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Sustainable energy systems of the future will need more than efficient, clean, low-cost, renewable energy
sources; they will also need efficient price signals that motivate sustainable energy consumption as well as a better
real-time alignment of energy demand and supply. The Power Trading Agent Competition (Power TAC) is a rich
competitive simulation of future retail power markets. This simulation will help us to understand the dynamics
of customer and retailer decision-making and the robustness of market designs, by stimulating researchers to
develop broker agents and benchmark them against each other. This will provide compelling, actionable informa-
tion for policymakers and industry leaders. We describe the competition scenario in detail, and we demonstrate
behaviors that arise from the interaction of customer and broker models.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many of the sustainable energy resources (solar, wind, tidal, etc.)
that could displace our dependence on fossil fuels are diffuse and do
not necessarily produce power when it is needed. They are therefore
difficult to integrate into our power grids and into their traditional
control and capital structures. There have been many proposals to up-
grade our electric power infrastructure into a “smart grid” (Amin and
Wollenberg, 2005; United States Department of Energy, 2012) with
components that can monitor energy usage in real time and help con-
sumers better manage their energy usage. However, this is only the
technical foundation. There is a clear need for new market structures
that motivate sustainable behaviors by all participants. Energy prices
that truly reflect energy availability can motivate consumers to shift
their loads to minimize cost, and more effectively utilize distributed,
small-scale energy storage and production resources (Joskow and
Tirole, 2006). Unfortunately, it can be difficult to introduce creative
and dynamic pricing schemes when energy is produced and sold by

* Corresponding author.
E-mail addresses: wketter@rsm.nl (W. Ketter), jcollins@cs.umn.edu (]J. Collins),
ppr@cs.cmu.edu (P. Reddy).

0140-9883/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.eneco.2013.04.015

regulated monopolies, and transitions to competitive markets can
be risky (Borenstein, 2002).

There is hope — energy markets are being opened to competition
around the world in much the same way the telecom markets were
opened in the 1990's (Lazer and Mayer-Schonberger, 2001). However,
the scope of retail electric power markets is limited in the absence of
smart metering infrastructure that allows a retailer to observe the
consumption behavior of its customer portfolio, and where technical in-
frastructure does not effectively support energy storage and production
in the retail (or “distribution”) domain.

Any serious proposal to change the way the electric power enterprise
works must address several significant challenges:

Reliability: Frequency, voltage, and power factor must be closely
managed to ensure safety and prevent outages.

Balancing: Supply and demand must be kept in balance, through a
combination of supply and demand management.

Peak demand management: The need to serve peak demand that
substantially exceeds steady-state demand drives investment in
under-utilized supply and transmission resources.

Energy efficiency: Investment in demand reduction must be balanced
against investments in production capacity.
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Externality reduction: Production of energy has been the cause of
considerable environmental degradation and resource depletion,
a cost that must be borne by future generations.

What is needed is a low-risk means for modeling and testing market
designs and other policy options for retail power markets. We are ad-
dressing this need by organizing an open competition that will challenge
participants to build autonomous, self-interested agents to compete di-
rectly with each other in a rich simulation focused on the structure and
operation of retail power markets. The Power Trading Agent Competi-
tion (Power TAC) (Ketter et al, 2012b) is an example of a Trading
Agent Competition' (Wellman et al, 2007) applied to electric power
markets. It addresses important elements of the smart grid challenges
outlined in Ramchurn et al. (2012), since many of these challenges in-
volve economically motivated decisions of large numbers of actors. The
Power TAC simulation can be used to evaluate a range of market-based
approaches to addressing the challenges we have identified. It contains
realistic models of energy consumers, producers, and markets, along
with environmental factors, such as weather, that affect energy produc-
tion and consumption. Alternative market mechanisms and policy
options can be applied to the simulation model and tested in open com-
petitions. Research results from Power TAC will help policy makers
create mechanisms that produce the intended incentives for energy pro-
ducers and consumers. They will also help to develop and validate intel-
ligent automation technologies that can support effective management
of participants in these market mechanisms.

The paper is organized as follows. In Section 2 we give an overview
of the dominating Smart Grid challenges and related work regarding
different simulation approaches. Section 3 describes the competition
scenario in some detail, and Section 4 presents the simulation platform.
In Section 5 we demonstrate the Power TAC platform and give an over-
view of pilot tournaments that took place in 2011 and 2012. We con-
clude with a call for participation in future Power TAC tournaments in
Section 6.

2. Related work
2.1. Energy grids and markets

The power grid infrastructure today is largely organized as a strict
hierarchy; at the high-voltage “transmission” level, a few centralized
control centers manage relatively few large power plants and schedule
their production according to market positions and energy demand fore-
casts. Demand forecasts typically come from historical consumption pat-
terns and weather forecasts, and market positions arise from trading on
day-ahead wholesale markets and from long-term contracts. Most buyers
in these wholesale markets are “load-serving entities” (LSEs) who pur-
chase power for delivery to their customers over local “distribution”
grids. LSEs purchase (and sell) power for future delivery based on their
own forecasts, and must ultimately balance supply and demand very
closely. Any residual imbalances are dealt with through a “regulating
market”, which draws on a small subset of the total available production
capacity that can be quickly ramped up or down to achieve balance. Prices
in the regulating market are typically much less advantageous than
short-horizon prices in the day-ahead market (Skytte, 1999). Traditional-
ly, grid control is exercised primarily to adjust energy production to meet
demand, on the assumption that demand can be influenced only by shut-
ting off portions of it, either through imposing blackouts, or by exercising
demand-management capabilities through “curtailments” in which se-
lected loads, like large water heaters, can be shut off remotely for periods
of time. Most customers get a monthly bill and have little or no awareness
of how much power they are using at various times or for different pur-
poses, or what it costs.

! See http://www.tradingagents.org.

Effective use of variable-output sources such as wind and solar
will require that energy users adapt to the availability of sustainable
power, and a pricing regime that reflects availability will motivate
many households and businesses to invest in some combination of
energy storage (e.g. thermal storage or batteries), demand manage-
ment (e.g. price-sensitive appliance controls), and supply resources
(e.g. solar panels). Retail-level supply resources will primarily consist
of small, distributed and variable-output sustainable energy sources,
and potentially large numbers of electric vehicle batteries will become
available to buffer imbalances between supply and demand. These con-
nect to the medium and low voltage “distribution” grid, and are outside
the direct control of centralized management. In parallel, installation of
smart metering equipment and demand side management devices
(DSM) at customer premises will help customers monitor and actively
manage their own energy usage (Gottwalt et al.,, 2011). Consequently,
demand elasticity will increase and demand predictions via historical
load profiles will become more difficult, especially as new types of tariff
contracts become available in which prices vary by time or day, day of
week, or dynamically to reflect the real cost of energy.

Electricity production and distribution systems are complex adap-
tive systems that need to be managed in real time to balance supply
with demand within relatively tight bounds. Electricity markets are
undergoing a transition from regulated monopolies to decentralized
markets (Joskow, 2008), but so far the retail “aggregators” or “brokers”
in these markets are almost entirely limited to purchasing power in
the wholesale markets and delivering it to their customers; they have
not had to deal with significant volumes of power production among
their customers. Until the advent of “smart meters”, neither retail
power suppliers nor their customers have had the ability to understand
which customers are consuming power at particular times, and since
suppliers cannot charge for power usage on timescales finer than their
meter readings, there has been no ability to expose customers to prices
that reflect the real-time costs of power. The increasing deployment of
supply resources on the retail grid is challenging the ability of the
existing centralized control regime to maintain reliability of energy
supplies. The “virtual power plant” concept (Pudjianto et al., 2007) is
an approach that makes these distributed resources visible, if not fully
controllable, by centralized control systems. A critical unanswered ques-
tion is the extent to which self-interested behaviors of market partici-
pants can effectively supplement hierarchical control of the physical
infrastructure to balance supply and demand in such an environment.

Smart meters, virtual power plants, and retail competition alone
will not be sufficient to align the variable output of renewable energy
sources with consumption patterns of a modern industrial society. In
areas with large hydroelectric power availability, this can be done by
coordinating the output of hydro resources with the availability of
other renewable sources (Matevosyan and Soder, 2007). Other cases
will require large-scale investment in energy storage (Beaudin et al.,
2010), and possibly in additional transmission capacity (Sveca and
Soéder, 2003). Energy storage can also be provided by plugged-in electric
vehicles (Kempton and Tomi¢, 2005), and by thermal energy storage
capacity (Stadler, 2008). In Table 1, we summarize the main contribu-
tions of these elements of the Smart Grid with respect to the challenges
identified in the Introduction.

Table 1
Smart grid elements.

Challenges Smart grid elements
Smart EVs Storage & VPP Retail
metering DSM competition
Balancing + + + + +
Energy efficiency + + + +
Externality reduction + + +
Peak demand mgt. + + + +
Reliability + +
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Some proposals (Ramchurn et al., 2012) envision retail customers
or their appliances directly participating in the wholesale power mar-
kets. However, these markets are not designed to provide power for im-
mediate delivery, nor are they designed to deal with large numbers of
small-scale participants. They primarily trade in future contracts, be-
cause most bulk power production comes from plants that cannot be
quickly started up or shut down, and owners of these plants cannot
afford to run them without firm commitments to consume their output.
Failure to fulfill a contract (as either a consumer or producer) can be
expensive, and prices are generally better for longer lead-times.

Retail brokers play the role of financial intermediaries, aggregating
the demand (and production) of large numbers of customers, observing
and predicting their aggregate consumption and production patterns,
and actively participating in the wholesale markets to minimize their
risk-adjusted costs. Such a broker, acting on behalf of a large number
of individual customers, can provide power at a lower average price,
while making a profit, than the individuals could on their own.

The performance of markets arises from the interaction of market
design and the economically motivated behavior of participants;
well-designed markets can effectively align social goals with the
profit-motivated interests of private parties, by defining an appropriate
set of rules and incentives (Krishna and Perry, 1997). However, the
real-world performance of market designs can be difficult to predict,
and serious market breakdowns such as the California energy crisis in
2000 (Borenstein et al, 2002) have made policy makers justifiably
wary of experimenting with new retail-level energy markets.

Smart grid pilot projects (Hammerstrom et al., 2007) are limited
in their ability to test system dynamics for extreme situations, such as
loss of a major producer like the Fukushima nuclear plant. They also
lack the competitiveness of open markets, because a single project con-
sortium typically controls and optimizes the interaction of all parts of
the pilot participants. Agent-based simulation environments have been
used to study the operation of wholesale power markets (Somani and
Tesfatsion, 2008), but these studies are limited in their ability to explore
the full range of unanticipated self-interested or destructive behaviors of
the participants.

2.2. Simulation approaches

There are many important open questions and research challenges
posed by a power grid with large numbers of active participants; for
an example, see Ramchurn et al. (2012). A number of these questions
concern the structure of markets and the behaviors of market partic-
ipants. Some of these can be addressed by game-theoretic analysis
(de Weerdt et al., 2011), but many are sufficiently complex that
they cannot be effectively addressed by formal methods. To address
these more complex issues, a simulation-based technique known as
Agent-based Computational Economics (ACE) (Tesfatsion, 2002) has
been used to study electrical wholesale power markets, for an example
see Nicolaisen et al. (2001), Peters et al. (2012, forthcoming), Reddy
and Veloso (2011a), Sun and Tesfatsion (2007), and Weidlich and Veit
(2008).

Like other Trading Agent Competition scenarios (Ketter and
Symeonidis, 2012), Power TAC extends the ACE paradigm by creating a
rich economic simulation and inviting research teams to develop their
own software agents to play the role of power retailers in the simulation,
and to enter them in annual competitions. The ongoing discussion of
Smart Markets (Bichler et al., 2010) recommends rich market simula-
tions such as Power TAC to validate market structures and to minimize
real-world risks. Table 2, lists the challenges and the corresponding
research techniques.

3. Competition scenario

The major elements of the Power TAC scenario are shown in Fig. 1.
The scenario models a “liberalized” retail power market in a medium-

Table 2
Research techniques.

Challenges Research techniques
Mechanism Operations ACE Competitive Pilot
design research simulations  projects
Balancing + + +
Energy efficiency +
Externality reduction  + +
Peak demand mgt. + + +
Reliability + +

sized city, in which users and small-scale producers of power may
choose among a set of alternative power suppliers or brokers, repre-
sented by the competing broker agents. These choices are represented
by “subscriptions” to the tariff contracts offered by the brokers. The bro-
kers are self-interested, autonomous agents (Collins et al., 2009, 2010a),
built by individual research groups to participate in the competition;
the remainder of the scenario is modeled by the Power TAC simulation
platform. In the real world, brokers could be energy retailers, commer-
cial or municipal utilities, or cooperatives.

The simulation proceeds in a series of discrete “timeslots,” each
representing 1 h in the simulation world. A typical simulation runs
approximately 1440 timeslots, or 60 days of simulated time. Time ad-
vances by one timeslot every five seconds, so a simulation completes
in about 2 h. The five-second interval is intended to give broker agents
enough time to update their models and make trading decisions for
each timeslot.

The two-hour game length is long for a multi-round competition
environment, but we have found that this is close to the minimum
number of interactions brokers need to build and use effective machine
learning models. Much longer simulations can be run if needed to satisfy
specific research requirements.

The actual duration of the scenario is stochastic, to minimize the
opportunity for brokers to exploit a predictable “end-of-game” situation
that, while it might win tournaments, has little research value or rela-
tionship to the real world.

3.1. Customers and tariff market

Brokers interact through a retail “tariff market” with customer models
that simulate the households and businesses of a small city. Some cus-
tomers are equipped with solar panels and windmills, producing as
well as consuming power. All customers are assumed to be equipped
with smart meters and their consumption and production are reported
every hour. Many customer models also include “controllable capacities”
or demand-side management capabilities such as heat pumps or water
heaters that can be remotely enabled or disabled to offset imbalances or
control costs, in exchange for lower rates. Because controllable capacities
can reduce costs significantly, brokers can offer special tariffs for them.

Customer models exhibit sensitivity to weather conditions (simulated
using real data within the platform) and calendar factors such as day of
week and hour of day. Fig. 2 illustrates the rich set of significantly corre-
lated, yet distinct, consumption (positive capacity) and production
(negative capacity) patterns that are generated by such models. The
models employ a combination of fine-grained appliance-level simula-
tion and coarse-grained statistical simulation. The illustration also high-
lights the typical scenario where consumption in a region is much larger
than local production thus requiring brokers to obtain power from the
wholesale market.

The models also respond to price changes (Gottwalt et al,, 2011) and
have a range of preferences over tariff terms. For example, some are will-
ing to subscribe to variable-price tariffs if they have the opportunity to
save by adjusting their power usage, while others are willing to pay
higher prices for the simplicity of fixed-rate or very simple time-of-use
tariffs. Many of the customer models are capable of adaptive capacity
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Fig. 1. Major elements of the Power TAC scenario. Brokers are the competitors, while the markets, customers, energy suppliers, and distribution utility are modeled by the simulation.

management, which allows them to evaluate various possibilities for
capacity shifting and choose among the ones best suited to the applicable
tariff rates, while also considering the potential choices of other cus-
tomers that may be on the same tariff (Reddy and Veloso, 2012). This
generates a flattening effect and avoids the problem of customers
“herding” together, as seen from the aggregate consumption profile of
30,000 residential consumers in Fig. 3. Such “demand smoothing” is
generally desirable to brokers, and it definitely can reduce peak demand,
but on the other hand a more adaptive customer may behave in less pre-
dictable ways, thus adding to the challenges that need to be addressed by
broker strategies in the competition.

Tariff contracts may include both usage-based and per-day charges,
fixed and varying prices for both consumption and production of energy,
rates that apply only above a specified usage threshold, signup bonuses,
and early-withdrawal penalties. Separate contracts may be offered for
charging electric vehicles, which could limit charging during high-
demand periods, or even offer to pay the customer for feeding energy
back into the grid at certain times. Variable prices may follow a fixed
schedule (day/night pricing, for example), or they may be fully dynamic,
possibly with specified advance notice of price changes.

The tariff market publishes new tariffs periodically to customers
and to all brokers, typically 4 times per simulated day. This publication
frequency represents a tradeoff between realism (most households do

, E MedicalCenter
Consumption

| | Week 1

v
V'S

not receive mail so frequently) and providing adequate opportunity
for brokers to observe customer behavior and attempt to deduce their
preferences. Customers are notified of publication, and may choose to
change their tariff subscriptions based on their preferences. Customer
preferences include a number of factors, including cost and conve-
nience, energy source, contract length, signup bonuses and withdrawal
penalties, and inertia. The inertia factor means that only a fraction of
customers will notice new tariff publications immediately. Customers
must trade off cost and convenience when evaluating tariffs that in-
clude time-of-use or dynamic pricing, or discounts for participation in
demand-side management schemes. As in the real world, customers
are not completely rational, in the sense that they do not always choose
the tariff with the best utility given their preferences.

3.2. Gencos and wholesale market

Brokers may buy and sell energy from retail customers, or they
may buy and sell energy for future delivery in a wholesale market,
which is modeled on real-world markets such as the European and
North American day-ahead wholesale power markets. At any given
time, brokers may place orders in the wholesale market to buy or sell
power in 24 separate auctions, the first for delivery in the following
timeslot, and the last 24 h in the future. Each active auction clears once
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Fig. 2. Diverse consumption and production capacities from a range of customer models.
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Fig. 3. Some customer models employ adaptive shifting algorithms to achieve capacity smoothing under variable-price broker tariffs.

per timeslot simply by sorting asks by ascending price, bids by descend-
ing price, and choosing a clearing price and volume halfway between the
last ask and bid for which the bid price is higher than the ask price. The
entire volume then clears at the chosen clearing price. For each of the
24 auction clearings in each timeslot, brokers are notified of the clearing
price and volume, of their own updated market positions, and the bid
and ask prices and volumes for the uncleared orders.

In addition to the brokers, the simulation includes “Genco” models
to simulate utility-scale power suppliers who sell their output through
the wholesale market. These suppliers represent different price points
and lead-time requirements; for example, if a particular genco fails to
sell any power in a particular timeslot, it shuts down, and may take be-
tween 1 and 8 h to restart. Therefore, while it is shut down, it only bids
in auctions that are beyond its startup delay time. Shutdowns also occur
randomly, at a low probability, for some of the genco models. In addi-
tion, the total capacity of each genco model varies somewhat through
a mean-reverting random walk. These behaviors are not intended as
high-quality models of utility-scale energy producers; their purpose is
to provide some realistic unpredictability to wholesale prices. Also,
there is an outside “buyer” in the market to provide liquidity. Its behav-
ior is very simple; it always places one or more bids in each auction by
choosing an exponentially distributed random price and a quantity in-
versely proportional to the price. This produces many low-priced,
high-quantity bids, and a few high-priced, low-quantity bids, and limits
extreme values caused by lack of liquidity. For example, there may be
industrial operations that will buy large quantities of power at whole-
sale prices if it is less expensive than available alternative energy
sources.

3.3. Distribution utility

The distribution utility (DU) models a regulated monopoly or govern-
ment entity that owns and operates the physical facilities (distribution
lines, transformers, etc.) and is responsible for real-time balancing of sup-
ply and demand within the distribution network. It does this primarily by
operating in the “regulating market”, the real-time facet of the wholesale
market, and by exercising demand and supply controls provided by bro-
kers. The associated costs are allocated to the brokers responsible for the
imbalance. In the real world, this balancing responsibility is typically han-
dled higher in the grid hierarchy, by the Independent System Operator
(ISO, North America) or Transmission System Operator (TSO, Europe).
We have chosen to model the balancing behavior in the DU within the
Power TAC simulation, partly because we are not modeling the upper
levels of the hierarchy, but more importantly because we want to be
able to study the potential role of retail brokers in the balancing process.

Within the simulation, the DU inspects the market positions of the
brokers and the meter readings of the customers in each timeslot, and
computes overall and per-broker balance between supply and demand.

It then charges brokers a delivery fee for the use of its grid facilities,
and a balancing fee (or payment) that covers its costs and guarantees
that each broker would be better off, at least in expectation, by balancing
its own supply and demand rather than relying on the DU (de Weerdt et
al,, 2011). If brokers have subscribers who have agreed to capacity con-
trols, they may make offers to the DU for the right to exercise them if
needed to reduce imbalances. These offers specify a price, and a propor-
tion of actual demand (or production) against a particular tariff. The DU
inspects the meter readings of the associated customers to determine the
volume of energy available for each offer, then runs a VCG-based clearing
algorithm (Clarke, 1971; Vickrey, 1961) to determine which offers to ex-
ercise and the associated payments. In this way, brokers can actually
benefit in cases where their balancing offers are used to offset imbal-
ances among other brokers.

The physical infrastructure of the grid is not modeled in the current
version, because our focus is on the economic environment for a single
distribution grid. It would be possible to couple the Power TAC simulation,
or possibly multiple Power TAC simulations, with an existing physical
simulation. This means, for example, that power factor is not modeled,
and the distribution grid is assumed to be lossless. It also means that
congestion is not modeled, but this is typically an issue with large-scale
transmission grids, and less so with local distribution grids. However,
congestion can have a major impact on the cost of power at particular
points in the transmission grid, and this can be easily modeled by
adjusting the capacity and pricing functions in the genco models.

3.4. Brokers

An overview of the interactions between a broker and the simula-
tion environment during a single timeslot is shown in Fig. 4. At the be-
ginning of each timeslot, wholesale orders that have arrived during the
previous timeslot are cleared, and brokers receive records of cleared
trades. They then receive the current weather report and a forecast for
the following 24 h. This is followed by tariff publication (once every
six timeslots) and interactions with customers. Once the customer
models have run, the DU runs the balancing process and clears the
balancing market. Finally, the accounting process gathers up all the
transactions produced by the earlier steps, updates the brokers' cash
balance, applies interest payments or charges, and forwards the trans-
actions along with updated cash and market positions to the broker.
This entire process is guaranteed to be completed at least 2 s before
the start of the next timeslot.

This cycle and the two-second guarantee depend on simulation
clocks in the simulation server and in the broker to be closely synchro-
nized, a non-trivial problem given that the broker and server can be in
any two locations on the Internet. This is accomplished by sharing offset
and rate information between server and broker, and works as long as
both systems are synchronized with the internet time standard.
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Fig. 4. Major interactions of a broker agent with the simulation environment within a single timeslot.

Brokers develop portfolios of customer contracts by offering tariff
contracts to a population of anonymous residential and business cus-
tomers, and by negotiating individual contracts with larger customers
(such as major manufacturing facilities, or greenhouse complexes with
many Combined Heat and Power (CHP) units). Because controllable
capacities can reduce costs significantly, brokers can offer special tariffs
for them, and then make offers to the DU for the right to exercise them
to reduce imbalances. Tariffs need not be static; in addition to variable-
rate tariffs, brokers have three ways to induce customers to switch from
one tariff to another. First, they can offer more attractive tariffs, and wait
for customers to discover them and switch. Second, they can specify an
expiration date for a tariff, beyond which new subscriptions will not be
accepted. Third, they can supersede an existing tariff with a new one,
forcing customers to switch their subscriptions, although in this case
customers have less inertia and are freed from early-withdrawal penal-
ties, so there is some risk of losing customers in this case.

Given a portfolio of customer contracts, brokers also compete with
each other in the wholesale market to minimize the prices they must
pay for the power they deliver to their consuming customers, and to
maximize the prices they receive for the power delivered to them
by their producing customers.

Broker developers face a number of interesting challenges. Broker
agents operate in a fast-paced information-rich environment. Customer
behavior is stochastic, and depends partially on weather and the actions
of brokers. Brokers are challenged to predict customer power usage and

wholesale market prices up to 24 h in advance, and have multiple
available actions to interact with the markets and influence customer
behavior. The competitive environment is more or less oligopolistic,
depending on the number of participating brokers. This means that
broker actions have observable impacts on the competitive environ-
ment, and so accurate predictions may need to account for the effects
of a broker's own actions in order to detect the effects of other brokers'
actions (Ketter et al., 2012a). Successful broker agent designs will typi-
cally integrate a variety of techniques from artificial intelligence, ma-
chine learning, and game theory (Ketter and Symeonidis, 2012; Peters
et al., 2012, forthcoming; Reddy and Veloso, 2011b).

3.5. Initial conditions

Brokers will likely need a significant amount of data to compose
profitable tariffs and to guide their trading strategies. They could ac-
cumulate such data by observing the simulation for a period of time
before offering tariffs and entering the market, but this would stretch
the time required for a simulation run and would not be realistic. In
the real world, a significant body of historical data on prices and con-
sumption patterns is available to potential brokers before they enter
the business. Therefore, we introduce two additional elements, essen-
tially modeling the point in time when a market is opened to compe-
tition. The “default broker” plays the role of the incumbent regulated
utility, which is typically the customer-facing side of the DU prior to
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the market opening. The simulation is run for a period in which the
default broker has no competition, offers a simple fixed-price tariff to
all customers, accumulates a smoothed time series of actual demand,
and trades in the wholesale market using a simple trading strategy
that is described in detail in the game specification (Ketter et al,
2012b). This “bootstrap” data on customer behavior and market prices
is packaged and delivered to the competing brokers at the beginning
of a simulation run, which conceptually starts immediately after the
end of the bootstrap period in the simulation world.

4. Simulation platform

The simulation platform is a server that communicates with the
competing brokers over the Internet. In a tournament environment,
simulations are run with different numbers and combinations of broker
agents, and the agent that is most profitable over a range of scenarios is
the winner. In a research environment, the simulation may be config-
ured in a number of ways to support different lines of research, such
as achievement of socially desirable goals e.g. utilization of renewables,
or the effects of varying levels of electric vehicle market penetration.

The Power TAC simulation platform is designed to serve as a rich
and flexible foundation to address a variety of research questions, in
addition to supporting an annual competition. It consists of a generic
competitive simulation framework, a small set of core models including
the tariff market and basic accounting, and a set of replaceable models. It
can be configured to support individual research agendas as well as
large-scale public tournaments. The wholesale market, distribution util-
ity, balancing market, and customer and genco models are configurable
and can be easily replaced. The customer and supplier models include
“bottom-up” designs that explicitly represent appliances and people,
along with “top-down” models that generate more or less realistic
behaviors and preferences for large populations of households or busi-
nesses derived from customer surveys and pilot projects such as the EU
project Cassandra-Energy.? Weather data is not currently generated by
a model, but instead is pulled from historical records of weather reports
and forecasts for a specific location. Wholesale power providers may be
abstract models, or they may be interfaces for historical market interac-
tions of real production facilities. This flexibility will allow Power TAC to
model proposals for market designs, incentives, and taxes, or study the
impact of increasing numbers of electric vehicles, or of wide adoption of
price-sensitive “smart-grid” automation that could significantly change
patterns of electric power usage.

In addition to the simulation server, the Power TAC platform includes
three essential components to support competitions and research:

Tournament scheduler: A typical tournament involves multiple sets
of simulation runs with different sets of brokers, and within a set
the numbers and identities of brokers in each run need to be speci-
fied. In order to be able to make clear and fair performance distinc-
tions among participating brokers, each competing broker must
play every other broker, or every other subset of a given size, an
equal number of times. Because simulation length is stochastic,
and because the number of machines and brokers available to run
simulations is constrained, the schedule is constructed and opti-
mized on-the-fly to maximize resource utilization.

Sample broker: To minimize the effort required to build a competi-
tive broker agent, we provide a simple but complete implementation
of a Power TAC broker, modularized to separate the behavioral com-
ponents (portfolio management, wholesale trading, etc.) from the
message handling and interaction protocols between the broker
and the simulation server and tournament scheduler.

2 http://www.cassandra-fp7.eu/.

Log analyzer: The simulation generates two log files as it runs: a
“trace” log that describes briefly what is happening, and a “state”
log that records all state changes in the simulation environment.
The state log therefore contains all the data needed to understand
exactly what happened and when during a simulation run. All the
plots in this paper were produced from state log data. The log ana-
lyzer reads a state log and reconstructs the simulation environment
at each point in the original simulation's timeline. Simple wrapper
scripts can be written to extract and format the data needed for a
particular study or plot.

The Power TAC platform is intended to support empirical research
in addition to tournaments. Several features are implemented specifically
for research purposes. The simulation server uses random values for a
number of purposes in its various models, such as the process used by
customer models to choose among nearly-equal tariff offerings. When
the server starts up, it can read a file containing state-log entries from a
previous game giving the seed values for each of the various random-
value generators. If the file is not given, new random seeds will be gener-
ated and recorded in the state log. The tournament scheduler can be used
to set up multiple-run experiments using repeated random sequences
with different configurations of one of the agents, or different sets of
agents, or changes in one or more of the models. In addition, the tourna-
ment scheduler gathers up the logs from each simulation, stores them,
and makes them available through its web interface.

The Power TAC simulation server with all its models, as well as the
sample broker, the log file analyzer, and the tournament scheduler, are
available under a permissive open source license. Researchers are encour-
aged to download it and modify or extend it to serve their own research
goals. For example, at least two research groups are primarily interested
in the customer-modeling problem; they plan to run the simulation
with a fixed set of competitive agents developed for the competition,
and then modify and supplement the customer models to study ways
that customer behaviors and technology investments affect their own
outcomes as well as their impacts on the utilization of sustainable energy
sources (Valogianni et al., 2012). Another group is building Power TAC
broker agents that are augmented user interfaces for human decision-
makers, to study the effectiveness of human decision-making with differ-
ent sets of information display and decision-support tools (Verhagen et
al,, 2012). To support this type of study, the broker-server interaction
can be configured to allow for a broker to “stall” the simulation clock at
any time to allow a user to interact. Power TAC offers a generalized plat-
form that can incorporate other models of interaction in the retail grid; for
example, a virtual power plant can be viewed as a fully-cooperative port-
folio of customers represented by their own virtual broker agent.

Power TAC will also be an effective teaching tool; students may be
asked to build brokers or customer models, or to modify market and
taxation rules and evaluate the impact on customers, brokers, or the
relative value of sustainable energy sources with respect to fossil
fuel-based suppliers.

5. Platform demonstration

We have hosted several competitions, including a pilot competition
at the International Joint Conference on Artificial Intelligence (IJCAI) in
Barcelona in July 2011 and demonstration competitions in June 2012 at
the Autonomous Agents and Multi-Agent Systems conference in Valencia,
and in September and December of 2012. Teams from Croatia (Matetic et
al., 2012), Greece, Netherlands, UK, USA, Mexico, and Korea have devel-
oped and entered brokers for these tournaments.

Fig. 5 shows the observed clearing prices on the wholesale market
for a period of 16 simulated days in one game from the September
2012 tournament. There is a slight diurnal pattern, but it is masked
by considerable volatility over a range of nearly 5:1.
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Fig. 5. Wholesale market clearing prices in the Fall 2012 competition demonstrate the
volatility that must be anticipated by brokers.

Fig. 6 shows how a population of 30,000 customers from one con-
sumer model were allocated to different tariffs over 40 days in one
game from a 2012 demonstration competition. As new tariffs are intro-
duced into the market by brokers, they often attract customers away
from existing tariffs.

The competitions have also helped us identify weaknesses in the
customer models and the balancing mechanism and proactively ad-
dress those issues early in the development cycle. For example, the
platform initially allowed brokers to publish variable price tariffs
which only declare an expected price but are otherwise unconstrained.
This allowed a broker to attract consumers using low expected price
declarations who were then charged extremely high actual prices that
did not average to the expected price. This led us to design additional
constraints on variable price tariffs defining minimum/maximum
price constraints; such evolutions of the tariff structure, brought on by
game dynamics, also help inform real-world tariff design.

Another interesting finding in one competition was the strategy
employed by a different broker. While the premise of the game relies
on brokers trying to build balanced portfolios of supply and demand,

100%
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this broker executed a highly profitable strategy by acquiring a large
portfolio of only producers and selling the acquired power in the whole-
sale market, essentially forming a virtual power plant (Pudjianto et al.,
2007). This is an ideal example of the unexpected strategies that are
contributed through the competition, resulting in highly unpredictable
emergent dynamics for the overall simulation.

6. Conclusion

Our energy-dependent society must adapt itself to more sustainable
sources of energy. This will require a number of changes, including new
market structures that motivate sustainable behaviors on the part of
energy producers and consumers. It will also require us to make effec-
tive use of diffuse, volatile sources such as small-scale solar and wind
installations, as well as small-scale energy storage capabilities such as
electric vehicle batteries.

Competitive retail power markets have the potential to drive invest-
ment and behaviors that enhance sustainability. Power TAC is a rich com-
petitive simulation of these future retail power markets. The competition
will stimulate researchers to develop broker agents and benchmark
them against each other and against the market structures embedded
in the Power TAC scenario, helping us to better understand the dynamics
of customer and retailer decision-making and the robustness of market
designs, while providing actionable information for policymakers and in-
dustry leaders.

Power TAC is designed to support a research program centered
around an annual tournament, a model that has been very effective in
stimulating research. Prominent examples include RoboCup (Ros et
al., 2009) and TAC (Ketter and Symeonidis, 2012).

Tournaments are typically held in conjunction with a relevant major
conference where participants can present their work, discuss what they
have learned, and begin planning for the next cycle. After a tournament,
teams are encouraged to release their agent code (either binary or
source), so that all teams can design and run their own experiments
using a range of agent behaviors and market design details. Teams are
then able to incorporate results of this research into their agent designs
for the following year. Each year, the scenario may be updated to add
new challenges, and if necessary to tune the market designs and level
of realism, in order to enhance the relevance of the shared enterprise
for both research value and policy guidance.

Power TAC models power markets primarily from an economic
rather than from a physical viewpoint; it does not simulate the details
of the physical infrastructure. In the future, we anticipate integrating
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Fig. 6. This plot shows the varying allocation by percentage of a population of 30,000 residential consumers as new tariffs enter into the market over a period of 40 days.
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the market simulation with a physical simulation in order to be able
to evaluate the technical feasibility of the market's energy allocation
over time.

Power TAC builds on the authors' extensive experience with the
Trading Agent community and with the Trading Agent Competition
for Supply Chain Management (TAC SCM) (Collins et al., 2010b). The
strength of the world-wide TAC community is its individual research
groups. Most are part of a university or business research organization.
Due to the complexity of building a competitive autonomous agent,
most groups are currently associated with Computer Science depart-
ments. Many existing teams have formed partnerships with business
schools, economics departments, and electrical engineering depart-
ments. For the future, we are working on a broker framework that lever-
ages a popular visual-programming system for building simulation
models. We expect this will lower the barrier of entry for teams outside
the computer science community.

Three Power TAC tournaments were held in 2012, to test and validate
all components of the Power TAC platform. The “official” tournament for
2013 will be held in July in conjunction with the AAAI-2013 conference in
Bellevue, Washington, USA. Other tournaments may be run if participants
request them. Further information, including a detailed specification and
development resources are available at http://www.powertac.org.
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