
1

15-441 Computer Networking

Lecture 9: Routing
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441
15-641

To Autolab or Not to Autolab

• Autolab is supposed to make life easier
• Give you confidence that you will credit for tests

• But autolab is an artificial execution environment
• Isolated: no contact with other servers, file systems, ..
• Strange timing: packet latencies can become very

unpredictable and (possibly) unrealistic
• It is very difficult (~impossible) to debug in autolab

• Recommendation: try to get tests to work in
autolab but limit how much time you spend on it

• You will get a chance to run the tests over
Andrew, without loss of credit

2

To Take or Not to Take a
Late Penalty

• Nobody likes to miss a deadline
• But is happens, especially when you are overcommitted

• Put it in perspective: the penalty (in this course) is
generally not a big deal
• For assignment A: % of A x weight of A x 15%
• CP2 of P1: ~0.75% of points for the course

• Think strategically:
• Final project submissions: you can use a late day
• The rest: move on and learn from the experience

• Biggest concern: cascading missed deadlines

3

To Use or Not to Use a Late Day

• You don’t take late days
• At the end of the course, we look at what

assignments you were late for and we use your
late days so it maximizes your grade
• You can also “suggest” what you think is optimal

• It is to your advantage to keep track of this so you
can make good decisions during the semester

4

2

5

Outline

• Routing intro

• Distance Vector

• Link State

6

Graph Model

• Represent each router as node
• Direct link between routers represented by edge

• Symmetric links  undirected graph
• Edge “cost” c(x,y) denotes measure of difficulty of using link

• delay, $ cost, or congestion level
• Task

• Determine least cost path from every node to every other node
• Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

7

Routes from Node A

• Set of shortest paths forms a tree
• Shortest path spanning tree

• Solution is not unique
• E.g., A-E-F-C-D also has cost 7

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Forwarding Table for A
Dest Cost Next

Hop
A 0 A
B 4 B
C 6 E
D 7 B
E 2 E
F 5 E

8

Ways to Compute Shortest Paths

• Centralized
• Collect graph structure in one place
• Use standard graph algorithm
• Disseminate routing tables

• Link-state
• Every node collects complete graph structure
• Each computes shortest paths from it
• Each generates its own routing table

• Distance-vector
• No one has copy of graph
• Nodes construct their own tables iteratively
• Each sends information about its table to neighbors

3

Routing Hierarchy

• IP packets must
travel across
domains – inter-
domain routing
• Primary role of IP
• Based on CIDR

prefix

• Must also travel
through domains –
intro-domain
routing
• Across subnets
• Based on subnet ID

or longer prefix
9 10

Outline

• Routing intro

• Distance Vector

• Link State

11

Distance-Vector Method

• Idea
• At any time, have cost/next hop of best known path to destination
• Use cost  when no path known

• Initially
• Only have entries for directly connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for A
Dest Cost Next

Hop
A 0 A
B 4 B
C  –
D  –
E 2 E
F 6 F

12

Distance-Vector Update

• Update(x,y,z)
d  c(x,z) + d(z,y) # Cost of path from x to y with first hop z

if d < d(x,y)
Found better path

return d,z # Updated cost / next hop for destination y

else

return d(x,y), nexthop(x,y) # Existing cost / next hop

y

c(x,z)
d(z,y)

d(x,y)

destination
source

candidate
next hop

x

z

4

13

Algorithm

• Bellman-Ford algorithm
• Repeat

For every node x
For every neighbor z

For every destination y
d(x,y)  Update(x,y,z)

• Until converge

2/11/2010 Lecture 10: Intra-Domain Routing 14

Start

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

Dst Cst Hop

A 0 A

B 4 B

C  –

D  –

E 2 E

F 6 F

Table for B

Dst Cst Hop

A 4 A

B 0 B

C  –

D 3 D

E  –

F 1 F

Table for C

Dst Cst Hop

A  –

B  –

C 0 C

D 1 D

E  –

F 1 F

Table for D

Dst Cst Hop

A  –

B 3 B

C 1 C

D 0 D

E  –

F  –

Table for E

Dst Cst Hop

A 2 A

B  –

C  –

D  –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 6 A

B 1 B

C 1 C

D  –

E 3 E

F 0 F

Optimum 1-hop paths

15

Iteration #1

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 7 F

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F
Table for C

Dst Cst Hop

A 7 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E  –

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D  –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

16

Iteration #2

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F
Table for C

Dst Cst Hop

A 6 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E 5 C

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D 5 F

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

5

17

Distance Vector: Link Cost
Changes
Link cost changes:
• Node detects local link cost change
• Updates distance table
• If cost change in least cost path, notify

neighbors

X Z
14

50

Y
1

algorithm
terminates

“good
news
travels
fast”

Table at

Node Y

Node Z

18

Distance Vector: Link Cost
Changes

Link cost changes:
• Good news travels fast
• Bad news travels slowly -

“count to infinity” problem!
X Z

14

50

Y
60

algorithm
continues

on!

Table at

Node Y

Node Z

Bad News Travels Slowly

Is this a problem? Yes!
• After a path cost increases, it can take a very long

time before paths stabilize, and
• During this process, the network has a routing

loop
What is the cause?
• Nodes refuse to accept the up-to-date information,

because they prefer the older, better cost
• Outdated information based on the older, lower

path cost loops around the network
19 20

Distance Vector: Split Horizon

Problem: if Z routes through Y to get to
X, it still advertises its path back to Y

• This serves no purpose and causes the loops

Solution: Z does not advertise its route back to Y
algorithm
terminates

X Z
14

50

Y
60

? ? ?

Table at

Node Y

Node Z

6

22

Poison Reverse Failures

• Split horizon does not help!
• Especially bad if a link goes down:

“Count to infinity”
• Solution:

• Make “infinity” smaller
• Force the cost “infinity” to all

interfaces and wait
• Helps network converge faster

Table for A

Dst Cst Hop

C 7 F

Table for B

Dst Cst Hop

C 8 A

Table for F

Dst Cst Hop

C 1 C

Table for F

Dst Cst Hop

C  –

Table for A

Dst Cst Hop

C  –

Forced
Update

Table for B

Dst Cst Hop

C 14 A

Forced
Update

F C
6

1

1

1

B
D

A

4


Table for D

Dst Cst Hop

C 9 B

Forced
Update

Table for A

Dst Cst Hop

C 13 D

Better
Route

Table for D

Dst Cst Hop

C 15 B

Table for A

Dst Cst Hop

C 19 D

Forced
Update

•
•
•

Forced
Update

23

Routing Information Protocol (RIP)

• Earliest IP routing protocol (1982 BSD)
• Current standard is version 2 (RFC 1723)

• Features
• Every link has cost 1
• “Infinity” = 16 - Limits network diameter to 15 hops

• Routers exchange different types of updates
• Initial: asks for copy of table for every neighbor when it starts

• Uses it to iteratively generate own table
• Periodic: sends copy of its table to each neighbor every 30 sec

• Neighbors use it to iteratively update their tables
• Triggered: send copy of entry to neighbors when entry changes

• Except for one causing update (split horizon rule)
• Neighbors use it to update their tables

24

Outline

• Routing intro

• Distance Vector

• Link State

25

Link State Protocol Concept

• Every node gets complete copy of graph
• Every node “floods” network with data about its

outgoing links
• Every node computes routes to every other node

• Using single-source, shortest-path algorithm
• Process performed whenever needed

• When connections die / reappear

7

26

Sending Link States by Flooding

• X Wants to Send
Information
• Sends on all outgoing

links
• When Node Y Receives

Information from Z
• Send on all links other

than Z

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

27

Dijkstra’s Algorithm

• Given
• Graph with source node s and edge costs c(u,v)
• Determine least cost path from s to every node v

• Shortest Path First Algorithm
• Traverse graph in order of least cost from source

28

Dijkstra’s Algorithm: Concept

• Node Sets
• Done

• Already have least cost path to it
• Horizon:

• Reachable in 1 hop from node in
Done

• Unseen:
• Cannot reach directly from node in

Done

• Label
• d(v) = path cost from s to v

• Path
• Keep track of last link in path

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon
Unseen

0

2
5

3





Current Path Costs

29

Dijkstra’s Algorithm: Initially

• No nodes done
• Source in horizon

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done
Horizon

Unseen

0










Current Path Costs

8

30

Dijkstra’s Algorithm: Initially

• d(v) to node A shown in red
• Only consider links from done nodes

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done
Horizon Unseen

0

2
6

3





Current Path Costs

31

Dijkstra’s Algorithm

• Select node v in horizon with minimum d(v)
• Add link used to add node to shortest path tree
• Update d(v) information

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon
Unseen

0

2

3





Current Path Costs
65

32

Dijkstra’s Algorithm

• Repeat…

A

C

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon

Unseen

0

2
5

3





Current Path Costs
F

B

D

E

33

Dijkstra’s Algorithm

• Update d(v) values
• Can cause addition of new nodes to horizon

2
6

3

1

1

2

3
Source

Node

Done
Horizon

Unseen

0

2
4

3



6

Current Path Costs

A

C3

D

B

E

F

9

34

Dijkstra’s Algorithm

• Final tree shown in green

2
6

3

1

1

2

3
Source

Node
0

2
4

3

5

6
A

C3

D

B

E

F

35

Link State Characteristics

• With consistent
LSDBs*, all nodes
compute consistent
loop-free paths

• Can still have
transient loops

A

B

C

D

1

3

5 2

1

Packet from CA
may loop around BDC
if B knows about failure
and C & D do not

*Link State Data Base

36

OSPF Routing Protocol

• Open standard created by IETF
• Shortest-path first

• Another name for Dijkstra’s algorithm
• Replaced RIP

• RIP is dated, given today’s requirements
• OSPF has fast convergence when configuration

changes
• OSPF can scale to very large networks using “areas”

37

OSPF Reliable Flooding

• Transmit link state advertisements
• Originating router

• Typically, minimum IP address for router
• Link ID

• ID of router at other end of link
• Metric

• Cost of link
• Link-state age

• Incremented each second
• Packet expires when reaches 3600

• Sequence number
• Incremented each time sending new link information

10

38

Flooding Issues

• When should it be performed
• Periodically
• When status of link changes

• Detected by connected node
• What happens when router goes down & back up

• Sequence number reset to 0
• Other routers may have entries with higher sequence

numbers
• Router will send out LSAs with number 0
• Will get back LSAs with last valid sequence number p
• Router sets sequence number to p+1 & resends

39

Areas: Scaling to Larger Networks

• Within area: Each node has routes to every other node
• Outside area: Each node has routes for other top-level

areas only
• Inter-area packets are routed to nearest border router
• Constraint: no path between two sub-areas of an area can exit

that area
• May no longer have shortest path routes

Backbone Areas

Lower-level Areas

Area-Border
Router

40

Comparison of LS and DV
Algorithms
Message complexity
• LS: with n nodes, E links,

O(nE) messages
• DV: exchange between

neighbors only

Speed of Convergence
• LS: Relatively fast

• Complex computation, but can
forward before computation

• may have transient loops
• DV: convergence time varies

• may have routing loops
• count-to-infinity problem
• faster with triggered

updates

Space requirements:
• LS maintains entire topology
• DV maintains only neighbor

state

Robustness: router
malfunctions

• LS: Node can advertise
incorrect link cost
• Each node computes its

own table
• DV: Node can advertise

incorrect path cost
• Each node’s table used by

others (error propagates)

