WHAT GOES
AROUND COMES
AROUND...
AND AROUND...

Carnegic @& Andy Pavlo
MellOIl . =% Marcin Zukowski Coronation
University CWI// November 2024

https://db.cs.cmu.edu/
https://cs.cmu.edu/~pavlo
https://cs.cmu.edu/~pavlo

()

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency...

https://db.cs.cmu.edu/

@ Jo Kristian Bergum
ost legacy databases in this P structure

databases will replace m
fueled by natural language interfaces and deep 1Se.

ns. In other words:

Tensor and vector
| decade.Adisruption
| neural representatio

ges (NQL) replace the |structured query language
e 1980s.

177.2K
/SQL

Natural query langua

(SQUL).

330

?3 Carnegie Mellon
w o Database Group

https://db.cs.cmu.edu/

— ADACLCC s

s Gagan Biyani ne

| @ Jo Kristian Bergum
SQL is going to die at the hands of an Al ’'m serious

Tensor and vector databases|)
| decade. A disruption fueled b @mayowaoshin is already doin

| neural representations. Inotl ingests it into ChatGPT. Then

ural langua
Natural query languages (NC . guage.
- (sQU). This video demoes the output.
| 177.2K -
39 32 3 2.6M

F; Carnegie Mellon
=2 Database Group

https://db.cs.cmu.edu/

SQL s great! \
SQLis bad!

https://db.cs.cmu.edu/

NoT WEBSCALE"
SQL is great!

SQL is nad!

https://db.cs.cmu.edu/

()
QUJ (@]

SQL is great!

SQL is nad!

New Startups! J
Lots of $$$!

https://db.cs.cmu.edu/

NoT WEBSCALE™

' SQL is great!
SQL adopts
new features

& New Startups! J
Lots of $$$!

SQL is oad!

https://db.cs.cmu.edu/

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

Hierarchical (1960s

a 0! C.ICh era, and show lh‘n lhem are only a few
ba\u dau moddmg ndw» and most havu been around a long time. Later proposals e t W O r S
itably bear a strong bl to certain earlier proposals. Hence, it is a
worthwhile exercise to study previous proposals.

In addition, we present the lessons learned from the exploration of the proposals in each L]

era. Most current researchers were not around for many of the previous eras, and have R el a t l 0 n al 1 9 7 O S
limited (if any) ing of what was previously learned. There is an old adage that

he who does not understand history is condemned to repeat it. By presenting “ancient
history™, we hope to allow future researchers to avoid replaying history.

Unfortunately, the main proposal in the current XML era bears a striking resemblance to ° ° °

the CODASYL proposal from the early 1970, which failed because of its complexity. n t lt - e a t 1 O n S 1 S
Hence, the current era is replaying history, and “what goes around comes around™.

Hopefully the next era will be smarter.

s st st s s Extended Relational (1980s

“came on the scene”. Proposals have continued with surprising regularity for the
intervening 35 years. Moreover, many of the current day proposals have come from
researchers 100 young to have learned from the discussion of earlier ones. Hence, the

°
purpose of this paper is to summarize 35 years worth of “progress™ and point out what
should be learned from this lengthy exercis e I l | a I l l‘ S

We present data model proposals in nine historical epochs:

Hierarchical (IMS): Iate 1960's and 1970's o o

ect-Oriented (1980s
Relational: 1970°s and early I980 s

Entity-Relationship: 1970's

Extended Relational: 1980°s
Semantic: late 1970's and 1980°s

oot lae s 10 Object-Relational 1990s
https:/cmudb.io/wga06 Semi-Structured/XML (1990s

& & Carnegie Mellon
~'= Database Group

‘What Goes Around Comes Around

Michael Stonebraker
Joseph M. Hellerstein

Abstract

(f

https://db.cs.cmu.edu/
https://cmudb.io/wga06

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

Hierarchical (1960s

a 0! C.ICh era, and show lh‘n lhem are only a few
basic data moddmg ideas, and most have been around a long time. Later proposals e t W O r S BCE
itably bear a strong bl to certain earlier proposals. Hence, it is a
worthwhile exercise to study previous proposals.

In addition, we present the lessons learned from the exploration of the proposals in each L]

era. Most current researchers were not around for many of the previous eras, and have R el a t l 0 n al 1 9 7 O S
limited (if any) ing of what was previously learned. There is an old adage that

he who does not understand history is condemned to repeat it. By presenting “ancient
history™, we hope to allow future researchers to avoid replaying history.

Unfortunately, the main proposal in the current XML era bears a striking resemblance to ° ° °

the CODASYL proposal from the early 1970, which failed because of its complexity. n t lt - e a t 1 O n S 1 S
Hence, the current era is replaying history, and “what goes around comes around™.

Hopefully the next era will be smarter.

s st st s s Extended Relational (1980s

“came on the scene”. Proposals have continued with surprising regularity for the
intervening 35 years. Moreover, many of the current day proposals have come from
researchers 100 young to have learned from the discussion of earlier ones. Hence, the

°
purpose of this paper is to summarize 35 years worth of “progress™ and point out what
should be learned from this lengthy exercis e I l | a I l l‘ S

We present data model proposals in nine historical epochs:

Hierarchical (IMS): Iate 1960's and 1970's o o

ect-Oriented (1980s
Relational: 1970°s and early I980 s

Entity-Relationship: 1970's

Extended Relational: 1980°s
Semantic: late 1970's and 1980°s

oot lae s 10 Object-Relational 1990s
https:/cmudb.io/wga06 Semi-Structured/XML (1990s

& & Carnegie Mellon
~'= Database Group

‘What Goes Around Comes Around

Michael Stonebraker
Joseph M. Hellerstein

Abstract

(f

https://db.cs.cmu.edu/
https://cmudb.io/wga06

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

Hierarchical (1960s

Abstract r
This paper provides a summary of 35 years of data model proposals, grouped into 9

different eras. We discuss the proposa

of each era, and show that there are only a few " "
ba\u dau modeling ideas, and most have been around a long time. Later proposals e t W O I S Before Codd Era

ly bear a strong to certain earlier proposals. Hence, it is a
worthwhile exercise to study previous proposals.

In addition, we present the lessons learned from the exploration of the proposals in each L]

era. Most current researchers were not around for many of the previous eras, and have R el a t l 0 n al 1 9 7 O S
limited (if any) ing of what was previously learned. There is an old adage that

he who does not understand history is condemned to repeat it. By presenting “ancient
history™, we hope to allow future researchers to avoid replaying history.

Unfortunately, the main proposal in the current XML era bears a striking resemblance to ° ° °

the CODASYL proposal from the early 1970, which failed because of its complexity. n t lt - e a t 1 O n S 1 S
Hence, the current era is replaying history, and “what goes around comes around™.

Hopefully the next era will be smarter.

s st st s s Extended Relational (1980s

“came on the scene”. Proposals have continued with surprising regularity for the
intervening 35 years. Moreover, many of the current day proposals have come from
researchers 100 young to have learned from the discussion of earlier ones. Hence, the

°
purpose of this paper is to summarize 35 years worth of “progress™ and point out what
should be learned from this lengthy exercis e I l | a I l l‘ S

We present data model proposals in nine historical epochs:

Hierarchical (IMS): Iate 1960's and 1970's o o

ect-Oriented (1980s
Relational: 1970°s and early I980 s

Entity-Relationship: 1970's

Extended Relational: 1980°s
Semantic: late 1970's and 1980°s

oot lae s 10 Object-Relational 1990s
https:/cmudb.io/wga06 Semi-Structured/XML (1990s

& & Carnegie Mellon
~'= Database Group

‘What Goes Around Comes Around

Michael Stonebraker
Joseph M. Hellerstein

(f

https://db.cs.cmu.edu/
https://cmudb.io/wga06

)

(f

What Goes Around Comes Around... And Around...

Michael Stonebraker
Massachusetts Institute of Technology
stonebraker@csail.mit.edu

ABSTRACT

Two decades ago, one of us co-authored a paper com-
menting on the previous 40 years of data modelling re-
search and development [188]. That paper demonstrated
that the relational model (RM) and SQL are the prevail-
ing choice for database management systems (DBMSs),
despite efforts to replace either them. Instead. SQL ub-
sorbed the best ideas from these alternative approaches
We revisit this issue and argue that this same evolu-
tion has continued since 2005. Once again there have
been repeated efforts to replace cither SQL or the RM.
But the RM continues to be the dominant data model
and SQL has been extended to capture the good ideas
from others. As such, we expect more of the same in
the future, namely the continued evolution of SQL and
relational DBMSs (RDBMSs). We also discuss DBMS
d argue that the major
have been in the RM systems, primarily driven by chang-
ing hardware characteristics.

1 Introduction

In 2005, one of the authors participated in writing a
chapter for the Red Book titled “What Goes Around
Comes Around” [188]. That paper examined the major
data modelling movements since the 1960s:

Hierarchical (e.g.. IMS 19605 and 19705
Network (e.2.. CODASYL): 1970s

Relational: 19705 and carly 19805
Entity-Relationship: 19705

Extended Relational: 1980s

Semantic: late 19705 and 1980s

Object-Oriented: late 1980s and carly 1990
Object-Relational: late 1980s and early 1990s
Semi-structured (e.g.. XML): late 1990s and 20005

Our conclusion was that the relational model with an
extendable type system (i.c., object-relational) has dom-
inated all comers, and nothing else has succeeded in
the marketplace. Although many of the non-relational
DBMSs covered in 2005 still exist today, their vendors
have relegated them o legacy maintenance mode and

nobody is building new applications on them. This per-
sistence is more of a testament to the “stickiness™ of data

SIGMOD Record, June 2024 (Vol. 53, No. 2)

Andrew Pavio
Carnegie Mellon University
pavio@cs.cmu.edu

rather than the lasting power of these systems. In other
words, there still are many IBM IMS databases running
today because it is expensive and risky to switch them
10 use a modern DBMS. But no start-up would willingly
choose to build a new application on IMS.

A lot has happened in the world of databases since our
2005 survey. During this time, DBMSs have expanded
from their roots in business data processing and are now
used for almost every kind of data. This led to the “Big
Data” era of the carly 2010s and the current trend of inte-
grating machine learning (ML) with DBMS technology.

In this paper, we analyze the last 20 years of data
model and query language activity in databases. We
structure our commentary into the following areas: (1)
MapReduce Systems, (2) Key-value Stores, (3) Docu-
ment Databases, (4) Column Family / Wide-Column,
(5) Text Search Engines, (6) Array Databases, (7)
Vector Databases. and (8) Graph Databases.

We contend that most systems that deviated from
SQL or the RM have not dominated the DBMS land-
scape and often only serve niche markets. Many sys-
tems that started out rejecting the RM with much fanfare
(thi 0SQL) now expose a SQL-like interface for RM
databases. Such systems are now on a path to conver-
gence with RDBMSs. Meanwhile, SQL. incorporated
the best query language ideas to expand its support for
madem applications and remain relevant,

Although there has not been much change in RM
fundamentals, there were dramatic changes in RM sys-
tem implementations. The second part of this paper
discusses advancements in DBMS architectures that ad-
dress modern applications and hardware: (1) Columnar
Systems, (2) Cloud Databases. (3) Data Lakes / Lake-
houses, (4) NewSQL Systems, (5) Hardware Acceler-
ators, and (6) Blockchain Databases. Some of these
are profound changes to DBMS implementations. while
others are merely trends bascd on faulty premises.

We finish with a discussion of important considera-
tions for the next generation of DBMSS and provide part-
ing comments on our hope for the future of datab:
both research and commercial settings.

ises in

https:/cmudb. 1o/wqa24

Carnegie Mellon
~'= Database Group

WHAT GOES AROUND COMES AROUND...

AND AROUND...
SIGMOD RECORD (2024)

Key-Value (1990s
MapReduce (2000s
ocument/ JSON (2000s
olumn-family (2000s
raph (2000s
ext Search (1960s
rray (1990s
ector (2020s

https://db.cs.cmu.edu/
https://cmudb.io/wgaca24

WHAT GOES AROUND COMES AROUND...

AND AROUND...
SIGMOD RECORD (2024)

Key-Value (1990s
MapReduce (2000s
ocument/ JSON (2000s
olumn-family (2000s
raph (2000s
ext Search (1960s

What Goes Around Comes Around... And Around...

Michael Stonebraker Andrew Pavio
Massachusetts Institute of Technology Carnegie Mellon University
stonebraker@csail.mit.edu pavio@cs.cmu.edu

ABSTRACT

Two decades ago, one of us co-authored a paper com- rather than the lasting power of these systems. In other
menting on the previous 40 years of data modelling re- words, there still are many IBM IMS databases running
search and development [188]. That paper demonstrated today because it is expensive and risky to switch them

TLDR: RM+SQL remains
the best approach for
most applications.

(think NoSQL) now expose a SQL-like interface for RM
databases. Such systems are now on a path to conver-
ca ate 1960s and 19705 gence with RDBMSs. Meanwhile, SQL incorporated
Network (e.¢.. CODASYL): 1970s the best query language ideas to expand its support for
Relational: 1970s and early 19805 modern applications and remain relevant.
Entity-Relationship: 19705
Extended Relational: 1980s

Sel tic: late 1970s and 1980s

OMeS ATOL - TIAL paper examine:
data modelling movements since the 1960s:

Although there has not been much change in RM
fundamentals, there were dramatic changes in RM sys-
tem implementations. The second part of this paper

)

(f

Object-Oriented: late 1980s and early 1990s
Object-Relational: late 1980s and early 1990s
Semi-structured (e.g.. XML): late 19905 and 20005

Our conclusion was that the refational model with an
extendable type system (i.c., object-relational) has dom-
inated all comers, and nothing else has succeeded in
the marketplace. Although many of the non-relational
DBMSs covered in 2005 still exist today, their vendors
have relegated them o legacy maintenance mode and
nobody is building new applications on the
sistence is more of a testament to the “stickiness™ of data

his per-

SIGMOD Record, June 2024 (Vol. 53, No. 2)

discusses advancements in DBMS architectures that ad-
dress moder applications and hardware: (1) Columnar
Systems. (2) Cloud Databases. (3) Data Lakes / Lake-
houses, (4) NewSQL Systems, (5) Hardware Acceler-
ators, and (6) Blockchain Databases. Some of these
are profound changes to DBMS implementations. while
athers are merely trends based on faulty premises.

We finish with a discussion of important considera-
tions for the next generation of DBMSS and provide part-
ing comments on our hope for the future of databases in
both research and commercial settings.

https:/cmudb. 1o/wqa24

Carnegie Mellon
~'= Database Group

rray (1990s
ector (2020s

https://db.cs.cmu.edu/
https://cmudb.io/wgaca24

> o
- v

KEY-VALUE STORES

Associative array that maps a key to a value.

— Value is typically an untyped byte array
that the DBMS cannot interpret.

(key, value)

@ Distributed KV Stores:

— Shared-nothing DBMSs for caching + session data.
— Provide higher/predictable performance instead of a more
complex query language and features.

amazon
DynamoDB

<EROSPIKE

Seveios [VIDB Embedded Storage Managers:

WIRED .. o — Low-level API systems that run in the same address space as a

Yot . o
HIGER higher-level application.
#* RocksDB (@) SPLINTERDB

Carnegie Mellon
Database Group

https://db.cs.cmu.edu/

KEY-VALUE STORES

Some distributed KV stores realized that expressive

APIs are important and evolved into document stores.

— [f value is opaque, applications must implement more complex
logic / types.

— Better to start with a RM DBMS than to contort a KV DBMS
to use a more complex data model (e.g., Postgres hstore).

Discussion:

— Embedded KV storage managers make it easier to create full-
featured DBMSs.

— Very few commercial success stories for KV storage managers.

Carnegie Mellon

()
;‘: Database Group

https://db.cs.cmu.edu/
https://www.postgresql.org/docs/current/hstore.html

MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution
model for analyzing large data sets.

Data model decided by user-written functions.
— Map: UDF that performs computation + filtering
— Reduce: Analogous to GROUP BY operation.

SELECT map() FROM crawl_table GROUP BY reduce();

@ hesbep MapReduce Frameworks:

MAPR — Internal implementation at Google (2003).

Yy, — Yahoo! created the open-source version Hadoop (2005).
HORTONWORKS®

Carnegie Mellon

()
L‘: Database Group

https://db.cs.cmu.edu/

08
£01:10.1145/1629175.16291
abases

dva
MapReduce & .
include storage sl
fine-grain fault to

BY JEFFREY DEAN AN

MapReduce:

1 dat:
over paralle
m:tzer: independel_ice and
yerant:e for large jobs.

D SANJAY GHEMAWAT

Flexible

ta
I?’?ocessmg

Tool

AAP) C A 1 mode
E IS A Progre mming I
CE
MAPREDU
and generating arge da .\:(’
map function rocesses
I that P
y 3
ate aseto nte mediate
a

key/v

] lar; y
e 5 1oes . » kev sourcesofa o
. ciedvith he : W"‘“Cd“‘“ l\L)- typical MapReduce Cf’n(pdma on hun-
areduce !u“_ ted with the same 1n ming model opical MarF wm\glifmacmnes. %
-5 associate ic program g o e
values ass around this prog gm T e

i Y ; . . 22, e
skl truction of the inv

- 0,0 ‘
: ifv cons > nce re than 10 0 fapReduce
in 2003 to simplify con . at Google.com. S on and n\«:mcmd e
adex 1ling searches 2 e o
e II) 000 distinct progra .l avebeen |
-e than 10, 2 e at Google, g .
then, more tl]l 1sing MapReduce .\F : ‘S:in”.v e mpm“oparal}:ll::m e
implemented using scale graph processing (X ine | Compredropaa M
e) d d

e laroe-
aloorithms for Id‘l ?L‘L
s 1 y achine

~essing, mac
Hyrocessing, m : -
ltr-\nslminn. The Hadoof
ans

statistic
learning, and statist
open source

forprocessing | et of machi S
s l)‘STLLSSl b e ne. filur s’m:nd manag.m}i(:;
u : l‘\v »] unicati o
;.1 Users speci)
ts.l'l?\'f\“\luc pair to
o key! alue pairs and
2

all intermediate

implementation

contributed articles

of MapReduce has been use exten-
d ext
f MapReduce has

sively outside u:l f:m)g
mgdn”‘m\mniil'ustralc the ‘Via.pRCd\;\;;
e p'nr model, consider -
‘"“m‘r iuuming the number (|.
eachwordinalarge cod
: s. The user woul

following pseudo-

progr
problem of
oceurrences of "
lection of do_cumcl

write code like the

code:

i ue):
(String key, String valt
mal/’/ key: document r*amewennS
// value: document c\?al:xe
EmitInte:
i Tterator values):
reduce(string key,

: a word
//§)\(:{ues: a list of counts

result = 0;
int result = :
for each v in val::w\‘
+= Parse)i
result

Emit (AsSLring(resulr,));

The map function emit
associa
lus an associate :
Eiust *1'in this simple
duce function sums

i ord.
emitted for a particularw b okl

MapReduce automatical
leliz
large cluster of ¢
The runtime
details of pa

duli
c

s each word
i led(‘ounlofoccurrcncc%
example). The re
together all counts

na
5 rogram o
J ecutes Ihep m o8 &
i ommodity m:u.hlml :
em takes care of the
i ta,
rtitioning the input d:(m
's execul
the program : xecutl

machine iailurc‘h and o

quired inter-mac i

MapReduce it
erience Wi

no experie A

tributed systems to easi

grammers find the

al
lel database systems are

s with

s programmers with
e g:allcl and dis-
ly utilize the re-
ge distributed system. A

00 MapReduce

Contributeqd articles

Dﬂl:lﬂ.lliS/ll2H175.1529107

MapReduce complements DBMSs since
databases are not designed for extract-
transform-loaq tasks, a MapReduce Specialty.

BY MICHAEL STONEBRAKER, DANIEL ABADI,
DAVID J. DEWITT, SAM MADDEN, ERIK PAULSON,
ANDREW PAVLO, AND ALEXANDER RASIN

MapREdUCe
and Parallel
DBMSs:
Friends

or Foes?

THE MAPREDUCE’ (MR) PARADIGM has been hailed asa
revolutionary new platform for large-scale, massively
parallel data accesg,1¢ Some proponents claim the
extreme scalability of MR wil] relegate relational
database Mmanagement systemsg (DBMS) to the status
oflegacy technology. At least one enterprise, Facebook,
has implemented » large data warehouse system
using MR technology rather than a DBMs, 1

Here, we argue that using MR systems to perform
tasks that are best suited for DBMSs yields less than
satisfactory results, concluding that MR js more
like an extract-transform-load (ETL) system than a

64 COMMUNICATIONS OF THE ACM | JANUARY 2010 | yor 53 1 ND. 2

DBMS, as it quickly loads and pro-
cesses large amounts of data in an
ad hoc manner, As such, it comple-
ments DBMS technology rather than
competes with it. We also discuss the
differences in the architectural deci-
sions of MR systems and database
systems and provide insight into how
the systems should complement one
another,

The technology press has been fo-
cusing on the revolution of “cloyd
computing,” a paradigm that entajls
the harnessing of large numbers of
Processors working in parallel to solve
computing problems, In effect, this
suggests constructing a data center by
lining up a large number of low-end
servers, rather than deplo_ving asmall-
€r set of high-end servers, Along with
this interest in clusters has come a
iferation of tools forprogramming

them. MR is one such tool, an attrac-
tive option to many because it provides
a simple mode] through which users
are able to express relatively sophisti-
cated distributed programs,

Given the interest in the MR model|
both commercially and academically,
it is natural to ask whether MR sys-
tems should replace parallel database
systems. Parallel DBMss were first
available commercially nearly two de-
cades ago, and, today, systems (from
about a dozen vendors) are available,
As robust, high-performance comput-
ing platforms, they provide a high-
level Programming environment that
is inherently parallelizable, Although
it might seem that MR and paralle]
DBMSs are di[fcrcm, it is possible to
write almost any parallel-proces ing
task as eithera set of database queries
oraset of MR jobs,

Our discussions with MR users lead
Us to conclude that the most common
use case for MR is more like an ETL sys-
tem. As such, it is complementary to
DBMSs, not a competing technology,
since databases are not designed to be
good at ETL tasks Here, we describe
what we believe he ideal use of MR
technology and highlight the different
MR and parallel DMBS markets,

https://db.cs.cmu.edu/
https://doi.org/10.1145/1629175.1629198
https://doi.org/10.1145/1629175.1629197

MAPREDUCE SYSTEMS

People remembered that procedural query
languages are (usually) a bad idea.

MR vendors put SQL engines on top of Hadoop.

Hadoop technology/services market crashed.
Google announced dropping MR in 2014.

Discussion:

— Companies kept HDFS but replaced Hadoop
compute layer with relational query engines.

— Aspects of MR carried into distributed DBMSs
(disaggregated compute/storage, shuffle phase).

B

SHIVE
MAIPRr-DB

0

HAWQ

presto =

APACHE

aFlink

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Represent a database as a collection of document objects

that contain a hierarchy of field/value pairs.

— Each document field is identified by a name.

— A field's value is either a scalar type, array of values, or another
document.

— Applications do not predefine schema.

{<field>: <scalar|[values]|{document}>}

® MongoDB. NoSQL Document-oriented Systems:

s8CouchDB _, Non-standard / procedural query languages

EA%NDB — Defined by what they lack instead of what they provide.
Couchbase

Carnegie Mellon

()
L‘: Database Group

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Document model is the same as previous models =~ VERSANT

with many of the same problem:s. & ObjectStore

— Object-Oriented (1980s)

— Semi-Structured / XML (1990s). (g.;
'.MarkLogiG’

Core idea is denormalization ("pre-joining"):
— Avoid object-relational impedance mismatch between
application code and DBMS data model.

— Avoid need for joins / multiple queries to retrieve data
related to an object (N+1 SELECT Problem).

Carnegie Mellon

()
L‘: Database Group

https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

> o
- v

Carnegie Mellon
Database Group

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned

(most) of the lessons from the 1970s:

— SQL APIs are a good idea.

— Schemas + integrity constraints are a good idea.
— Transactions are a good idea.

— Logical/physical data independence is a good idea.

https://db.cs.cmu.edu/

> o
- v

Carnegie Mellon
Database Group

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned Hmazlyg * PartiQL

(most) of the lessons from the 1970s: ZT¥ cassandra % CQL
— SQL APIs are a good idea. < AQL

— Schemas + integrity constraints are a good idea.
— Transactions are a good idea.
— Logical/physical data independence is a good idea.

Q Couchbase = SQL++

https://db.cs.cmu.edu/

- Carnegie Mellon
"% Database Group

13

D 0 C U M E QMongoDB, Q

Almost every major N lntrOdUCing the Atlas\SQL
(mlz)lst) of the lessons frmIake=Y face, Connectors, and

— SQL APIs are a good id Driver)

— Schemas + integrity co
— Transactions are a goo
— Logical/physical data in,

Alexi Antonino
,@ June 7, 2022 | Updated: June 8, 2022
#MongoDB World

We're excited to announce the Atlas SQL Interface, Connectors, and Drivers, which are
now available for public preview. This feature empowers data analysts, many of whom
are accustomed to working with SQL, to query and analyze Atlas datg using their existing
knowledge and preferred tools. Additionally, because the Atlas SQL Interface leverages

Atlas Data Federation for its query engine, you can access data across Atlas clusters and
cloud object stores using a single SQL query.

The Atlas SQL Connectors and Drivers allow you to connect MongoDB as a data source

for your SQL-based business intelligence (BI) and analytics tools, resulting in faster
insights and consistent analysis on the freshest datq. You'll be able to seamlessly create
visualizations and dashboards to more easily extract hidden value in your multi-

structured data - without relying on time-consuming procedures like data movemant ~»

https://db.cs.cmu.edu/
https://www.mongodb.com/blog/post/introducing-atlas-sql-interface-connectors-drivers

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned Hmazlyg * PartiQL

(most) of the lessons from the 1970s: ZT¥ cassandra % CQL
— SQL APIs are a good idea. 5 AQL

— Schemas + integrity constraints are a good idea.
— Transactions are a good idea.
— Logical/physical data independence is a good idea.

Q Couchbase = SQL++

Discussion:

— SQL:2016 added JSON operators, SQL:2023 added JSON types.
— The intellectual distance between relational+JSON DBMSs and
document+SQL DBMSs has shrunk.

Carnegie Mellon

()
L‘: Database Group

https://db.cs.cmu.edu/

> o
- v

COLUMN-FAMILY / WIDE-COLUMN

Reduction of the document data model that only
supports one level of nesting.

— A record's value can only be a scalar or an array of scalars.
— Deficiencies are the same as the document model.

{<field>: <scalar|[values]>}

HBARSE
% cassandra

SCYLLA.

Column-Family System:s:

— First implementation was Google's Bigtable (2004)
— Copied by several Internet start-ups.

Carnegie Mellon
Database Group

https://db.cs.cmu.edu/

V 7/ LUTNDE-CNIlIMN

COLUMN-FAM

Reduction of the docuj

supports one level of n
— A record's value can on
— Deficiencies are the san

{<field>: <scals

® Column-Famil,

HBASE — First implement

<G & cassandra 5 Copied by sever:
SCYLLA.

Google Cloud

Databases

Bigtable transforms the developer
experience with SQL support

August 2, 2024

Christopher Crosbie
Group Product Manager, Google

Gary Elliott
Engineering Manager, Bigtable

Bigtable is a fast, flexible, NoSQL database that powers core Google services such as Search,
Ads, and YouTube, as well as critical applications for customers such as PLAID and Mercari.
Today, we're announcing Bigtable support for GoogleSQL, an ANSI-compliant SQL dialect

Bigtable SQL support allows Yyou to query Bigtable data using the familiar GoogleSQL syntax,
making it easier for development teams to work with Bigtable's flexibility and speed. With over
100 SQL functions at launch, Bigtable sqQL support also makes it easy to analyze and process
large amounts of data directly within Bigtable, unlocking its potential for a wider range of use

cases, ranging from JSON manipulation for log analysis, hyperloglog for web analytics, or kNN
for vector search and generative Al

& & Carnegie Mellon
g Database Group

https://db.cs.cmu.edu/
https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable

GRAPH DATABASES

Direct multigraph structure that supports key/value

labels for nodes and edges.
— Property Graph vs. Resource Description Framework (RDF)

Node (id, {key: value}x*)
Edge (node_id,, node_id,, {key: value}x*)

@neosj Property Graph DBMSs:

~orientoe — Provide graph-oriented traversal APIs.
y 0
) ticercraph —> Inefficient schemaless storage.
I A MEM

Carnegie Mellon

()
L‘: Database Group

https://db.cs.cmu.edu/

GRAPH DATABASES

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.

— Worst-case Optimal Joins
— Vectorized Query Execution
— Factorized Query Processing

Discussion:

— SQL:2023 introduced SQL/PGQ (based on Neo4j Cypher,
Oracle PGQL, TigerGraph GSQL) + emerging GQL standard.
— Studies show that RM DBMSs outperform graph DBMSs.

Carnegie Mellon

()
;‘: Database Group

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL

GRAPH DATA

DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS

Daniel ten Wolde Tavneet Singh Gabor Szarnyas Peter Boncz
Cwi CcwlI CwWI Cwr
The Netherlands The Netherlands The Netherlands The Netherlands
dljtw@cwi.n] tavneetsingh@cwi.nl gabnr.szarnyas@chnI boncz@cwi.nl
.
th e S a I I l e a_ S t l 1 e ABSTRACT vectorized query execution or Just-In-Time low-fevel compilation
l I I O e 1 S In the past decade. property graph databases have emerged as a of queries into executable programs,

r a, . growing niche in data management, Many native graph systems . The upcoming SQL:2023 introduces the SQL/PGQ (Property
. < and query languages have been created, but the functionality and Graph Queries) sub-language [8], which allows (1) to define graph
S am e 1 S e performance sill leave much room for improvement. The upcoming VIEWs over relational tables and (2) to formulate graph pattern
S W]_ SQL:2023 will introduce the Property Graph Queries (SQL/PGQ) matching and path-finding operations USing a SQL syntax. These
sub-language, giving relational systems the opportunity to standard- features narrow the functionality 8ap between RDBMSs and native
ize graph queries, and provide mature graph query functionality, graph systems, and unify the feature space with a common graph
1 We argue that (i) competent graph data systems must build on duery sub-language, as PGQ is also a su bset of the upcoming IS0
. ° n all technology that makes up a state-of-the-art relational system, Graph Query Language GQL (8] that native graph systems intend
r]_t S a C (ii) the graph use case requires the addition to that of a many- to adopt. GOL will ady graph updates, querying multiple graphs
nt S 1 n a O [I 1 Soueeestination path-fdin lgritsnd et rep - and queries that eturn a graph pesul sagher g binding table.
A ‘ 7 a I I C e I I I e resentation, and (i) incites research in practical worst-case-optimal SQL/PGQ by example. If we have relational tables student and

Joins and factorized query processing techniques, comtese and connecting tables inow and ol we can define & prop-

We outline our design of DuckPGQ that follows SIS ertygrahrg SONSIsting of person vertexes connected to each othey

L]
Cl;
I] 1 ‘ 7 a e O S e 1 by adding effcient SQL/PGQ support 1g the Pooler bpanaoimes: [JERC I oo boomand 10 Colege vertexes via s tutiesns edges:|
t e p e r C e 1 e a ‘embeddable analytics” relational database system DuckDB, also

originally developed at CW1, Our design aims at minimizing techni- CREATE PROPERTY GRAPH [
= s i cient veotors VERTEX TaABLES(

cal debt using an approach that relies on efficient vectorized UDFs. Student PROPERTIES (i, name b rthdate) LAGEL rerson,
We benchmark DuckPGQ showing encouraging performance and College PROPERTIES (id.collegey)

.
.

t]_ I I I al]O ln S scalability on large graph data sets, but alu, reinforcing the need | £0Ge TapLes
Worst_case for uture research unde (i) know SOURCE Person KEY(id) DESTINATION person KEV(id)

PROPERTIES (createDate , msgCount

enrol SOURCE Student KEY(id) DESTINATION College Kev(id)

.
. l :Xecutlon 1 INTRODUCTION PROPERTIES (classYear) LABEL studiesat)
to rlZe d ue r , Graph Database systems have emerged as a growing niche in data In the below setect query the usrey will bind variable a to all
—_—> e C Tronagement, with many property graph systems [7] such as Neotj, vertexes that satisfy a label-test -rerson and have Property nane-
. 3 , -
Tlgc'(‘-fapflv Dgraph, Titan and AWS Neptune becoming available, 2" The comma separating the two Pattern expressions implies a
. P r O C e S s 1 I l g all using different query languages (i.c., Cypher, GSQL, CraphOL, o ction? with matching variable bindings: it requires a to glgg
H rl Z e u e r Gremlin, SPARQL [2]). Property Graphs are directed graphs consist- have an edge labeled stugipoxt towards a college ¢:
a_C ing of vertex and edge elements; whemclemcmsmayhavelabels SELECT study. college, Study.pid FRON GRAPH_TABLE vz,
and associated key/value Properties. Property graph systems are HATCH (a:Person WHERE a.names o v
quite young, and performance of analytical queries on large graphs mwms‘ a::[::;i': l:i*;ﬂf’;é;lcﬁé:gszs P>y stud
has been observed to be significantly lower than relational database o = %
Systems, on graph queries that can also be formulated as SQL [16].

In RDBMS designs, there have been significant performance The ra1ch clause produces conceptual binding table with cach
° improvements in the past decade, with analytical systems such row holding matched bindings and one column for each variable,
° ° as Snowflake and Databricks adopting principles like skippable These bindings denote elements (€8 a vertex or edge); the covums
S 1 0 n s columnar storage with lightweight compression [24] (also pop- jyuse retrieves scalar values from those, The example retrieves the
l ular in open-source formats such as Parquet and ORC), efficient property c.college and the implicit element identifier? of 4, as the
load-balanced mul ism using * 1-d; schedul- columns of a temporary capy. as, ¢ named study in the rr clause.
. ing [15] and efficient query execution techniques [14; s Y
O | I C e e e =t " The table name is the default abel, DckPGQ allows an additional LABEL listof max
. This paper is published under the Cr mmons ion 4.0 International length 61, and a BIGINT LABEL Fom co) specifer column. Elements only have 5
ﬁ . {CC-BY 4.0) license. Authors reserve their rights disseminate the work on their Jabel from the it if their corresponding bit s o This allows e.g. to express class
personal and corporate Web sites with the SPpropriate attibution, provided that you terabership with inheritance in abels. DuckPGQ wil oot support having the same

. S I / sttribute the original work to the authors and CITgk 2023. 13th Annual Conference on abel in mubtiple tables, as element patterns always bind to o single table
e r r a Innovative Data Systems Research (CIDR "23), January 8.11, 2023, Amsterdam, The Inside path expressions, the | will UNION pattern bindings, and 1+1 stands for Un1on
O r aC e) Netherlands. A tiahough oeiher s supported initialy in DuckPog)
Studies show that RM DBMSs out

JELEMENT_ID() s implementation-dependent; in DuckPGQ it returns rowid.

- Carnegie Mellon
g Database Group

(f

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

GRAPH DATA

DuckPGQ:

Efficient Property Graph Queries in an analytical RDBMS

Daniel ten Wolde Tavneet Singh Gabor Szarnyas Peter Boncz
CwI Ccwi Cw1 Cwi
The Netherlands The Netherlands

The Netherlands The Netherlands
dljtw@cwi.n] tavneet.singh@cwi.nl gabor.szarnyas@cwi.n] boncz@cwi.nl
.
G h model is the same as the ABsTRACT

Vvectorized query execution or Just-In-Time low-leve] compilation
In the past decade, Property graph databases have emerged ible programs.
growing niche in datg

. 2023 introduces the SQLIPGQ (Property
° Buage [8], which allows (1) to define graph
! SYL (1 9 70q\ \A71 1—}1 CaMaoa 1c ibles and (2) to formulate graph pattern

ing operations usin, aSQL syntax. These
g op g

t [] ftionality gap between RDBMSs and natiye
X —
n Dec 30, 2021 | parent | ne

the feature space with a common graph
PGQ is also a subset of the upcoming ISO

DB as # 1 FOL (8] that native graph systems intend
* 10 points by apavio 0 L DB finally succumbs to Graph

> Databases in 2030: SQ

will not overta ‘ 'm wrong, I wi
Graphidatabeses ent. Reach out to me in 2030. If I'm
. mm C
Bookmark this co

l' :ﬁ‘:::)f:hﬂaxel LABEL Person,
. s "Graph
: hirt that say
ith one of me wearing a si et fired, or a former
y Offl(:ial CMU phOtO W::: - that phOtO unt" I ret""e, g the mrch will bind variable 3 to a1
m I will us

Jtest -person and have Property nane-

e IWo pattern expressions implies a

1 n iable bindings: it requires a to also
tabases Are #1".

towards a college
SELECT study college, study Pid FROM GRAPH_TABLE (pE.
STFTOPErty graph systems are HATCH (a:Person WHERE a.mamec D3
r'\‘ Ie OEVBURE and performance of anal ytical queries on large graphs () -[:studiesat]->(c: College)
t dent Sta bS * K:;bcy:mticmf:obes.gmﬁmm]ylzwmzm relauun.\ﬁht;ab):se OIS (e college. eLeneNT_Io (3} As piay) =l
S u Systems, on graph queries that can also be formulated as SQL [16]
In RDBMS designs, there have been significant performance The ratch clause produces a conceptual binding table with cach
improvements in the past decade, with analytical systems such row holding matched bindings and one column for each variable,
L] hd ° as Snowflake and Databricks adopting principles like skippable These bindings denote elements (e, a vertes or edge); the coums
D S 10 n columnar storage with lightweight Sompression [24] (also pop- gjauce retrieves scalar values from those. The example retricves the
lS C u ° ular in open-source formats such as Parquet and ORC), efficient

Property c. college and the implicit element identifier® of s, as the
load-balanced multi-core parallelism using “morsel-driven” schedul- columns of a temporary capy. as, ¢ named study in the frov clause,

. ing [15] and efficient query execution techniques [14]: cither using
O uCe " The table name is the default abel, DukPGQ allows an additional LABEL lisg of max

i length 64, and a BIGINT LABEL Faow <0l specifier columa. Elements only have a
9) license. Authors reserve their Tights to disseminate the work on their label from the list if their corresponding bit js set This allows e.g. to express class
personal and corporate Web sites with the ppropriate attribution, provided that you membership with inheritance in labels. 1 uckPGQ will not support having the same
. attribute the original work to the authors and CIDR 2023, 13th Annual Conference on label in multiple tables, as elern e gle table.
O 1 P (; Q I lg e r rap iamovative Data Systems Research (CIDR ‘23 fou 3 0

uary 811, 2023, Amsterdam, The
Netherland,

— Studies show that RM DBMSs out

fraph updates, Aquerying multiple graphs

87aph result, rather than a binding table.

tS h a re - f we have relational tables student and
nal databases in 2030 by marke

Ples know and encol, we can define 5 prop-
Person vertexes connected to each other
10 College vertexes via s tudjesae edges:!

eDate , msgCount),

- Carnegie Mellon
g Database Group

(f

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/
https://news.ycombinator.com/item?id=29737326

TEXT SEARCH ENGINES

Systems that extract structure (e.g., meta-data, indexes)

from text data and support queries over that content.

— Tokenize documents into "bag of words" and then build
inverted indexes over those tokens.

— No data model because text data is inherently unstructured.

Core ideas pioneered by Cornell's SMART (1965).

= elasticsearch s}OpenSearch Text SearCh Engines:

@ vespa aucwr Quickly parse, index, and store large documents.

<ol 4 — Built-in support for noise/salient words + synonyms.
O r" tantivy

Carnegie Mellon

(]
%2 Database Group

https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/SMART_Information_Retrieval_System

TEXT SEARCH ENGINES

Leading RM DBMSs include full-text search indexes

but their adoption is stymied by non-model reasons.

— Non-standard SQL operations / syntax.

— Text data is large but not high importance. DBMS storage is
always more expensive than generic storage.

Discussion:

— Maintaining a separate text search DBMS should be
unnecessary but lots of people still do it.

— All DBMS vendors are augmenting inverted-index text search
with vector-based similarity search...

Carnegie Mellon

()
;‘: Database Group

https://db.cs.cmu.edu/

Collection of data where each element is identifiable by

ARRAY DATABASES

one or more dimension offsets.
— Vectors (1D), Matrices (2D), Tensors (+3D)
— Dimensions do not have to align with integer grids.

aaaaaaaaaaaaaaaaaaaa

BSciDB
[tile]DB

Carnegie Mellon

()
L‘: Database Group

(dimension,, dimension,,... [valuesl])

Array DBMSs:

— Specialized storage managers and execution engines.
— Sparse vs. Dense Arrays

https://db.cs.cmu.edu/

ARRAY DATABASES

Supporting arrays as first-class data types violates the
original RM vision. But this is a good example of RM
evolving to meet the needs of applications.

Discussion:

— SQL:2023 added multi-dimensional arrays (SQL/MDA).

— Array data access patterns do not follow row-oriented or
columnar patterns. Likely requires new execution engine.

Carnegie Mellon

(]
%2 Database Group

https://db.cs.cmu.edu/

VECTOR DATABASES

Document DBMSs with specialized indexes for

(approximate) similarity search on 1D arrays.
— Vectors represent embedding of corresponding object.

{vector: [values],
metadata: {key: value}*}

&3 Pinecone Vector DBMSs:

-~ Weaviate . g o .
@ mil — Accelerate approximate nearest neighbor search via indexes.
miivus

Qdrant — Not meant to be primary / database-of-record storage.
ran

Carnegie Mellon

()
L‘: Database Group

https://db.cs.cmu.edu/

Carnegie Mellon
Database Group

VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with Al tooling
ecosystem (e.g., OpenAl, LangChain).

Discussion:

— Every major DBMS will provide native vector index support in
the near future.
— The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.

https://db.cs.cmu.edu/

Il ClickHouse

Table of C¢

« Introduction

« Search b

.C-a Carnegie Mellon
w o Database Group

]

) SingleStore Bl¢

ROCKSET

All posts

Build G¢ B :
Applic d Announcements

Cloud

FILED IN: TECH

Developer QA

Engineering

We're excited to intrq

General

In the age of Al, Apa
distributed database

engines, fraud detec

Grafana

OpenAl to create @

1 the demo, you'll see

PostgreSQL

Product Updates

Q

VECTOR DATABASES

Press Release

Oracle Introduces Integrated
Vector Database to Augment

Generative

AI and Dramatically

Increase Developer Productivity

New Al vector similarity searc
semantic and business data r

Oracle CloudWorld, Las Vegas— Septembe

Oracle today announced its

h in Oracle Database 23c allows the combination of search on
esulting In highly accurate answers quickly and securely

r 19,2023

plans to add

N A

https://db.cs.cmu.edu/

RELATIONAL IS NOT PERFECT

Many non-relational DBMSs provide a better "out-of-

the-box" experience than relational DBMSs.
— Pandas / Jupyter notebooks are still more popular.

Relational DBMS developers should strive to make

their systems easier to use and adaptive.

— Cloud DBaaS hide much of the provisioning / configuration for
high availably and durability.

— DuckDB is very good at this.

https://db.cs.cmu.edu/

SQL IS NOT PERFECT

The deficiencies and problems with
SQL are well documented and
understood since the 1980s.

The problem of replacing SQL is not a
technical problem, but rather it is
with overcoming the inertia and

proliferation.
— There is no IBM "juggernaut" anymore...

& & Carnegie Mellon
;‘: Database Group

for this onl f)
Databases, Types, and the
Relational Model
The Third Manifesto
jetailed study of the impact of type theory
ional model of data,
i f tupe i
C. I. Date
and
Hugh Darwen
¥ 2n. used by i guish their products are
ed as trades Vhere th @ PP and we were aware of
nations. 5.

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf

- Carnegie Mellon
=2 Database Group

(f

-

SQL IS NOT PERFECT

The deficiencies and problems with
SQL are well documented and
understood since the 1980s.

The problem of replacing SQI.J i§ not
technical problem, but rather it is
with overcoming the inertia and

roliferation. "
E) There is no IBM "juggernaut” anymore..

A Critique of Modern SQL And A Proposal Towards A Simple and
Expressive Query Language

Thomas Neumann
Technische Universitat Minchen
Neumann@in. tum. de

ABSTRACT

The first contribution of the paper 75 o comprehensive critigue of
inodertt SOL. infarmed by an analysis of veal-world SQL queries,
his pravides the motivation for our second contribution: the Sim.
NG Expressive Query Language (SeneQl) SaneQlL featuses 5
rwand and consistent syntax, which uprovies 1. Tearn-
ability and case of implementation, Additionally, it provides extensi.
bikity. with tie added ability to define W operators that integrate
eamlessly with the exising buil-io ones. Unlie spon. data frane
AL s NoSQL queey umgasges, Sanel fully ensbraces the core

Viktor Leis
Technische Universitit Minchen,
leis@in.tum,de

hese el allow naming and re-using parts of o query. For ex:
AP, it 5 Dot possible 1 puss relation inta 4 vien: definition as
arghment. This effectively makes SQL 4 Funetjonay programuming
Ianguage that s fusctions withans pacasmeters Maore advanced
features such s passing expressions 1ne obviously not supported
ither,For example imagine implementing 1 sem Join or pivot ap-
i hat works for asbitrary input rclations and joun predicates
hizIs simply ot possible in SOL. SO, eyl violates
the “don' tepeat yourselt” principie in sofinare engineering, and
instead relles on sheer Tepetition,
tribati

antics, We propose
that adopting SimeQL’s approach can ersure the. enduring success
oFseltional databsse technology, offcring the Poter of SQL's un,
erying concepts through a more sccessbl ang floe language.

1 INTRODUCTION

SQL Despie celebeating s Sl annisersary i 2024 [41.5QL is sttt

the predominant query language lis suceess s inextricably nked

with the success of the relational model. 1 comparison with afher
nds outfae s declarative nature, i

- This paper makes twe contributions. Fist, Sec-
S rovides a detuled critique of madem SQL W g this
through cxample queries that highiight SQ1.s

and regular synix, which ot anly
implement, buk o enables extensibil

and thrce-valued logic, These concents buve stoad the test of time

and ensble data independence, effeotive query optimization, and

automatic parallelizstion.

Problem 1: leregular Pseudo-English Syntay, Unusually mang
SQL has i Englich-

e from the desive to ke queris easy to pead, Sy inventor
Do Chambertin ealts tis the “walk p and reag- property [2. It is
e ha the teanisg of 4 query (ke SELECT nane. rom custoner
MHERE. id = 42 cant indleed be guessed withgut any formal training,
However, this is only true for simple queries, and optimising for
this kind of readability comes at great vony 1 inrcgularity of

debug. hard to implewteat, and I tessages
The d L iy be at ik, 5 evideniced by the ising
Such APl

Popalarity of data frame APl, such as Python's po
oo A Enufcant extent, alteady replaced SGL in data scon
Blem 2: Luck of Extensibility and Absteaction. The corner.
o of any powerful progeamiming language is mcha, i for
hetsaction - and SQL s acking seveeely on s frans SO ffers
Views fand thess tennsient variant Coramon Tabiy Expressions) but

ndes e T e P ——
rs ESIVE heis Sghis 10 dsseminite the vl pe g
oy ol corperate Webstes with the seoprias s Frovided that you
ol e sthurs a CIDK 2024 191 A g .

i Do St B (CTDR 54 70650 £

mulfiset semantic: We believe that SQL has becoue. successful due
105 powerful underlying concepts rather than is sy syntax
o that adepting ew modular surface sy o e best way
o ensute the enduring suceess of selationa) dotahage. technolagy.

2 A CRITIQUE OF MODERN SQL

Query Datuset. Inthis section, we crifique modern SQL through
duery examples that Alustrate it irregular natorg, sidditionally
o previde empirical evidence for the claim that SO fy pary to
fearn through n real-world query dataset. We callected 130,995
queries fronn the hit i

vebsile provides n wel-based 01 interface and - peimily used by
students fearning SQL ot the Technica) University of Munich (Ut}
and other universities. The final exam for the T17y1 Intraduction o
Databases undergraduate course, which has over LUG0 studeats,
ke place i Februaey. Thus, the dutaset refeety 1 diffieulties
it SQL leasness preparing for an exann have, atts. than the
ifficulties experienced wsers fuce. The iy striking resul i thay
7t of ul queries, 50,633 (395) resul i an erros mhen execied.
The vast majority of these errors are compils i {00t runtime)
. WHILe som of these are clesrly unavoidabl (g incomplete
dueries}, we helieve that many eases would be Unnecessary with 3
sirupler, tuoce regulu guery unguage

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

SQL IS NOT PERFECT

The deficiencies and problems with

SQL aI'e Well documented and A Criti f Modern SQL And A p, I Towards A Simple and
understood since the 1980s. o T T

Technische Universitat Minchen Technische Universitat Minchen
NeUMANNGA tum. de leis@in fum.de
For cx:
ition as
uming
. bdvanced
. bpported
I 1 S oo o
O re : l Cl I I g pedicates,
. violates
I [] e pr‘) e l I l SQL Has Problems. We Can Fix Them: g, uad
. . .
t IS Pipe Syntax In SQL bst, Sec-
do this
] m b t r at e r 1 Jeff Shute Shannon Bales Matthew Brown Jean-Dnaniel Browne Brandon Dolphin g ol
t e C n 1 C: I p r , u Google, Inc. Google, Inc. Google, Inc. Gaogle, Inc Google. Inc. g‘w‘,’;‘:
. . Romit Kudtarkar Andrey Lityinoy Jingehi Ma Tohn Morcos Michael Shen oo
. tl a an Google, Tne. Google, Inc Google, Tnc. Google, Inc Google, Inc.]
. mln t e 1 I l er David Wilhite Xi Wu Lulan Yu e
W].t O ‘7 e Google, tnc. Goagle, Tnc Google, Inc. iy
s ticutar
sql-pipes-paper@google.com sl e
o o ABSTRACT S0 Migeating vy from existing SOL ecosystems s expensive g -
1 O SQL has becn exireanely successful as the de facta standird fan- and generally unappeating for ysers. inclogy.
r O 1 l I . fuage o eorking with dst ity o1 i o BAPEE ISt dferent sppronchy Afe descrsing he
" 2ystems use SQL as their primary query language. But SO is an frast critical probiems with the SgI, language. we present u soly.
1 m old banguage with significany design problers, makieg it diffleuly to it~ adding pige-siructured daa flow S¥TAX 0 SOL. This makes
. er l l a l I a Jeaen, difficult 10 wse, and el to exiend. Many have observed SQL more flevible, extensible amt casy 1o use. This paradigm works
O u these challenges with SQL. and Proposed salutions involving new wellin other languages ke Kusto's KQLLs] nd in APIs like Apache
ere ls anguages. New Jangusge adoption 15« smifeeny ohstucle for Beaml1], We show pipe synias can be addey b SOL ton, without
_) users, and none of the potential replaeements bave been successful Temoving anything, and while maintaining full backwards compat. throughy
enough to displace SQ, tility and interoperability, ionally.
In GoogleSQL, we've taken 5 different appeoach - salving SQL's o SQL. the standard elauses ocur int one rigidty defined order, hard 1o
el by it st works well Expressing anything e requises subquries o ather worksround, 130,995
" - we e piped daia flow syntax With pipe syntax, operations can be compused arbiteurily, in any bot. The
10.5QL. The ressits ars transiormatve - oy o onder. This incresses bl radically sumphifes e e experi- wsed by
language <nce, and enabics clean Jingunge extension, bh (g
the existing For cxcumpie, stundard SOL canot express ml evel agerena ucrion to
from with i O b, sesuling in queries with comprer b kudens,
ntigratians s witho . making this Lt o This s query 13 from the TRCH pepen iculiics
mrare productive appra 0T oo, S0 ;’::1 ’1::
PVLDB Reference Format.
JoR Shute, Shannan Baks, Masthew Nrows,fea Daniel Browne, Brandan ¢ SELECT ©_custhey, CONTo. orderkey) ¢ coume iy
Dolphin, Romit Kudtackas, Andrey Uiy Fingeini Ma. Jobn Marcos, FROM customer ——
Michael Shen, David Wilhite, 65, 80 Lulan Vi SO Flus Prablerng, e LEET CUTER JOIN ardors on c_custicay « _custhey mplete
O Them: e Sy 0 SQL PVLIR, 171133 1 - o N0 o-comnt MY LINE Yupusaalpactageny: witha
LTIE e RO BY c_custhey
3 45 corders
1 INTRODUCTION

- Carnegie Mellon SQL has been tremendousty spececss | o1
%2 Database Group

(f

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1004848.pdf

)

-

(f

Top Prog

SQL
Python
Java
TypeScript
SAS
JavaScript
C#
HTML

Shell

Scala

Go

Carnegie Mellon
Database Group

solidity m
SN 0.0992

0.2934

0.2909

0.2299
C++
o o.2is3)

https://s

SQL I

ramming Languag

spectrum Trending

ectrum.ieee.ol

es 2024

0.9863
0.8813

0.8017

FECT

of Modern SQL And A Pro,

Expressive Query
Thomas Neumann
ische Universitat Manchen
Vreumanngin, tum e

posal Towards A Simple and
Language
Viktor Leis

Technische Universitit Miine! hen
leis@in.tum.de

roblems. We Can Fix Them:

pe Syntax In SQL

Matthew Brown
Google, Inc. Google, Inc.
Jingehi Ma

John Morcos
Google, Tnc.

Google, Inc
Xi Wu

Lulan Yu
Google, Tne

Google, Inc.
[Pipes-paper@google.com

SO Migrating away from existing
and generally wnappeating for

Jean-Daniel Browne

Brandon Dolphin
Google, Inc.

Michael Shen

Google, Inc.

SQL ecusystems is sxpensive

st way
users Bnolozy.
colike This papet presents differcnt approach, Afier describing the
Lisan - most crfical probiems wih the SQ. g, e present a soly
ultto ton - adding plpe-siruetured dta fiow synpoe SOL. This makes
erved SOL more fleible, e and easy 10 use, This paradigm works
iew ke Kuusto’s KQLIS] und in AP, like Apache
ke for PipE syt can be added to SOL oo, withen
sful | rmoving anything, and while maintaining foll backwards compar. through
ibility and interoperabiiry, tionally
oL 5L the standard clauses accur in one rigidty defined order hard to
well - Expressisg anyhing ele requives subguesign o ather workurounds 130,998
TIDEd dala flow syntax w e be compased arbitraily, in any bot. The
are transformative - SOL becomes a foxible e« flexibility, radically simplifies the wso, experi- wsed by
language that's casicr to lcarn, Useand extend, while stll leveraging ~ ence, and cnabies clean Janguage extension, (U
the existing SQL. ecosystem gnd xiSng userbase. improving SQI, For example. standard SQL cannot express milti-level aggrega. fuaction to
frims within aliows incregsentaliy sdopting new features, withour tions without subiyueries, sesulting in querles with complex “inside- biuidenis
fgtations wad without leatning & new fan, e, making this 5 ut” duta o This is query 13 frop 1) TPCH iculties
a0 productive apprsach o improve on stardrd S01. thicr the
it COLNT(e) 4 cusediag t s thar
PVLDE Reference Formar. o
el s Hales. Mathew Beowr, Jes Dl B, B ¢ SELECT ©_custhey, CONTo. orderkey) ¢ coume Errincs.
lpbin, Resit Kk, Amdrey Livino, mgeis s Jabn Morcas "
Michael Shen, David Willite, xad Lulan Yir QL Flas Prblems, e LEET CUTER JOIN ardors oh c_custiay = o_custay mplete
Cans Fix Them: Pipe Synta In 5 DB, 1712); 4051 - g0 N Tk "Runusualtpackagess 7 vt a
H6X5500, 3685826 GROUP BY c_
1 INTRODUCTION
SQ!I

hasi

tremendously sucemceiul <o i

) 45 c_orders
G B ¢_count

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1004848.pdf
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024

Document

Databases™ SQL i great!
Graph ’ l 20302??
Databages » \ $

SQL adopts : '

& New Startups! «
. Vector
= _ots of $$$ S Databases

https://db.cs.cmu.edu/

O DuckDB

& & Carnegie Mellon

L": Database Group

https://db.cs.cmu.edu/

()

PARTING THOUGHTS

People will continue to make the same mistakes in
future DBMS projects.

The demarcation lines of DBMS categories will
continue to blur over time as specialized systems
expand the scope of their domains.

The relational model and declarative query languages
promote better data engineering.

https://db.cs.cmu.edu/

Email: pavlo@cs.cmu.edu
Bluesky: @andypavlo.bsky.social
Twitter: @andy_pavlo

Mastodon: @andy_pavlo@discuss.systems

. Mike Stonebraker
~ 81s*Birthday
2 J’ October 11t

WHAT ABOUT SQL TRANSPILERS?

Developer-centric frameworks that convert EDGE I DB
DSL to SQL.
— Use existing DBMS (PostgreSQL) instead of creating MALLOY /
a system just for the language.

«7 PRQL
No different than ORMs.)
Useful for rapid prototyping and ad-hoc Ox1de
projects. (O convex

& & Carnegie Mellon
L‘: Database Group

https://db.cs.cmu.edu/

	Introduction
	Slide 1

	History
	Slide 2: DATABASES
	Slide 3: DATABASES
	Slide 4: DATABASES
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	Key-Value
	Slide 17: KEY-VALUE STORES
	Slide 18: KEY-VALUE STORES

	MapReduce
	Slide 19: MAPREDUCE SYSTEMS
	Slide 20: MAPREDUCE SYSTEMS
	Slide 21: MAPREDUCE SYSTEMS

	Document
	Slide 22: DOCUMENT DATABASES
	Slide 23: DOCUMENT DATABASES
	Slide 24: DOCUMENT DATABASES
	Slide 25: DOCUMENT DATABASES
	Slide 26: DOCUMENT DATABASES
	Slide 27: DOCUMENT DATABASES

	Column-Family
	Slide 28: COLUMN-FAMILY / WIDE-COLUMN
	Slide 29: COLUMN-FAMILY / WIDE-COLUMN

	Graphs
	Slide 30: GRAPH DATABASES
	Slide 31: GRAPH DATABASES
	Slide 32: GRAPH DATABASES
	Slide 33: GRAPH DATABASES

	Text Search
	Slide 34: TEXT SEARCH ENGINES
	Slide 35: TEXT SEARCH ENGINES

	Array
	Slide 36: ARRAY DATABASES
	Slide 37: ARRAY DATABASES

	Vector
	Slide 38: VECTOR DATABASES
	Slide 39: VECTOR DATABASES
	Slide 40: VECTOR DATABASES

	Errata
	Slide 41: RELATIONAL IS NOT PERFECT
	Slide 42: SQL IS NOT PERFECT
	Slide 43: SQL IS NOT PERFECT
	Slide 44: SQL IS NOT PERFECT
	Slide 45: SQL IS NOT PERFECT
	Slide 46
	Slide 47

	Conclusion
	Slide 48: PARTING THOUGHTS
	Slide 49

	Backup
	Slide 50
	Slide 51: WHAT ABOUT SQL TRANSPILERS?

