
15
Andy Pavlo Marcin Żukowski Coronation CWI // November 2024

Andy Pavlo
Marcin Żukowski Coronation
CWI // November 2024

https://db.cs.cmu.edu/
https://cs.cmu.edu/~pavlo
https://cs.cmu.edu/~pavlo

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency…

2

https://db.cs.cmu.edu/

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency…

3

https://db.cs.cmu.edu/

DATABASES

A database's data model is the underlying structure
and organization of data within the database.

The relational model (RM) + SQL have
dominated the database landscape since the 1980s.

But every 10 years somebody invents a RM/SQL
"killer" that addresses some deficiency…

4

https://db.cs.cmu.edu/

3

SQL is great!

SQL is bad!

https://db.cs.cmu.edu/

3

SQL is great!

SQL is bad!
slow
OLD

AWKWARD
Inconsistent

Not WEBSCALE

https://db.cs.cmu.edu/

3

New Startups!
Lots of $$$!

SQL is great!

SQL is bad!
slow
OLD

AWKWARD
Inconsistent

Not WEBSCALE

https://db.cs.cmu.edu/

3

New Startups!
Lots of $$$!

SQL is great!

SQL is bad!
SQL adopts

new features

slow
OLD

AWKWARD
Inconsistent

Not WEBSCALE

https://db.cs.cmu.edu/

4

Hierarchical (1960s)

Network (1960s)

Relational (1970s)

Entity-Relationship (1970s)

Extended Relational (1980s)

Semantic (1980s)

Object-Oriented (1980s)

Object-Relational (1990s)

Semi-Structured/XML (1990s)
https://cmudb.io/wga06

https://cmudb.io/wga06

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

https://db.cs.cmu.edu/
https://cmudb.io/wga06

4

Hierarchical (1960s)

Network (1960s)

Relational (1970s)

Entity-Relationship (1970s)

Extended Relational (1980s)

Semantic (1980s)

Object-Oriented (1980s)

Object-Relational (1990s)

Semi-Structured/XML (1990s)
https://cmudb.io/wga06

https://cmudb.io/wga06

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

BCE

https://db.cs.cmu.edu/
https://cmudb.io/wga06

4

Hierarchical (1960s)

Network (1960s)

Relational (1970s)

Entity-Relationship (1970s)

Extended Relational (1980s)

Semantic (1980s)

Object-Oriented (1980s)

Object-Relational (1990s)

Semi-Structured/XML (1990s)
https://cmudb.io/wga06

https://cmudb.io/wga06

WHAT GOES AROUND COMES AROUND
READINGS IN DB SYSTEMS, 4TH EDITION (2005)

"Before Codd Era"

https://db.cs.cmu.edu/
https://cmudb.io/wga06

5

Key-Value (1990s)

MapReduce (2000s)

Document/JSON (2000s)

Column-family (2000s)

Graph (2000s)

Text Search (1960s)

Array (1990s)

Vector (2020s)

WHAT GOES AROUND COMES AROUND…
AND AROUND…
SIGMOD RECORD (2024)

https://cmudb.io/wga24

https://cmudb.io/wga24

https://db.cs.cmu.edu/
https://cmudb.io/wgaca24

5

Key-Value (1990s)

MapReduce (2000s)

Document/JSON (2000s)

Column-family (2000s)

Graph (2000s)

Text Search (1960s)

Array (1990s)

Vector (2020s)

WHAT GOES AROUND COMES AROUND…
AND AROUND…
SIGMOD RECORD (2024)

https://cmudb.io/wga24

https://cmudb.io/wga24

TLDR: RM+SQL remains
the best approach for
most applications.

https://db.cs.cmu.edu/
https://cmudb.io/wgaca24

KEY-VALUE STORES

Associative array that maps a key to a value.
→ Value is typically an untyped byte array

that the DBMS cannot interpret.

7

(key, value)

Distributed KV Stores:
→ Shared-nothing DBMSs for caching + session data.
→ Provide higher/predictable performance instead of a more

complex query language and features.

Embedded Storage Managers:
→ Low-level API systems that run in the same address space as a

higher-level application.

https://db.cs.cmu.edu/

KEY-VALUE STORES

hstore

Some distributed KV stores realized that expressive
APIs are important and evolved into document stores.
→ If value is opaque, applications must implement more complex

logic / types.
→ Better to start with a RM DBMS than to contort a KV DBMS

to use a more complex data model (e.g., Postgres hstore).

Discussion:
→ Embedded KV storage managers make it easier to create full-

featured DBMSs.
→ Very few commercial success stories for KV storage managers.

8

https://db.cs.cmu.edu/
https://www.postgresql.org/docs/current/hstore.html

MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution
model for analyzing large data sets.

Data model decided by user-written functions.
→ Map: UDF that performs computation + filtering
→ Reduce: Analogous to GROUP BY operation.

9

SELECT map() FROM crawl_table GROUP BY reduce();

MapReduce Frameworks:
→ Internal implementation at Google (2003).
→ Yahoo! created the open-source version Hadoop (2005).

https://db.cs.cmu.edu/

MAPREDUCE SYSTEMS

Distributed batch-oriented programming and execution
model for analyzing large data sets.

Data model decided by user-written functions.
→ Map: UDF that performs computation + filtering
→ Reduce: Analogous to GROUP BY operation.

9

SELECT map() FROM crawl_table GROUP BY reduce();

MapReduce Frameworks:
→ Internal implementation at Google (2003).
→ Yahoo! created the open-source version Hadoop (2005).

8

14

https://db.cs.cmu.edu/
https://doi.org/10.1145/1629175.1629198
https://doi.org/10.1145/1629175.1629197

MAPREDUCE SYSTEMS

People remembered that procedural query
languages are (usually) a bad idea.

MR vendors put SQL engines on top of Hadoop.

Hadoop technology/services market crashed.

Google announced dropping MR in 2014.

Discussion:
→ Companies kept HDFS but replaced Hadoop

compute layer with relational query engines.
→ Aspects of MR carried into distributed DBMSs

(disaggregated compute/storage, shuffle phase).

10

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Represent a database as a collection of document objects
that contain a hierarchy of field/value pairs.
→ Each document field is identified by a name.
→ A field's value is either a scalar type, array of values, or another

document.
→ Applications do not predefine schema.

11

{<field>: <scalar|[values]|{document}>}

NoSQL Document-oriented Systems:
→ Non-standard / procedural query languages
→ Defined by what they lack instead of what they provide.

https://db.cs.cmu.edu/

DOCUMENT DATABASES

object-relational impedance mismatch

Document model is the same as previous models
with many of the same problems.
→ Object-Oriented (1980s)
→ Semi-Structured / XML (1990s).

Core idea is denormalization ("pre-joining"):
→ Avoid object-relational impedance mismatch between

application code and DBMS data model.
→ Avoid need for joins / multiple queries to retrieve data

related to an object (N+1 SELECT Problem).

12

https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

13

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

13

→ PartiQL

→ CQL

→ AQL

→ SQL++

https://db.cs.cmu.edu/

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

13

→ PartiQL

→ CQL

→ AQL

→ SQL++

34

https://db.cs.cmu.edu/
https://www.mongodb.com/blog/post/introducing-atlas-sql-interface-connectors-drivers

DOCUMENT DATABASES

Almost every major NoSQL DBMS relearned
(most) of the lessons from the 1970s:
→ SQL APIs are a good idea.
→ Schemas + integrity constraints are a good idea.
→ Transactions are a good idea.
→ Logical/physical data independence is a good idea.

Discussion:
→ SQL:2016 added JSON operators, SQL:2023 added JSON types.
→ The intellectual distance between relational+JSON DBMSs and

document+SQL DBMSs has shrunk.

13

→ PartiQL

→ CQL

→ AQL

→ SQL++

https://db.cs.cmu.edu/

COLUMN-FAMILY / WIDE-COLUMN

Reduction of the document data model that only
supports one level of nesting.
→ A record's value can only be a scalar or an array of scalars.
→ Deficiencies are the same as the document model.

14

{<field>: <scalar|[values]>}

Column-Family Systems:
→ First implementation was Google's Bigtable (2004)
→ Copied by several Internet start-ups.

https://db.cs.cmu.edu/

COLUMN-FAMILY / WIDE-COLUMN

Reduction of the document data model that only
supports one level of nesting.
→ A record's value can only be a scalar or an array of scalars.
→ Deficiencies are the same as the document model.

14

{<field>: <scalar|[values]>}

Column-Family Systems:
→ First implementation was Google's Bigtable (2004)
→ Copied by several Internet start-ups.

3

https://db.cs.cmu.edu/
https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable

GRAPH DATABASES

Direct multigraph structure that supports key/value
labels for nodes and edges.
→ Property Graph vs. Resource Description Framework (RDF)

15

Property Graph DBMSs:
→ Provide graph-oriented traversal APIs.
→ Inefficient schemaless storage.

Node (id, {key: value}*)
Edge (node_id1, node_id2, {key: value}*)

https://db.cs.cmu.edu/

GRAPH DATABASES

Worst-case Optimal Joins

GQL

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j Cypher,

Oracle PGQL, TigerGraph GSQL) + emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL

GRAPH DATABASES

Worst-case Optimal Joins

GQ

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j Cypher,

Oracle PGQL, TigerGraph GSQL) + emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

3

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/

GRAPH DATABASES

Worst-case Optimal Joins

GQ

Graph model is the same as the network model from
CODASYL (1970s) with same issues.

Advancements in algorithms and systems will diminish
the perceived advantage of specialized graph DBMSs.
→ Worst-case Optimal Joins
→ Vectorized Query Execution
→ Factorized Query Processing

Discussion:
→ SQL:2023 introduced SQL/PGQ (based on Neo4j Cypher,

Oracle PGQL, TigerGraph GSQL) + emerging GQL standard.
→ Studies show that RM DBMSs outperform graph DBMSs.

16

3

6

https://db.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2023/schedule.html#mar-15-2023
https://en.wikipedia.org/wiki/GQL
https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/
https://news.ycombinator.com/item?id=29737326

TEXT SEARCH ENGINES

SMART

Systems that extract structure (e.g., meta-data, indexes)
from text data and support queries over that content.
→ Tokenize documents into "bag of words" and then build

inverted indexes over those tokens.
→ No data model because text data is inherently unstructured.

Core ideas pioneered by Cornell's SMART (1965).

17

Text Search Engines:
→ Quickly parse, index, and store large documents.
→ Built-in support for noise/salient words + synonyms.

https://db.cs.cmu.edu/
https://en.wikipedia.org/wiki/SMART_Information_Retrieval_System

TEXT SEARCH ENGINES

Leading RM DBMSs include full-text search indexes
but their adoption is stymied by non-model reasons.
→ Non-standard SQL operations / syntax.
→ Text data is large but not high importance. DBMS storage is

always more expensive than generic storage.

Discussion:
→ Maintaining a separate text search DBMS should be

unnecessary but lots of people still do it.
→ All DBMS vendors are augmenting inverted-index text search

with vector-based similarity search…

18

https://db.cs.cmu.edu/

ARRAY DATABASES

Collection of data where each element is identifiable by
one or more dimension offsets.
→ Vectors (1D), Matrices (2D), Tensors (+3D)
→ Dimensions do not have to align with integer grids.

19

(dimension1, dimension2,... [values])

Array DBMSs:
→ Specialized storage managers and execution engines.
→ Sparse vs. Dense Arrays

https://db.cs.cmu.edu/

ARRAY DATABASES

Supporting arrays as first-class data types violates the
original RM vision. But this is a good example of RM
evolving to meet the needs of applications.

Discussion:
→ SQL:2023 added multi-dimensional arrays (SQL/MDA).
→ Array data access patterns do not follow row-oriented or

columnar patterns. Likely requires new execution engine.

20

https://db.cs.cmu.edu/

VECTOR DATABASES

Document DBMSs with specialized indexes for
(approximate) similarity search on 1D arrays.
→ Vectors represent embedding of corresponding object.

21

{vector: [values],
 metadata: {key: value}*}

Vector DBMSs:
→ Accelerate approximate nearest neighbor search via indexes.
→ Not meant to be primary / database-of-record storage.

https://db.cs.cmu.edu/

VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with AI tooling
ecosystem (e.g., OpenAI, LangChain).

Discussion:
→ Every major DBMS will provide native vector index support in

the near future.
→ The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.

22

https://db.cs.cmu.edu/

VECTOR DATABASES

The vector model is not a substantial deviation from
existing models that requires new DBMS architectures.

Vector DBMSs offer better integration with AI tooling
ecosystem (e.g., OpenAI, LangChain).

Discussion:
→ Every major DBMS will provide native vector index support in

the near future.
→ The time from "ChatGPT Buzz" (Q4'22) to existing DBMSs

announcing support for vectors (Q3'23) is telling.

22

https://db.cs.cmu.edu/

RELATIONAL IS NOT PERFECT

Many non-relational DBMSs provide a better "out-of-
the-box" experience than relational DBMSs.
→ Pandas / Jupyter notebooks are still more popular.

Relational DBMS developers should strive to make
their systems easier to use and adaptive.
→ Cloud DBaaS hide much of the provisioning / configuration for

high availably and durability.
→ DuckDB is very good at this.

23

https://db.cs.cmu.edu/

SQL IS NOT PERFECT

The deficiencies and problems with
SQL are well documented and
understood since the 1980s.

The problem of replacing SQL is not a
technical problem, but rather it is
with overcoming the inertia and
proliferation.
→ There is no IBM "juggernaut" anymore…

24

7

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf

SQL IS NOT PERFECT

The deficiencies and problems with
SQL are well documented and
understood since the 1980s.

The problem of replacing SQL is not a
technical problem, but rather it is
with overcoming the inertia and
proliferation.
→ There is no IBM "juggernaut" anymore…

24

7

5

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

SQL IS NOT PERFECT

The deficiencies and problems with
SQL are well documented and
understood since the 1980s.

The problem of replacing SQL is not a
technical problem, but rather it is
with overcoming the inertia and
proliferation.
→ There is no IBM "juggernaut" anymore…

24

7

5

6

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1004848.pdf

SQL IS NOT PERFECT

The deficiencies and problems with
SQL are well documented and
understood since the 1980s.

The problem of replacing SQL is not a
technical problem, but rather it is
with overcoming the inertia and
proliferation.
→ There is no IBM "juggernaut" anymore…

24

7

5

6

A graph with numbers and text

Description automatically generated

https://spectrum.ieee.org/top-programming-languages-2024

https://db.cs.cmu.edu/
https://www.dcs.warwick.ac.uk/~hugh/TTM/DTATRM.pdf
https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1004848.pdf
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024

25

New Startups!
Lots of $$$!

SQL is great!

SQL is bad!
SQL adopts

new features

Vector
Databases

Graph
Databases

Document
Databases

2030???

https://db.cs.cmu.edu/

25

https://db.cs.cmu.edu/

PARTING THOUGHTS

People will continue to make the same mistakes in
future DBMS projects.

The demarcation lines of DBMS categories will
continue to blur over time as specialized systems
expand the scope of their domains.

The relational model and declarative query languages
promote better data engineering.

26

https://db.cs.cmu.edu/

END
Email: pavlo@cs.cmu.edu

Bluesky: @andypavlo.bsky.social

Twitter: @andy_pavlo

Mastodon: @andy_pavlo@discuss.systems

Mike Stonebraker
81st Birthday
October 11th

WHAT ABOUT SQL TRANSPILERS?

Developer-centric frameworks that convert
DSL to SQL.
→ Use existing DBMS (PostgreSQL) instead of creating

a system just for the language.

No different than ORMs.

Useful for rapid prototyping and ad-hoc
projects.

30

https://db.cs.cmu.edu/

	Introduction
	Slide 1

	History
	Slide 2: DATABASES
	Slide 3: DATABASES
	Slide 4: DATABASES
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	Key-Value
	Slide 17: KEY-VALUE STORES
	Slide 18: KEY-VALUE STORES

	MapReduce
	Slide 19: MAPREDUCE SYSTEMS
	Slide 20: MAPREDUCE SYSTEMS
	Slide 21: MAPREDUCE SYSTEMS

	Document
	Slide 22: DOCUMENT DATABASES
	Slide 23: DOCUMENT DATABASES
	Slide 24: DOCUMENT DATABASES
	Slide 25: DOCUMENT DATABASES
	Slide 26: DOCUMENT DATABASES
	Slide 27: DOCUMENT DATABASES

	Column-Family
	Slide 28: COLUMN-FAMILY / WIDE-COLUMN
	Slide 29: COLUMN-FAMILY / WIDE-COLUMN

	Graphs
	Slide 30: GRAPH DATABASES
	Slide 31: GRAPH DATABASES
	Slide 32: GRAPH DATABASES
	Slide 33: GRAPH DATABASES

	Text Search
	Slide 34: TEXT SEARCH ENGINES
	Slide 35: TEXT SEARCH ENGINES

	Array
	Slide 36: ARRAY DATABASES
	Slide 37: ARRAY DATABASES

	Vector
	Slide 38: VECTOR DATABASES
	Slide 39: VECTOR DATABASES
	Slide 40: VECTOR DATABASES

	Errata
	Slide 41: RELATIONAL IS NOT PERFECT
	Slide 42: SQL IS NOT PERFECT
	Slide 43: SQL IS NOT PERFECT
	Slide 44: SQL IS NOT PERFECT
	Slide 45: SQL IS NOT PERFECT
	Slide 46
	Slide 47

	Conclusion
	Slide 48: PARTING THOUGHTS
	Slide 49

	Backup
	Slide 50
	Slide 51: WHAT ABOUT SQL TRANSPILERS?

