SHUTTLE MODULES

File sn80.cfig:

# This cfig file describes a Space Shuttle corner link module
# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

#sn80 | link 90deg | 0 | L=200mm
SERIAL_NR sn80

MOD_TYPE module
AXIAL_SYM no

MOD_NDOF 0

# end with the last transformation matrix

MASS 3.5 #1in kg
CENTER_MASS 0.03 0.0 0.17 #inm
INERTIA_MOMENT 0.03 0.04 0.03 O 0 0 #in kgm2
T_MATRIX 0.0 0.0 -1.0 0.0 1.00.0 1.0 0.0 0.0 0.2 0.0 0.2
CAD_MODEL  sn80.0

EOF

File sn81.cfig:

# This cfig file describes a Space Shuttle corner link module
# we need the following 3 line as a description for TELEGRIP
#name |type |ndf| info

#sn81 | link 90deg | 0| L=300mm

SERIAL_NR sn81

MOD_TYPE module

AXIAL_SYM no

MOD_NDOF 0

# end with the last transformation matrix

MASS 4.5 #in kg
CENTER_MASS 0.06 0.0 0.24 #inm
INERTIA_ MOMENT 0.06 0.1 0.06 O 0 0 #in kgm2
T_MATRIX 0.0 0.0 -1.0 0.0 1.00.0 1.0 0.0 0.0 0.3 0.0 0.3
CAD_MODEL sn81.0

EOF

File sn90.cfig:

# This cfig file describes a Space Shuttle wrist module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

H
H

# sn90 | wrist module | 3 | 3-roll wrist with parallel jaw gripper
SERIAL_NR sn90
MOD_TYPE end-effector

187



APPENDIX A: M ODULE DESCRIPTIONFILES

AXIAL_SYM  no
MOD_NDOF 3

# for every DOF include the following data:

# for DOF 1:

MASS 12.0

CENTER_MASS 0.0 00 0.35 #inm
INERTIA_MOMENT 0.5 05 0.02 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 0.5
CAD_MODEL sn90.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -150.0 #in Nm

T_MAX 150.0 #in Nm

COULOMB 7.0 #in Nm

VISCOUS 25.0 # in Nmsec/rad
I_ARMATURE 7.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# for DOF 2:

MASS 2.0 #in kg
CENTER_MASS 0.0 0.0 0.0 #inm
INERTIA_MOMENT 0.02 0.02 0.01 O 0 0 #in kgm2
T_MATRIX 0.0 0.0 1.0 0.0 1.00.0 -1.0 0.0 0.0 0.0 0.0 0.0
CAD_MODEL sn90.1

JOINT_TYPE revolute # revolute or prismatic
Q_MIN -1.7453293 # in radians
Q_MAX 1.7453293 # in radians
QD_MIN -0.9 # in rad/sec
QD_MAX 0.9 #in rad/sec

T_MIN -150.0 #in Nm

T_MAX 150.0 #in Nm
COULOMB 7.0 #in Nm
VISCOUS 25.0 # in Nmsec/rad
I_ARMATURE 7.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# for DOF 3:

MASS 2.0 #in kg
CENTER_MASS 0.0 0.0 0.0 #inm
INERTIA_ MOMENT 0.02 0.02 0.01 O 0 0 #in kgm2
T_MATRIX 0.0 0.0 -1.0 0.0 1.00.0 1.0 0.0 0.0 0.0 0.0 0.0
CAD_MODEL sn90.2

188



JOINT_TYPE revolute

A.2 THE SPACE SHUTTLE MODULES

# revolute or prismatic

Q_MIN -4.6425758 # in radians
Q_MAX 4.6425758 # in radians
QD_MIN -0.9 #in rad/sec
QD_MAX 0.9 #in rad/sec

T_MIN -150.0 #in Nm

T_MAX 150.0 #in Nm
COuULOMB 7.0 #in Nm
VISCOUS 25.0 # in Nmsec/rad
I_ARMATURE 7.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE  4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

MASS 4.0 #1in kg
CENTER_MASS 0.0 0.0 0.15 #inm
INERTIA_ MOMENT 0.04 0.04 0.01 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.0 0.0 0.00.0 1.0 0.00.00.5
CAD_MODEL  sn90.3

EOF

File sn91.cfig:

# This cfig file describes a Space Shuttle wrist module
# we need the following 3 line as a description for TELEGRIP
# name |type |ndf| info

I

H

#sn91 | wrist module | 3 | 3-roll wrist with parallel jaw gripper
SERIAL_NR sn9l

MOD_TYPE end-effector

AXIAL_SYM no

MOD_NDOF 3

# for every DOF include the following data:

# for DOF 1:

MASS 14.5

CENTER_MASS 0.0 0.0 0.70 #inm

INERTIA_MOMENT 0.5 0.5 0.02 O 0 0 #in kgm2

T_MATRIX 1.0 0.0 0.0 0.0 1.00.0 0.0 0.0 1.0 0.0 0.0 1.0

CAD_MODEL sn91.0

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -2.8797933 # in radians (+/- 165 deg)
Q_MAX 2.8797933 # in radians

QD_MIN -0.9 #in rad/sec

QD_MAX 0.9 # in rad/sec

T_MIN -150.0 #in Nm

T_MAX 150.0 #in Nm

COULOMB 7.0 #in Nm

VISCOUS 25.0

# in Nmsec/rad

189



APPENDIX A: M ODULE DESCRIPTIONFILES

I_ARMATURE 7.0
POWER_PAR 0.001
MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336

#in kgm2
#in sec/(kgm2)

TACHO_OFFSET -0.9400418

# for DOF 2:

MASS 2.0 #in kg
CENTER_MASS 0.0 0.0 0.0

INERTIA_MOMENT 0.02 0.02 0.01 O 0

#inm

0 #in kgm2

T_MATRIX 0.0 0.0 1.0 0.0 1.00.0 -1.0 0.0 0.0 0.0 0.0 0.0
CAD_MODEL sn91.1

JOINT_TYPE  revolute # revolute or prismatic
Q_MIN -1.7453293 # in radians

Q_MAX 1.7453293 # in radians

QD_MIN -0.9 # in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -150.0 #in Nm

T_MAX 150.0 #in Nm

COULOMB 7.0 #in Nm

VISCOUS 25.0 # in Nmsec/rad
I_ARMATURE 7.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)

MOTOR_SCALE 0.03448
RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336

TACHO_OFFSET -0.9400418

# for DOF 3:

MASS 2.0 #in kg
CENTER_MASS 0.0 0.0 0.0

INERTIA_MOMENT 0.02 0.02 0.01 O 0

#inm

0 #in kgm2

T_MATRIX 0.0 0.0 -1.0 0.0 1.00.0 1.0 0.0 0.0 0.0 0.0 0.0
CAD_MODEL sn91.2

JOINT_TYPE revolute # revolute or prismatic
Q_MIN -4.6425758 # in radians

Q_MAX 4.6425758 # in radians

QD_MIN -0.9 # in rad/sec

QD_MAX 0.9 #in rad/sec

T_MIN -150.0 #in Nm

T_MAX 150.0 #in Nm

COULOMB 7.0 #in Nm

VISCOUS 25.0 # in Nmsec/rad
I_ARMATURE 7.0 #in kgm2
POWER_PAR 0.001 # in sec/(kgm2)
MOTOR_SCALE 0.03448

RESOLVER_SCALE 9.587379e-5
TACHO_SCALE 4.5922903e-4
MOTOR_OFFSET -1130.0
RESOLVER_OFFSET -3.1406336
TACHO_OFFSET -0.9400418

# end with the last transformation matrix

190



A.2 THE SPACE SHUTTLE MODULES

MASS 4.0 #in kg
CENTER_MASS 0.0 0.0 0.15 #inm
INERTIA_MOMENT 0.04 0.04 0.01 O 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.0 0.0 0.00.0 1.0 0.00.00.5
CAD_MODEL sn91.3

EOF

File sn98.cfig:

# This cfig file describes the Space Shuttle as a manipulator base
# we need the following 3 line as a description for TELEGRIP
#name |type [ndf| info

H

#sn98 | base | O | space shuttle
SERIAL_NR sn98

MOD_TYPE base

AXIAL_SYM no

MOD_NDOF 0

# end with the last transformation matrix

MASS 50000.0 #in kg
CENTER_MASS 0.0 0.0 0.0 #inm
INERTIA_MOMENT 0 0 0 0 0 0 #in kgm2
T_MATRIX 1.0 0.0 0.0 0.0 1.0 0.0 0.00.0 1.0 0.00.00.0
CAD_MODEL sn98.0

191



APPENDIX A: M ODULE DESCRIPTIONFILES

192



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

ARCNET Trade Association. 1992NSI/ATA 878.1—Local Area Network: Token Bus
(version 1.19

Baluja, S. 1995. An Empirical Comparison of Seven Iterative and Evolutionary Func-
tion Optimization Heuristics. Technical Report CMU-CS—-95-193. Computer Sci-
ence Department, Carnegie Mellon University.

Burdick, J. W. 1988. Kinematic Analysis and Design of Redundant Robot Manipula-
tors. Stanford Computer Science Report no. STAN-CS-88-1207.

Burdick, J. W. 1992 (May 12-14, Nice, France). A recursive method for finding revo-
lute-jointed manipulator singularitieBroceedings of the 1992 IEEE International
Conference on Robotics and Automatioos Alamitos, CA: IEEE, pp. 448—-453.

Benhabib, B., and Dai, M. Q. 1991. Mechanical Design of a Modular Robot for Indus-
trial Applications.Journal of Manufacturing Systemégol. 10. No. 4. pp. 297-306.

Carriker, W. F. 1995. A Rapid Prototyping System for Flexible Assembly. Ph.D. The-
sis. Department of Electrical and Computer Engineering. Carnegie Mellon Univer-
Sity.

Chedmail, P., and Ramstein, E. 1996 (April, Minneapolis, MN). Robot Mechanism
Synthesis and Genetic Algorithni&oceedings of the 1996 IEEE International Con-
ference on Robotics and Automatidfol. 4. Los Alamitos, CA: IEEE, pp. 3466—
3471.

Chen, I-M., and Burdick, J. W. 1995 (May 21-27, Nagoya, Japan). Determining Task
Optimal Modular Robot Assembly Configuratiof&oceedings of the 1995 IEEE
International Conference on Robotics and Automatiol. 1. Los Alamitos, CA:
IEEE, pp. 132-137.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

194

Chen, I-M. 1994. Theory and Application of Modular Reconfigurable Robotic Sys-
tems. Ph.D. thesis. Department of Mechanical Engineering. California Institute of
Technology.

Chow, E. Y., and Willsky, A. S. 1984. Analytical redundancy and the design of robust
failure detection systemiEE Transactions on Automation and Contngbl. 29.
No. 7. pp. 603-614.

Cohen, R. et al. 1992. Conceptual Design of a Modular Rdbahsactions of the
ASME: Journal of Mechanical Desigwol. 114. pp. 117-125.

Cole, J. R. 1995. Rapid Generation of Motion Plans for Modular Robotic Systems. M.S
Thesis. Department of Mechanical Engineering, Massachusetts Institute of Technol-

ogy.

Davis, L. 1985. Applying Adaptive Algorithms to Epistatic Domaidsceedings of
the International Joint Conference on Atrtificial Intelligenpp. 162—-164.

English, J. D., and Maciejewski, A. A. 1996 (April 22—-28, Minneapolis, MN). Fault
Tolerance for Kinematically Redundant Manipulators: Anticipating Free-Swinging
Joint FailuresProceedings of the 1996 IEEE International Conference on Robotics
and AutomationVol. 1. Los Alamitos, CA: IEEE, pp. 460-467.

Farritor, S., Dubowsky, S., Rutman, N., and Cole, J. 1996 (April, Minneapolis, MN). A
System-Level Modular Design Approach to Field Roboffteceedings of the 1996
IEEE International Conference on Robotics and Automata. 4. Los Alamitos,

CA: IEEE, pp. 2890-2895.

Fletcher, R. 1987Practical Methods of Optimization (Second EditioNgw York,
NY: John Wiley & Sons.

Fukuda, T., et al. 1992. Concept of cellular robotic system (CEBOT) and basic strate-
gies for its realizationComputers and Electrical Engineeringol. 18. No 1. pp. 11—
39.

Geist, A. et al. 1994VM (Parallel Virtual Machine): A Users’ Guide and Tutorial for
Network Parallel ComputingScientific and Engineering Computation Series. Cam-
bridge, MA: The MIT Press.

Gertz, M. W., and Khosla, P. K. 1994 (June, New Orleans, LA). Onika: A Multilevel
Human-Machine Interface for Real-Time Sensor-Based Robotic Sydteoreed-
ings of the 1994 Annual Meeting of the American Nuclear Society

Goldberg, D. E. 1989Genetic Algorithms in Search, Optimization, and Machine
Learning.Reading, MA: Addison-Wesley.

Goldberg, D. E., Deb, K., and Korb, B. 1991. Do not Worry, Be Md3syceedings
of the Fourth International Conference on Genetic AlgorithEds: Belew and
Booker. Los Altos, Ca: Morgan Kaufmann Publishers, pp. 24-30.

Golub, G. H., and Van Loan, C. F. 1988atrix Computations (second editigrBalti-
more: The Johns Hopkins University Press.



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Gottschalk, S., Lin, M. C., and Manocha, D. 1996 (August 4-9, New Orleans, LA).
OBB-Tree: A Hierarchical Structure for Rapid Interference Detect@appear in
Proceedings of ACM SIGGRAPH ‘96.

Gupta, K. C., and Roth, B. 1982. Design Considerations for Manipulator Workspace.
Transactions of the ASME, Journal of Mechanical Desigm. 104. pp. 704-711.

Holland, J. H., 1975Adaptation in Natural and Artificial System&nn Arbor, MI:
University of Michigan Press.

Hollander, M. and Wolfe, D. A. 197onparametric Statistical Method¥Viley
Series in Probability and Mathematical Statistics. New York, NY: John Wiley &
Sons.

Hui, R. et al. 1993 (May 2—-6, Atlanta, GA). Design of the IRIS Facility—a Modular,
Reconfigurable and Expandable Robot Test Baceedings of the 1993 IEEE
International Conference on Robotics and Automatiars Alamitos, CA: IEEE, pp.
155-160.

Johnson, B.W. 198®esign and analysis of fault-tolerant digital systefReading,
Mass.: Addison-Wesley.

Juels, A., and Wattenberg, M. 1994. Stochastic Hillclimbing as a Baseline Method for
Evaluating Genetic Algorithms. Technical Report CSD-94-834. Computers Science
Department, University of California at Berkeley.

Kelmar, L., and Khosla, P. K. 1990. Automatic Generation of Forward and Inverse
Kinematics for a Reconfigurable Modular Manipulator Systéournal of Robotic
SystemsVol. 7. No. 4. pp. 599-619.

Kim, J.-O. 1992. Task Based Kinematic Design of Robot Manipuld®r®. Thesis.
The Robotics Institute, Carnegie Mellon University.

Kim, J.-O., and Khosla, P. K. 1991. Dexterity Measures for Design and Control of
Manipulators.Proceedings of the IEEE/RSJ International Workshop on Intelligent
Robots and Systems (IROS'9dp. 758-763.

Kim, J.-O., and Khosla, P. K. 1992 (July 7-10, Raleigh, NC). A Multi-Population
Genetic Algorithm and Its Application to Design of Manipulat&m®mceedings of the
1992 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS'92)

Kim, J.-O., and Khosla, P. K. 1993 (May, Atlanta, GA). Design of Space Shuttle Tile
Servicing Robot: an Application of Task Based Kinematic Degtgaoceedings of
the 1993 IEEE International Conference on Robotics and Automation 3, pp.
867-874.

Kirkpatrick, S., Gelatt Jr., C. D., Vecchi, M. P. 1983. Optimization by Simulated
Annealing.ScienceVol 220. No. 4598, pp 671-680.

195



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

196

Kotosaka, S. et al. 1992 (September 21-22, Saitama, Japan). Development of a Func-
tionally Adaptive and Robust Manipulatétroceedings of the International Sympo-
sium on Distributed Autonomous Robotic Syst@ms85—90.

Koza, J. R. 199Z5enetic Programming: on the Programming of Computers by Means
of Natural SelectionCambridge, MA: MIT Press.

Krishnan, A. 1989. A Methodology to Determine the Dynamic Configuration of a
Reconfigurable Manipulator. M.S. Thesis. Electrical and Computer Engineering
Department, Carnegie Mellon University.

Lewis, C. L., and Maciejewski, A. A. 1994a. Dexterity Optimization of Kinematically
Redundant Manipulators in the Presence of Joint FailG@sputers and Electrical
Engineering Vol. 20. No. 3. pp. 273-288.

Lewis, C. L., and Maciejewski, A. A. 1994b (May, San Diego, CA). An Example of
Failure Tolerant Operation of a Kinematically Redundant ManipulBtoiceedings
of the 1994 IEEE International Conference on Robotics and Automatsmlam-
itos, CA: IEEE, pp 1380-1387.

Lin, C.-C. D., and Freudenstein, F. 1986. Optimization of the Workspace of a three-
Link Turning-Pair Connected Robot Arminternational Journal of Robotics
ResearchVol. 5. No. 2, pp. 104-111.

Luck, C. L., and Lee, S. 1994 (May, San Diego, CA). Global Path Planning of Redun-
dant Manipulators Based on Self-Motion TopoloByoceedings of the 1994 IEEE
International Conference on Robotics and Automatias Alamitos, CA: IEEE, pp.
372-377.

Manoochehri, S. and Seireg, A. A. 1990. A Computer-Based Methodology for the
Form Synthesis and Optimal Design of Robot Manipulatbransactions of the
ASME, Journal of Mechanical Desigviol. 112, pp. 501-508.

Matsumaru, T. 1995 (May 21-27, Nagoya, Japan). Design and Control of the Modular
Robot System: TOMM3?roceedings of the 1995 IEEE International Conference on
Robotics and Automatiohos Alamitos, CA: IEEE, pp. 2125-2131.

Michalewicz, Z. 1994Genetic Algorithms + Data Structures = Evolution Programs
(second edition)New York, NY: Springer Verlag.

Morrow, J. D., and Khosla, P. K. 1995 (May 21-27, Nagoya, Japan). Sensorimotor
Primitives for Robotic Assembly skill®roceedings of the 1995 IEEE International
Conference on Robotics and Automatibas Alamitos, CA: IEEE.

Morrow, J. D., Nelson, B. J., and Khosla, P. K. 1995 (August 5-9, Pittsburgh, PA).
Vision and Force Driven Sensorimotor Primitives for Robotic Assembly SRiits.
ceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS95Yol. 2. Los Alamitos, CA: IEEE, pp. 90-95.



[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Muhlenbein, H. 1992. Parallel Genetic Algorithm in Combinatorial Optimization.
Computer Science and Operations ReseaFs.: O. Balcki, R. Shandra, and S.
Zenios. New York, NY: Pergamon Press, pp. 441-456.

Murthy, S. S. 1992. Synergy in Cooperating Agents: Designing Manipulators from
Task Specifications. Ph.D. Thesis. Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University.

Murthy, S. S., Khosla, P. K., and Talukdar, S. N. 1993 (Nagoya, Japan). Designing
Manipulators from Task Requirements: An Asynchronous Team ApprBemteed-
ings of the 1st WWW Workshop on Multiple Distributed Robotic Systems

Nakamura, Y., and Hanafusa, H. 1986. Inverse Kinematic Solutions with Singularity
Robustness for Robot Manipulator Contidurnal of Dynamic Systems, Measure-
ment, and ControlVol. 108. pp. 163-171.

Nenchev, D. N. 1989. Redundancy Resolution through Local Optimization: A Review.
Journal of Robotic System¢ol. 6. No. 6. pp. 769—-798.

Paden, B., and Sastry, S. 1988. Optimal Kinematic Design of 6R Manipulaters.
national Journal of Robotics Reseayafol. 7. No. 2. pp. 43-61.

Pahl, G., and Beitz, W. 199Bngineering Design: A Systematic Approach (second edi-
tion). London, UK: Springer-Verlag.

Paredis, C. J. J. 1990. An Approach for Mapping Kinematic Task Specifications into a
Manipulator Design. M.S. Thesis. Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University.

Paredis, C. J. J., and Khosla, P. K. 1993. Kinematic Design of Serial Link Manipulators
From Task Specificationgnternational Journal of Robotics Researtfol. 12. No.
3. pp. 274-286.

Paredis, C. J. J., and Khosla, P. K. 1994 (May 8-13, San Diego, CA). Mapping Tasks
into Fault Tolerant Manipulator®roceedings of the 1994 IEEE International Con-
ference on Robotics and Automatitwes Alamitos, CA: IEEE, pp. 696—-703.

Paredis, C. J. J., and Khosla, P. K. 1996. Fault Tolerant Task Execution through Global
Trajectory PlanningReliability Engineering and System Safety (Special Issue on
Safety of Robotic Systemb) Press.

Paredis, C. J. J., Brown, H. B., and Khosla, P. K. 1996 (April 22—28, Minneapolis,
MN). A Rapidly Deployable Manipulator SysteriAroceedings of the 1996 IEEE
International Conference on Robotics and AutomatMal. 2. Los Alamitos, CA:
IEEE, pp. 1434-1439.

Pradeep, A. K., et al. 1988. Crippled motion in robtE&E Transactions on Aero-
space and Electronic Systerw&l. 24. No. 1. pp. 2-13.

Raghavan, M., and Roth, B. 1993. Inverse Kinematics of the General 6R Manipulator
and Related Linkage§ransactions of the ASME. Journal of Mechanical Design
Vol. 115. No. 3. pp. 502-508.

197



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

198

Roberts, R. G., and Maciejewski, A. A. 1996. A Local Measure of Fault Tolerance for
Kinematically Redundant Manipulator&EE Transactions on Robotics and Auto-
mation.Vol. 12. No. 4. pp. 543-552.

Roston, G. P. 1994. A Genetic Methodology for Configuration Design. Ph.D. Thesis.
Department of Mechanical Engineering and The Robotics Institute, Carnegie Mellon
University. (Also published as Technical Report CMU-RI-TR-94-42).

Rutman, N. 1995. Automated Design of Modular Field Robots. M.S. Thesis. Depart-
ment of Mechanical Engineering, Massachusetts Institute of Technology.

Schwefel, H.-P. 198 Numerical Optimization for Computer Modehichester, UK:
John Wiley.

Sims, K. 1994 (July 24-29, Orlando, FL). Evolving virtual creatures. Proceedings of
21st International SIGGRAPH Conference. New York, NY: ACM, pp. 15-22.

Sreevijayan, D. 1992. On the Design of Fault-Tolerant Robotic Manipulator Systems,
M.S. Thesis. Mechanical Engineering Department, The University of Texas at Aus-
tin.

Stengel, R. F. 1988. Intelligent failure-tolerant contteEE Control Systems Maga-
zine.Vol. 11. No. 4. pp. 2-13.

Stewart, D. B., and Khosla, P. K. 1995 (August 5-9, Pittsburgh, PA). Rapid Develop-
ment of Robotic Applications using Component-Based Real-Time SoftReve.
ceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’95Yol. 1. Los Alamitos, CA: IEEE, pp. 465-470.

Stewart, D. B. 1994/Real-Time Software Design and Analysis of Reconfigurable Multi-
Sensor Based Syster®h.D. Dissertation. Carnegie Mellon University, Department
of Electrical and Computer Engineering.

Strobel, R., and Johnson, A. 1993. Pocket Pagers in Lots of Ekte . SpectrumVol.
30, No. 9, pp. 29-32.

Suh, N. P. 1988The Principles of DesigrOxford, UK: Oxford University Press.

Talukdar et al. 1996Asynchronous Team Toolkit User’'s Guidieternal document.
Carnegie Mellon University.

Talukdar, S. N., de Souza, P. S., Murthy, S. S. 1993. Organizations for Computer-Based
Agents.International Journal of Engineering Intelligent Systems for Electrical Engi-
neering and Communicationgol. 1, No. 2. pp. 75-87.

Tanese, R. 1989. Distributed Genetic AlgoritifPmoceedings of the Third Interna-
tional Conference on Genetic Algorithne.: H. Schaffer, Morgan-Kaufmann, pp
434-440.

Tesar, D., and Butler, M. S. 1989. A Generalized Modular Architecture for Robot
StructuresManufacturing Reviewvol 2. No. 2. pp. 91-118.



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Ting, Y., Tosunoglu, S., and Tesar, D. 1993 (May 2—6, Atlanta). A control structure for
fault-tolerant operation of robotic manipulatoPsoc. 1993 IEEE Int. Conf. Robot.
Autom.Loa Alamitos, CA: IEEE, pp. 684-690.

Tong, C., and Sriram, D. 1992rtificial Intelligence in Engineering Design, Volume
1: Design Representation and Models of Routine DeSign,Diego, CA: Academic
Press.

Torn, A., and Zilinskas, A. 198%&lobal OptimizationLecture Notes in Computer Sci-
ence Vol. 350. Eds: Goos and Hartmanis. New York, NY: Springer Verlag.

Tsai, L.-W., and Morgan, A. 1985. Solving the Kinematics of the Most General Six-
and Five-Degree-of-Freedom Manipulators by Continuation Methodsasactions
of the ASME, Journal of Mechanism, Transmissions, and Automation in Désign
107, pp. 189-200.

Tsai, Y.-C., and Soni, A. H. 1984. The Effect of Link Parameter on the Working Space
of General 3R Robot Arm#&lechanism and Machine TheoMol. 19, No. 1, pp. 9—
16.

Vertut, J., and Liégois, A. 1981. General Design Criteria for Manipuldftashanism
and Machine Theoryol. 16. pp. 65-70.

Vijaykumar, R., Waldron, K. J., Tsai, M. J. 1986. Geometric Optimization of Serial
Chain Manipulator Structures for Working Volume and Dextefitye International
Journal on Robotics Researc¥ol. 5. No. 2. pp. 91-103.

Visinsky, M. L., Walker, I. D., and Cavallaro, J. R. 1993 (May 2-6, Atlanta, GA). Lay-
ered dynamic fault detection and tolerance for rokdetsc. 1993 IEEE Int. Conf.
Robot. AutomLos Alamitos, Calif: IEEE, pp. 180-187.

Visinsky, M. L., Walker, I. D., and Cavallaro, J. R. 1994 (May 8-13, San Diego, CA).
New Dynamic Model-Based Fault Detection Thresholds for Robot Manipulators.
Proceedings of the 1994 IEEE International Conference on Robotics and Automa-
tion. 1388-1395.

von Neumann, J. 1956. Probabilistic logics and the synthesis of reliable organisms from
unreliable component&utomata studies (Annals of mathematics studies, no. 34)
eds. C. E. Shannon and J. McCarthy. Princeton: Princeton University Press.

Wu, E. C., Hwang, J. C., and Chladek, J. T. 1995. Fault-Tolerant Joint Development
for the Space Shuttle Remote Manipulator System: Analysis and ExperiEERt.
Transactions on Robotics and Automatigol. 9. No. 5. pp. 675-684.

Yoshikawa, T. 1985. Manipulability of Robotic Mechanisifike International Jour-
nal of Robotics Researckol. 4. No. 2. pp. 3-9.

199



