This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 18: 5G

Peter Steenkiste

Spring Semester 2022 http://www.cs.cmu.edu/~prs/wirelessS22/

Overview 5G

- Goals and Motivation
- Architecture
- Managing heterogeneity
- Virtualization and cloud technology
- Cloud-RAN
- 5G campus networks

5G Vision ITU International Mobile Telecommunications

(Source: ETRI graphic, from ITU-R IMT 2020 requirements)

https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf

Performance Goals ITU

5G technology More of the same?

Goal is 10+ fold increase in bandwidth over 4G

» Combination of more spectrum and more aggressive use of 4G technologies

Very aggressive use of MIMO

- » Tens to hundred antennas
- » Very fine grain beamforming and MU-MIMO
- More spectrum: use of millimeter bands
 - » Low band: below 2Ghz, e.g., 660-850 MHz
 - » Mid band: below 6 GHz, new bands, e.g., 2.5-3.7 GHz
 - <u>https://www.cnn.com/2021/03/14/tech/5g-spectrum-auction-att-verizon-tmobile/index.html</u>
 - » High band: mmWave, over 26 GHz, e.g., 25-39 GHz
 - New bands challenging but a lot of spectrum available

Is That Enough?

 Scaling up existing solutions attacks bandwidth challenges, but what about ...

Dealing with heterogeneity

- » Widely different traffic loads
- » Use of very different parts of the spectrum
- Dealing with increased complexity
 - » Multiple traffic classes, signaling protocols
 - » Diverse types of PHY processing
- Managing multiple deployment models and controlling costs
 - » Mobile users vs IoT vs Iow latency/high bandwidth
 - » Private cellular 5G campus networks

5G Key Technologies

Acronyms

• RIT: Radio Interface Technology

- UNC: User-centric network (data)
 - » Optimize user (device) performance, e.g., interference mitigation

NGFI: Next-Generation Fronthaul Interfaces

- » Interface for exchanging signal information between baseband processing in C-RAN (IQ sample) and remote radio units
- » Used in C-RAN to minimize impact of interference, ...

SDAI: Software-Defined Air Interface (control)

- » Interface to manage PHY and link level: frame structure, waveform, multiple access, duplex mode, antenna configuration, ..
- MCD: Multi-level Centralized and Distribute protocol stack:
 - » Coordinates decision making across the system (cell, UE)
- PTN: Packet Transport Network
- PON: Passive Optical Network

Technology Discussion

- The basestations have support for diverse front ends and antennas
 - » Responsible for generating/transmitting baseband signal
 - » Needed to deal with diversity of frequency bands, traffic loads
- All other processing is done in a "cloud RAN"
 - » Responsible for both the sent/received data stream and for RAN control
- Standard protocols to coordinate between basestations and C-RAN:
 - » MCD stack for control of PHY and cellular protocol functions using SDIA interface
 - » UNC for RF signal data transfer based on NGFI interface

Cloud RAN (C-RAN)

Aggressively move radio processing to the cloud

- » Network control, signaling protocols
- » Radio signal processing
- All processing to commodity platforms instead of custom HW
- Use of modern cloud and network technologies
 - » Virtualization, NFV, SDN (later)
 - » Could be outsourced to cloud providers
- Also:
 - » Home Subscriber Service
 - » Authentication, Authorization, Accounting (RADIUS)
 - » Policy Charging Control 10

Why C-RAN? Standard Cloud Arguments

Cheap compute resources

» Economy of scale of operating large data centers

Elastic resource pool

- » Size of the resource pool can adapt to the traffic load
- » Multiplexing of resources with other users/applications
- Flexible allocation of resources across applications
 - » Relative load of different traffic classes, frequency bands
- Ability to outsourcing cloud management
 - » Can be delegated to specialized cloud providers
 - » Reduces infrastructure investment
- Virtualization offers isolation of services

C-RAN Challenges

- Transfer of signal data between basestations and C-RAN requires a lot of bandwidth
 - » Supported by the NGFI interface
- Processing of the signal data is latency sensitive
 - » Latency bounds are much tighter than for typically workloads
 - » Need to be able to adapt to channel conditions
 - » May need additional support in the cloud infrastructure
- RAN control needs to be driven by information obtained from signal data
 - » Adjust transmit powers, antennas, ...

Frequency Reuse

- Frequency reuse across cells has become increasingly aggressive:
 - » Initially, macro cells with relatively static distribution of frequencies across cells
 - » Next, introduction of micro, pico, etc. cells that are selectively deployed and can reuse frequencies more aggressively
 - » Finally, more aggressive reuse using coordinated interference mitigation across cells
- Drive for frequency reuse is economics
- Goal: no cell designs, where frequencies are dynamically assigned and used "everywhere"
 - » Very carefully limit interference during reuse

mmWave Offers Significant More Capacity

• There is a lot of spectrum available!

» See next slide for the fine print

Need to use beam forming to achieve reasonable range for mmWave

- » Possibly using large number of antennas (10s .. 100)
- » Technology similar to that discussed for 802.11ad
- » Challenges include establishing sessions, mobility, ..
- Best solution likely involves coordination between stations with "cm-wave" technologies
 - » ~GHz technologies are used for coverage
 - » mmWave is used for high capacity when needed

mmWave is Hard to Use

100

 Some mmWave frequencies are hard to use because of atmospheric absorption

00075

Bands Proposed for Mobile Use

32.000

37,000 - 42,500 MHz Bands

5000

» E.g., 60GHz!

27,500 - 31,000 MHz Bands

commercially viable » 28, 38, and 73 GHz look promising 000-2 https://www.ni.com/en-us/innovations/white-papers/16/ Other Bands Raised in NOI mmwave--the-battle-of-the-bands.html#section-123627871

15

Use New Network Technologies in Core Network

Software Defined Networking (SDN)

- » Centralized control of the network
- » Provides more fine grain control over resources, e.g., bandwidth management, ...

Network Function Virtualization (NFV)

- » Cellular operators run a lot of "middleboxes" that provide value added services to users
- » Traditionally supported using custom hardware but increasingly supported by "Virtual Network Functions" running on commodity servers
- » Enabler for moving computing to clud

Network slicing using virtualization

» Flexible way of sharing a single infrastructure between several network operators and their clients

SDN concept

P. Demestichas, "5G on the horizon: key challenges for the radio-access network." *Vehicular Technology Magazine, IEEE* (2013)

SDN Overview

- The control plane and data forwarding plane are separated
- A centralized controller maintains a complete view of the network resources
- Network applications manage resources, control network functions
 - » Routing, managing QoS, traffic engineering, etc.
 - » Obtain network view through northbound interface
- Uses southbound interface to collect network state and send instructions to devices

» Protocol is called Openflow for today's IP protocols

5G Campus Networks

- Private cellular service for diverse applications
- Outsourcing of all wireless networking
- Different deployment models

Private Campus Connectivity

- Create a private slice with isolated resources from public networks
 - » Separates traffic of employees and others
- Can include radio infrastructure on the campus
- Can provide high quality of service

Dedicated Mobile Networks

- Can be used by both employees and others on campus
- Uses on site radio infrastructure
- Provides superior performance