This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 12: Ad Hoc Networks

Peter Steenkiste

Spring Semester 2022 http://www.cs.cmu.edu/~prs/wirelessS22/

Announcements

- If you have not sent me information on team or topic, please do so as soon as possible
 - » About 2/3 of the class have provided information

• I fixed the inconsistency of the due dates:

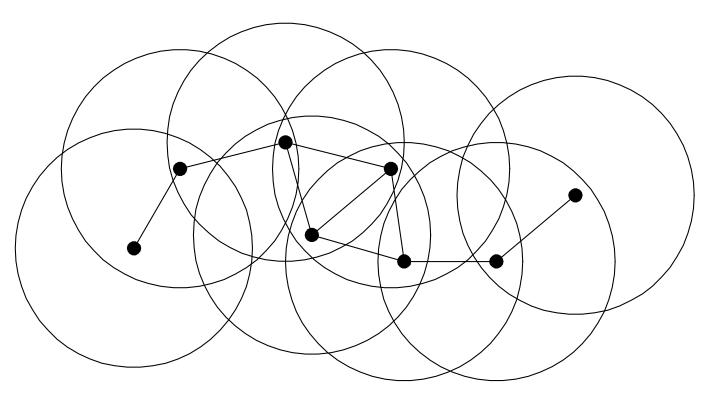
- » P2 topics and teams: asap
- » Survey topics and teams: next week Monday
- » Midterm: Wed, Mar 2

Ad Hoc Routing

Definition and challenges

Routing:

- » Classes: proactive versus reactive routing
- » Proactive routing with a twist
- » Reactive routing DSR
- » Geographic routing: GPSR


Discussion

Structured as a survey

» But a bit longer since it covers more material

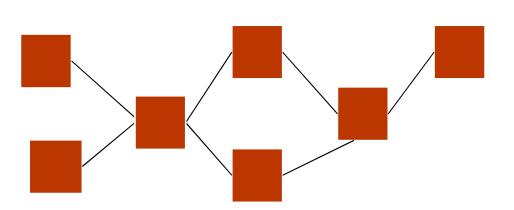
Ad Hoc Networking

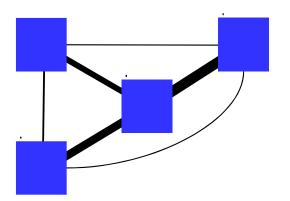
- Goal: Communication between wireless nodes
 - » No infrastructure network must be self-configuring
- It may require multiple hops to reach a destination
 - » Nodes are traffic sources, sinks and forwarders

Ad Hoc Networking Challenging

• All the challenges of wireless, and more:

- » Decentralized: nobody is in charge no planning!
- » No fixed infrastructure, random network design
- » Generic ad hoc can be arbitrarily bad: limited batteries, malicious nodes, high mobility, low density, ..
- Precise challenges depend on the application domain, e.g., vehicular networks versus firstresponder networks versus sensor networks
 - » Domain focus simplifies the problem and makes it more interesting ...
 - » Most research papers address the complex general case
- The big challenge: Routing


Traditional Routing vs Ad Hoc

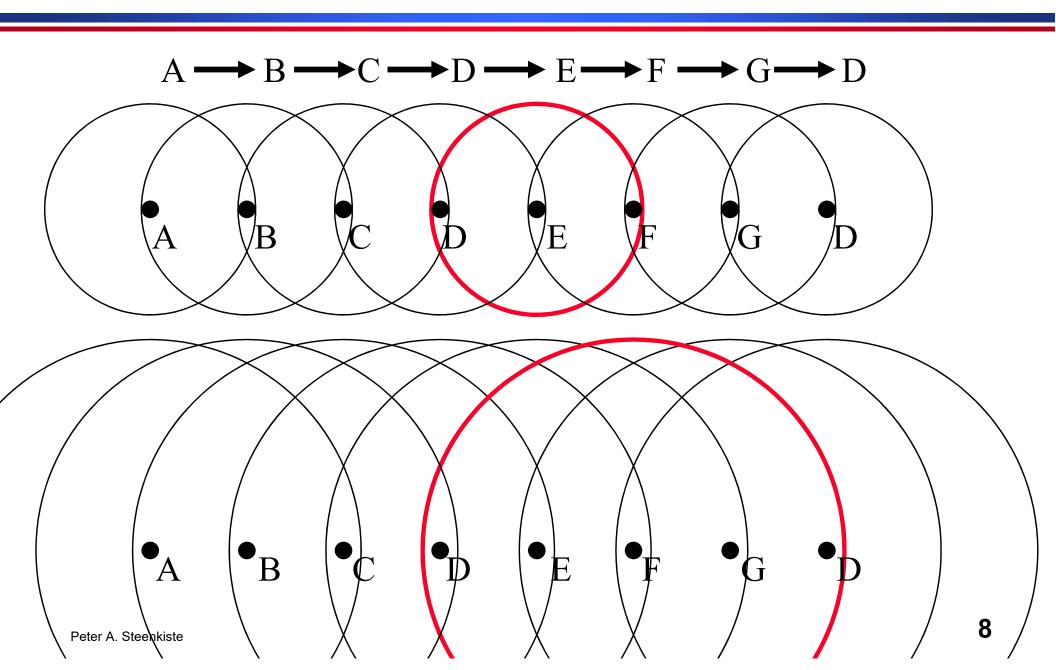

Traditional wired network:

- » Well-structured
- » ~O(N) nodes & links
- » All links work equally well
- » Sensible topology
- » Links are independent

Ad Hoc wireless network

- » N^2 links but many stink!
- » Topology may be really weird
- » Links interfere with each other
- » Dynamic link conditions means that link quality is unpredictable
 - So the topology also changes constantly!

Forwarding Packets is expensive


Assume link throughput is X

- » X depends on the WiFi version, distance, fading, ...
- What is the throughput of a chain?
 - » Basic: $A \rightarrow B \rightarrow C$
 - » Or: $A \rightarrow B \rightarrow C \rightarrow D$
 - » Or: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \dots$

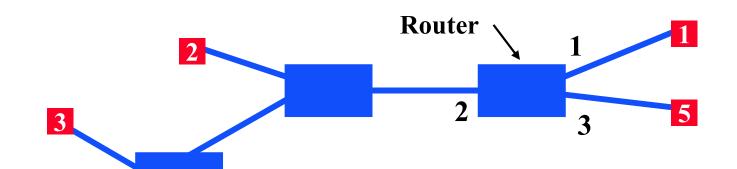
Considering:

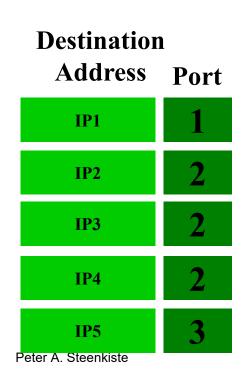
- » Wired versus wireless
- » Assume minimum power for radios.
- » Now assume a dense network, i.e., all radios can hear each other
- » Now assume dynamic link conditions, mobility, ..

2 Simple Examples

Ad Hoc Routing A Sampling of Solutions

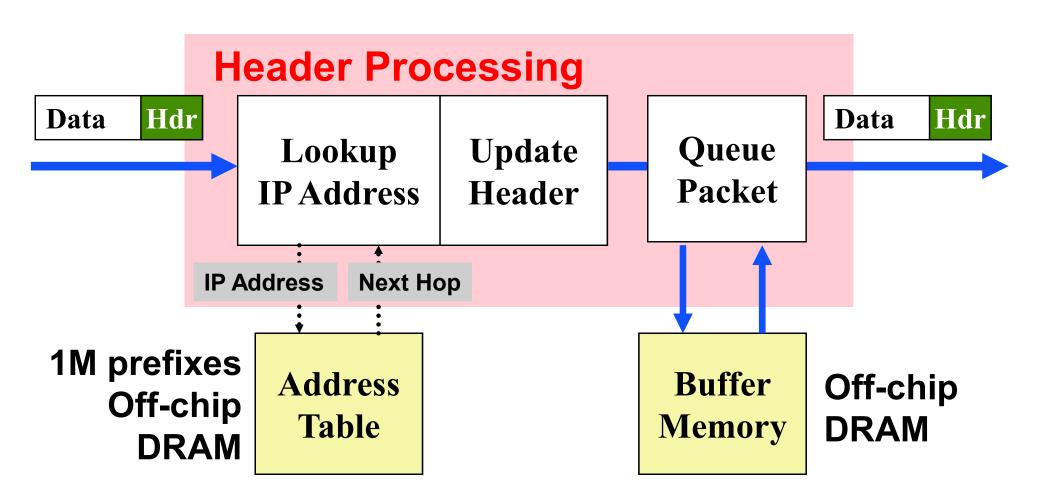
- Proactive routing: each router maintains a forwarding table listing all destinations
 - » Uses routing algorithms similar to those in the Internet
 - » Example: traditional algorithms with wireless metrics
- Reactive routing: only find a path when you need it
 - » Avoids the overhead of periodically executing a routing protocols but can introduce high packet delay
 - » Example: DSR
- Geographic routing: find a path based on geographic coordinates
 - » Does not require any topology information
 - » Does not maintain forwarding tables
 - » Example: GPSR

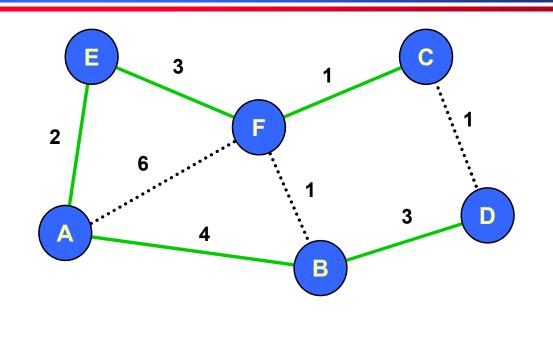

Proactive or Table-based Protocols


- Proactive: routers maintain routes independently of the need for communication
 - » Similar to wired networking uses forwarding table
- Route update messages are sent periodically or when network topology changes
- Low latency forwarding information is always readily available
- Bandwidth might get wasted due to periodic updates
- Routing algorithms use a link metric
 - » Typically simple and static how about a channel specific metric for wireless?

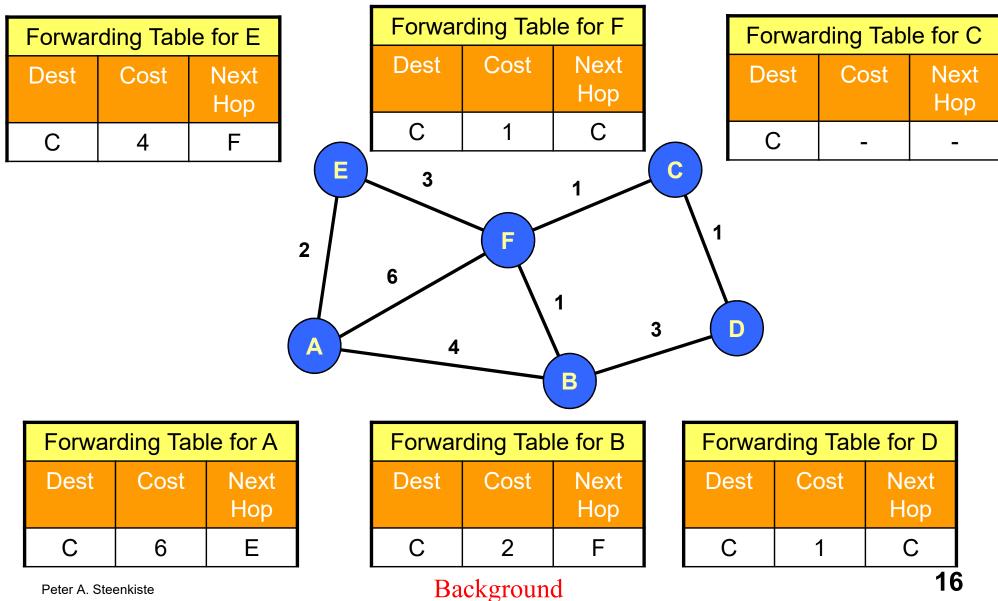
Ad Hoc Routing

- Classes: proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR


Packet Forwarding versus Routing


- Routing finds a path between two end-points
- Forwarding receives a packet and decides which egress port to send it out on
- Most networks use a routing protocol to precalculate paths between every pair of nodes
 - » Routers put the result in a forwarding table
- Forwarding only requires a lookup in the forwarding table fast!

Generic Router Architecture


Routes from Node A

Forwarding Table for A		
Dest	Cost	Next Hop
А	0	А
В	4	В
С	6	E
D	7	В
E	2	E
F	5	E

- Set of shortest paths forms tree
 - » Shortest path spanning tree
- Solution is not unique
 - » E.g., A-E-F-C-D also has cost 7

Different View: How to Get to Node C

Peter A. Steenkiste

16

Routing in Wireless Networks

Traditional routing metrics tend to be simple

- » All links have a cost of 1 shortest path routing
- » Integer value that reflects the bandwidth of the link use high value to make low bandwidth link unattractive
- But wireless link capacity is unpredictable and influenced by many factors!
- Idea: pick a link metric that reflects how expensive to send a packet over a link
- Must account for many factors:
 - » Losses/retransmission of data packets and ACKs
 - » Channel effects such as attenuation, fading, ...
 - » Interference from neighboring links, etc.

Example Metrics

Expected Transmission Count – ETX

- » Number transmissions needed to successfully deliver a packet over the link includes retransmissions
- » 1 / (d_f x d_r) with d_f and d_r representing forward/revers delivery link delivery rates
- » What does NOT account for?

Expected Transmission Time – ETT

- » Considers both the impact of retransmissions (ETX) and of the link bandwidth
- » Link bandwidth considers channel quality (bit rate) and the impact interference from neighboring links

http://pdos.csail.mit.edu/papers/grid:mobicom03/paper.pdf http://www.cs.jhu.edu/~cs647/class-papers/Routing/p114-draves.pdf Peter A. Steenkiste

Overview

- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Wireless link metrics
- Ad hoc networking examples

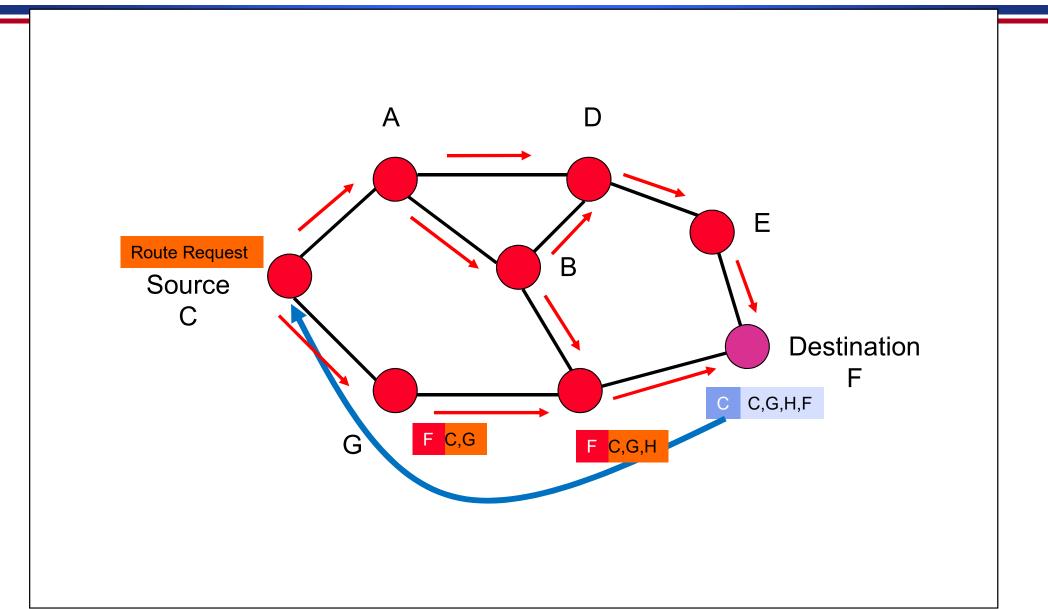
Reactive or On-Demand Routing

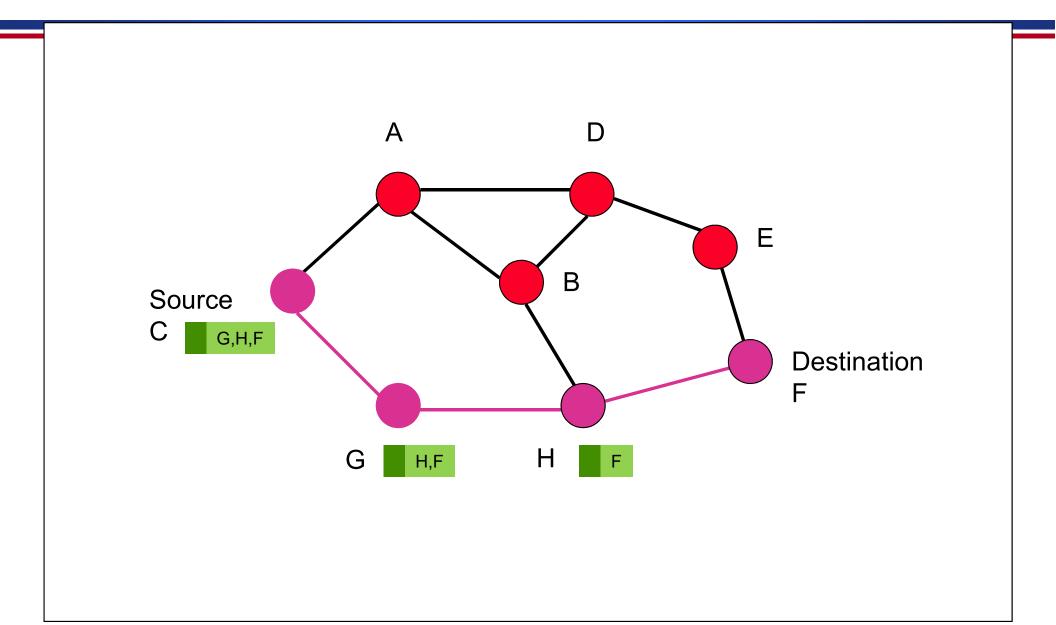
- Routers discover a route only when there is data to be sent
- Saves energy and bandwidth during periods of inactivity or low activity
- Route discovery introduces significant delay for the first packet of a new transfer
- Bad if many nodes send packets to many destinations at random times or in unstable networks

Dynamic Source Routing (DSR) Key Features

- On-demand route discovery finds route only when it is needed
 - » Avoid overhead of periodic route advertisements
- Uses source routing: path information is stored in the packet header

DSR control functions:


- » Route discovery: senders obtain route to destination
- » Route maintenance: detect changes in topology and update routes that are affected
- » Route caching: nodes cache route information to avoid route discovery for every packet
 - Caching can be done on sender and intermediate routers
 - Flush broken routes from cache

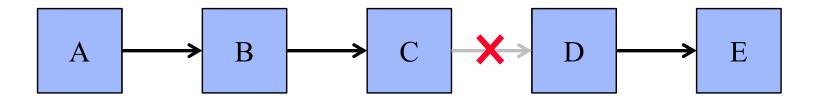

DSR Route Discovery

- Source broadcasts a route-request towards the destination
 - » The request includes a (partial) path from source to destination
- Each node forwards the request by adding own address to the path and re-broadcasting
- Requests propagate outward until:
 - » The destination is found, or
 - » A node that has a route to the destination is found

Route Request is Re-Broadcasted until Destination is Reached

C Transmits a Packet to F

Forwarding Route Requests


• A request is forwarded by a node if:

- » Node is not the destination
- » Node not already listed in recorded source route
- » Node has not seen request with same sequence number
- » IP TTL field may be used to limit scope
- Destination copies selected route into a Route-reply packet and sends it back to Source
 - » I.e., route reply uses reverse path of the route selected by the destination
 - » Destination can choose one of the paths, e.g., first path (with shortest delay)

Route Cache

- All source routes learned by a node are kept in a Route Cache
 - » Routes are learned by overhearing route requests/responses
 - » Reduces cost of route discovery
- If an intermediate node receives a route request for a destination and has an entry for the destination in its route cache, it
 - » Responds to the request using the cached information
 - » Does not propagate the request any further
- Nodes use their local route cache when asked to send a data packet
 - » If route is missing, they initiate a route request

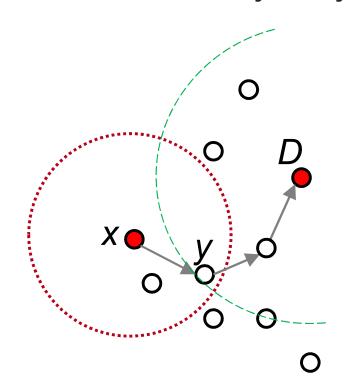
Basic Route Maintenance

- When forwarding a packet, each sender must get an acknowledgement from the next hop
 - » Will retransmit the packet up to a limit if needed
- If no ACK is received it drops the packet and notifies the sender A of the broken link
- A removes the route from its route cache and ..
 - » Intermediate nodes also remove any cached entries to E
- Will do a new route discovery when it sends another packet to E
 - » It is left up to TCP to recover from the packet loss

Discussion

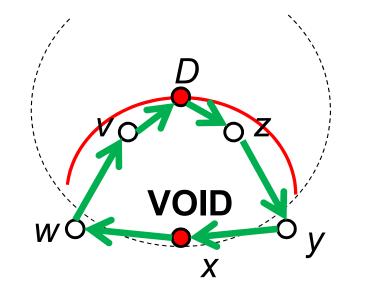
- Source routing is good for certain types of networks and traffic loads
 - » For example, stable traffic flows and/or a small number of sender-receiver pairs
 - » Stable network topologies, e.g., with limited mobility
- Periodic messages are avoided
- Significant delay for the first packet to a destination
 - » Also, need to buffer packets

Overview


- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Wireless link metrics
- Ad hoc networking examples

Greedy Perimeter Stateless Routing (GPSR)

- Use positions of neighboring nodes and packet destination to forward packets
 - No connectivity or global topology is assumed
 no forwarding or path information anywhere!
 - Nodes are assumed to know their location
 - Need a mechanism for address-to-location look up
- Two forwarding techniques is used
 - Greedy forwarding, if possible
 - Perimeter forwarding, otherwise


GPSR – Greedy forwarding

• A sender/forwarder x chooses to forward to a neighbor y such that $\{d_{xv} + d_{vD}\}$ is minimum

GPSR – Perimeter forwarding

- What happens if a node does not have a neighbor that is closer to the destination?
- Right Hand Rule: you forward the packet to your first neighbor clockwise around yourself
 - Traverse an interior region in *clockwise* edge order
 - Guaranteed to reach a (reachable) destination for planar graph

This sequence of edges traversed is called a *PERIMETER*

Discussion

• Many variants:

- » Hybrid approaches mix different solutions
- » Hierarchical: create a hierarchy of clusters

Many proposals for optimizations

- » Links use different frequencies, multiple radios, etc.
- » Link metrics that consider interference level, ...
- Best solutions is highly context dependent: density, traffic load, degree of mobility, ...
- Practical applications are rare by exist:
 - » Mesh networking: wireless, last mile Internet access
 - » Challenging conditions: first responders, military, ..
 - » In the future maybe vehicular, drones, ...

Ad hoc networks face many challenges

- » Bad links, interference, mobility, ...
- » Makes routing very challenging
- » Limited support: hardware and driver limitations

• Many proposals!

- » Proactive routing: variants of "wired" routing protocols
- » Reactive routing: only establish a path when it is needed
- » Geographic routing: use destination location info only
- » Many variants and extensions
- Specific challenges depend on the application domains
 - » Mesh versus vehicular
 - » Active area of research

Some References

• DSR:

» www.cs.rice.edu/~dbj/pubs/aw-dsr.pdf

• DSDV:

» www.cs.jhu.edu/~cs647/class-papers/Routing/p234-perkins.pdf

• GPSR:

» www.eecs.harvard.edu/~htk/publication/2000-mobi-karp-kung.pdf

• ETX:

» pdos.csail.mit.edu/papers/grid:mobicom03/paper.pdf

• ETT

» http://www.cs.jhu.edu/~cs647/class-papers/Routing/p114-draves.pdf