This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 21: Sensor Networks

Peter Steenkiste CS and ECE, Carnegie Mellon University

Spring Semester 2022 http://www.cs.cmu.edu/~prs/wirelessS22/

Announcements

e.		Rough deadlin	es for various a	ssingments						
	Ex	act deadlines are in								
Week	Project 1	Project 2	Midterm	Surveys	Homeworks					
Jan 17										
Jan 24	Out Fr									
Jan 31					HW 1 out Th					
Feb 7					HW 1 due Fr					
Feb 14		Team/Topic, Mo			HW2 out Wed					
Feb 21	Due Mon				HH2 due Th					
Feb 28		Proposal, Mo	Wed, Mar 2	Topics/Team, Mo						
Mar 7		Midterm week								
Mar 14					HW 3 out Fr					
Mar 21										
Mar 28		Checkpoint, Wed								
Apr 4				Drafts due	HW4 out Fr					
Apr 11		Checkpoint, Fr								
Apr 18				Mo and Wed						
		Presentation, Mo								
Apr 25		Final Report Fr			HW4 due Wed					

Some Thoughts about Surveys

- Many students use the google templates, which as generally a disaster (24pt)
 - » No slide numbers
 - » Tiny font sizes (12pt) I want to be bigger! (18pt)
 - » 50%-80% of the slide is empty
 - » Use the space wisely!
- Outline generally looks like:
 - » Background: why useful, challenges, design options, etc.
 - » Discussion on the three papers:
 - What is the key idea this should be clear (figures!)
 - Some sample results illustrating benefits
 - Do not use terminology specific to the paper!
 - » Personal opinion on pros or cons (global or per paper)

Outline

Example applications

Early sensor networks

- » Power management
- » Routing
- » Efficient data collection

Today's sensor networks

Based on slides by Prof JP Hubaux (EPFL), Lama Nachman (Intel), Revathy Narayanan (CMU)

Wireless Sensor Networks (WSN)

- Wireless sensors have limited compute, energy, memory, and bandwidth resources, but:
- Sensing capabilities → Can observe properties the physical world
- CPU and actuators → Can control some aspects of the physical world
- Small physical size → Can be embedded throughout the physical environment
- Basis for "Cyber physical" systems, "Internet of Things"

Architecture for Wireless Sensor Networks

- There is no such thing!
- Early systems: highly specialized, relatively small-scale deployments

» Home security systems, HVAC systems, security, ...

- Later systems: focus on scaling, conserve battery, collaboration between sensors
 - » A lot of research on multi-hop ad hoc networks that reduce energy consumption
- Today: trend towards more general, highly scalable, very low energy systems
 - » Must be easy to deploy and maintain

WSN Applications

Commercial Applications

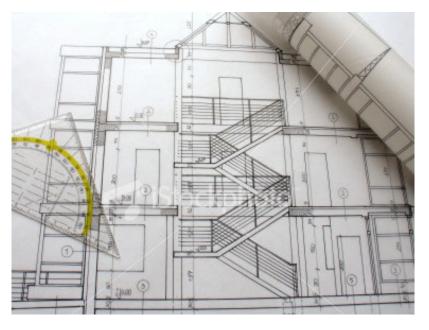
- » Light/temperature control
- » Precision agriculture (optimize watering schedule)
- » Asset management (tracking freight movement/storage)

Monitoring tools supporting Scientific Research

- » Wild life Habitat monitoring projects Great Duck Island (UCB), James Reserve (UCLA), ZebraNet (Princeton.
- » Building/Infrastructure structure (Earthquake impact)

Military Applications

- » Shooter Localization
- » Perimeter Defense (Oil pipeline protection)
- » Insurgent Activity Monitoring (MicroRadar)


Cold Chain Management

- Supermarket chains need to track the storage temperature of perishable goods in their warehouses and stores.
- Tens if not hundreds of fridges should be monitored in real-time
- Whenever the temperature of a monitored item goes
 above a threshold
 - » An alarm is raised and an attendant is warned (pager, sms)
 - » The refrigeration system is turned on
- History of data is kept in the system for legal purpose
- Similar concept can be applied to pressure and temperature monitoring in
 - » Production chains, containers, pipelines

Home automation

- Temperature management
 - » Monitor heating and cooling of a building in an integrated way
 - » Temperature in different rooms is monitored centrally
 - » A power consumption profile is to be drawn in order to save energy in the future
- Lighting management:
 - » Detect human presence in a room to automatically switch lights on and off
 - » Responds to manual activation/ deactivation of switches
 - » Tracks movement to anticipate the activation of light-switches on the path of a person

- Similar concept can be applied to
 - » Security cameras, controlling access, ...

Precision Agriculture Management

- Farming decisions depend on environmental data (typically photosynthesis):
 - Solar radiation
 - Temperature
 - Humidity
 - Soil moisture
- Data evolve continuously
- over time and space
- A farmer's means of action to influence crop yield :
 - Irrigation
 - Fertilization
 - Pest treatment
- To be optimal, these actions should be highly localized (homogenous parcels can be as small as one hectare or less)

- Environmental impact is also to be taken into account
 - Salinization of soils, groundwater depletion, well contamination, etc.

Earthquake detection

- The occurrence of an earthquake can be detected automatically by accelerometers
- Earthquake speed: around 5-10km/s
- If the epicenter of an earthquake is in an unpopulated area 200km from a city center, instantaneous detection can give a warning up to 30 sec before the shockwave hits the city
- If a proper municipal actuation network is in place:
 - » Sirens go off
 - » Traffic lights go to red
 - » Elevators open at the nearest floor
 - » Pipeline valves are shut
- Even a warning of a few seconds, can reduce the effects of the earthquake
- Similar concept can be applied to
 - » Forest fire, landslides, etc.

11

Economic Forecast

- Industrial Monitoring (35% 45%)
 - Monitor and control production chain
 - Storage management
 - Monitor and control distribution
- Building Monitoring and Control (20 – 30%)
 - Alarms (fire, intrusion etc.)
 - Access control
- Home Automation (15 25%)
 - Energy management (light, heating, AC etc.)
 - Remote control of appliances

Recent forecast: 7 Billion \$ by 2026

- Automated Meter Reading (10-20%)
 - Water meter, electricity meter, etc.
- Environmental Monitoring (5%)
 - Agriculture
 - Wildlife monitoring
- Other areas:
 - Performance monitoring in sports
 - Patient monitoring in health/medicine
 - Wireless sensor in vehicular networks

Outline

Example applications

Early sensor networks

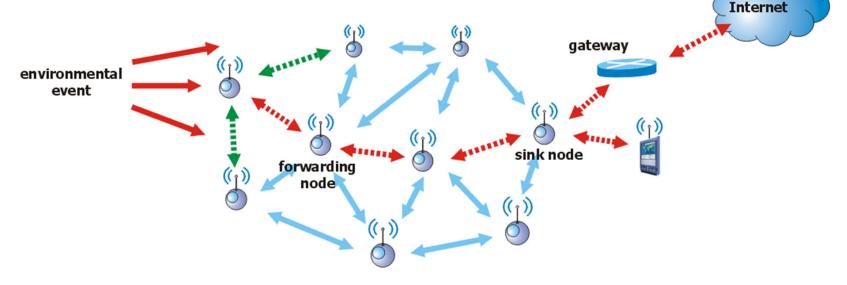
- » Power management
- » Routing
- » Efficient data collection

Today's sensor networks

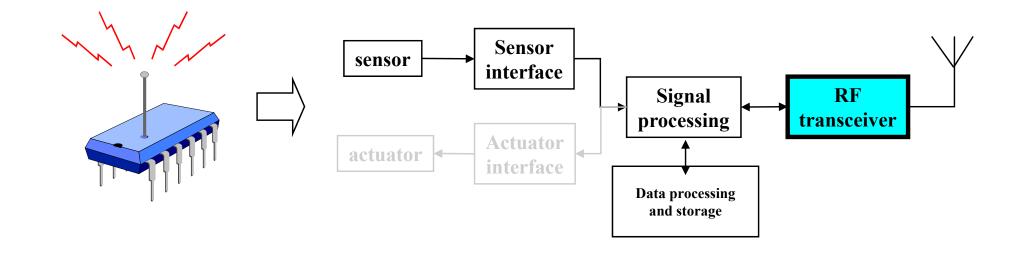
Based on slides by Prof JP Hubaux (EPFL), Lama Nachman (Intel), Revathy Narayanan (CMU)

WSN Characteristics and Design Issues

Characteristics


- » Distributed data collection
- » Many-to-one (rarely peer-to-peer)
- » Limited mobility
- » Data collection (time and space resolution)
- » Event detection

Design issues


- » Low-cost (hardware and communication)
- » Extended life-time long battery life
- » Reliable communication
- » Efficient integrated data processing
- » Hybrid network infrastructure
- » Security

Wireless helps but may not be required! Second Generation Wireless Sensor Network

- Numerous sensor devices
 - » Modest wireless communication, processing, memory capabilities
 - » Form Ad Hoc Network (self-organized)
 - Uses short-range wireless technologies
 - » Report the measured data to the user

Sensor Node architecture

- A sensor node can be an *information source*, a *sink* and a *router*
- Autonomous \Rightarrow *low-power*
- Combine sensing, signal conditioning, signal processing, control and communication capabilities

Design Issue: Low-cost

Hardware

- » Low-cost radio
- » Low cost internal clock
- » Limited storage and processing capabilities
- » Not tamper-proof
- » May have to withstand tough environmental conditions

Communication

- » Cannot rely on existing pay-per-use cellular infrastructure
- » Use unlicensed spectrum to reach a "gateway" that has internet connectivity
 - Wired, WiFi, drive-by, cellular, ...

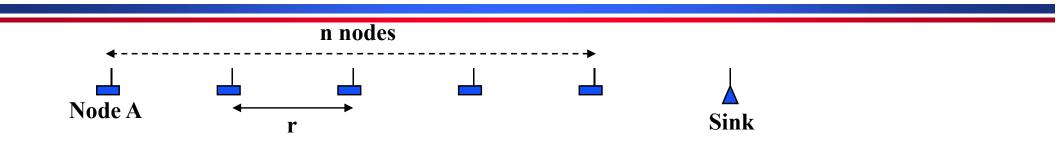
Network Design Focus: Power Management

- Traditional metrics for network optimization: bandwidth, latency, economics (\$\$), ...
- Wireless sensor networks: power efficiency
 - » Energy-efficient routing
 - » Load balancing to distribute power consumption
 - » In network aggregation to reduce traffic load
 - » Minimize up-time of sensors
- Requires new network technologies
 - » Different routing algorithms
 - » New MAC protocols

Simple Model for Energy Consumption d $E_{Tx}(k, d)$ $E_{Rx}(k)$ Transmit Receive Tx Amplifier k bit packet k bit packet electronics electronics $\mathcal{E}_{amp} * k * d^{\alpha}$ $E_{elec} * k$ $E_{elec} * k$

$$E_{Tx}(k, d) = E_{elec} * k + \varepsilon_{amp} * k * d^{\alpha}$$

$$E_{Rx}(k) = E_{elec} * k$$


Typical values:

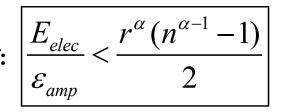
$$\alpha = 2...6$$

 $E_{elec} = 50 \text{ nJ/bit}$
 $\varepsilon_{amp} = 100 \text{ pJ/bit/m}^{\alpha}$

Peter A. Steenkiste, CMU

19

Energy-efficient Routing : Example


Transmitting a single k-bit message from node A (located at distance nr from Sink) to Sink:

Direct transmission: $E_{direct} = E_{Tx} (k, d = n * r) = E_{elec} * k + \varepsilon_{amp} * k * (nr)^{\alpha} = k(E_{elec} + \varepsilon_{amp} n^{\alpha} r^{\alpha})$

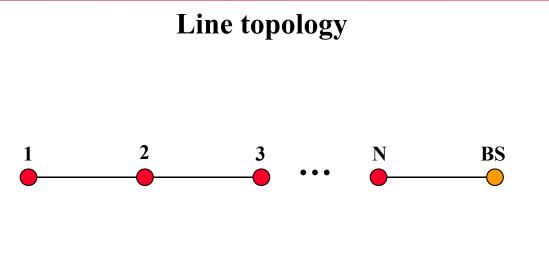
Multi-Hop Transmission: $E_{multi-hop} = n * E_{Tx} (k, d = r) + (n-1) * E_{Rx}(k)$

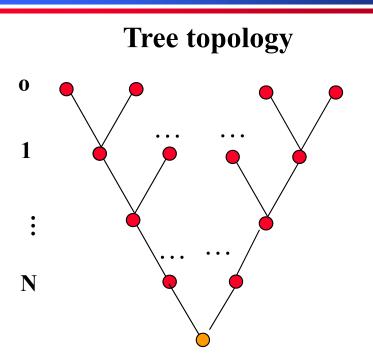
$$= n(E_{elec} * k + \varepsilon_{amp} * k * r^{\alpha}) + (n-1) * E_{elec} * k = k((2n-1)E_{elec} + \varepsilon_{amp} nr^{\alpha})$$

MultiHop routing requires *less* energy than direct communication if:

Assuming
$$\alpha = 3, r = 10m$$
, we get $E_{multi-hop} < E_{direct}$ as soon as $n \ge 2$

Peter A. Steenkiste, CMU


Load-balancing


- Assumption: in a multi-hop many-to-one sensor network, data collection follows a spanning tree.
 - » All data is collected on a single node
- Per-node power consumption for data transmission and reception grows exponentially from the leaves to the root of the tree

» Number of transmits and receives is the size of the subtree

- Consequence: the power sources of the nodes close to the sink deplete faster.
 - » They limit the network lifetime

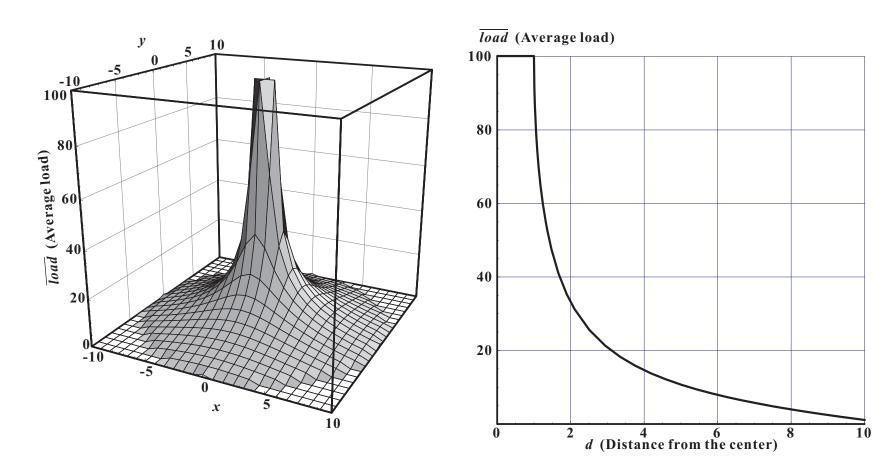
Load-balancing

 P_{tx} : Average transmission power consumption P_{rx} : Average reception power consumption P_{pr} : Average processing power consumption $P_T(k)$: Total power consumption of node k $P = P_{pr} + P_{tx} + (k-1)(P_{tx} + P_{rx})$ P grows linearly with the distance from the leaf node

- *d* : distance from leaf
- F : number of messages forwarded
- *P* : Power consumption

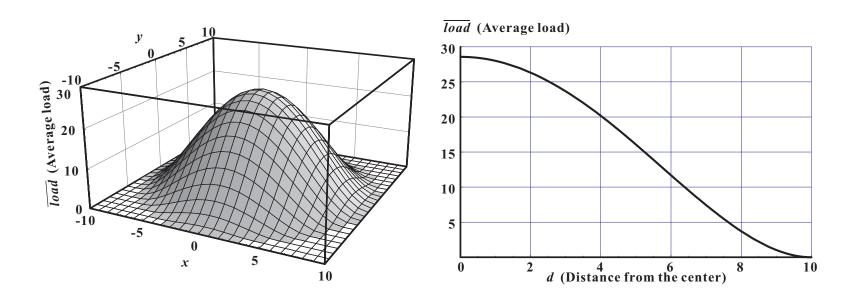
Assumptions:

1) all nodes have either 0 or $n_k > 2$ children


2) all leaves are at the same distance from the sink $F(d) \ge 2^d$

$$P(d) \ge P_{tx} + 2^d \left(P_{tx} + P_{rx} \right)$$

P grows exponentially with distance from leaf node


Load balancing

- Power consumption increases at least linearly when nodes are closer to the sink
- Typical case is much worse

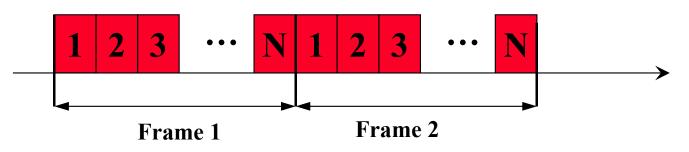
Use Mobility for Load-balancing

- Move the base station to distribute the role of "hot spots" (i.e., nodes around the base station) over time
- The data collection continues through multi-hop routing wherever the base station is, so the solution does not sacrifice latency

In-network Data Aggregation

- To mitigate cost of forwarding, compute relevant statistics along the way: *mean*, *max*, *min*, *median* etc.
- Forwarding nodes aggregate the data they receive with their own and send one message instead of relaying an exponentially growing number of messages
- Issues
 - » Location-based information (which nodes sent what) is lost
 - » Distributed computation of statistics
 - *mean*: node needs to know both the mean values and the sizes of samples to aggregate correctly
 - median: only an approximated computation is possible
- Especially useful in a query-based data collection system
 - » Queries regard a known subset of nodes
 - » Aggregation function can be specified

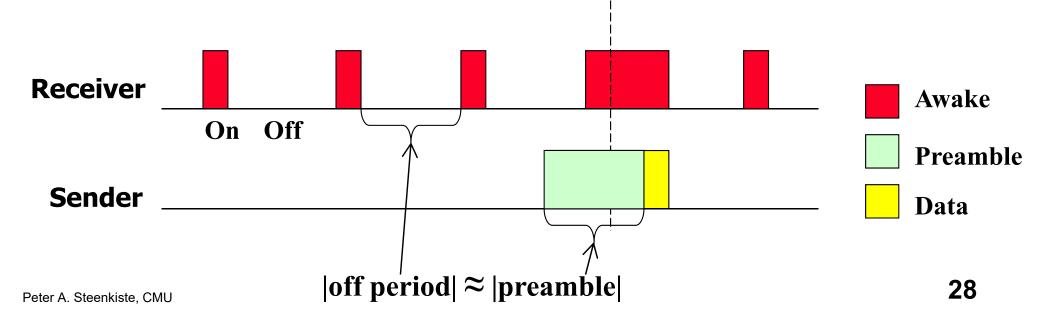
Medium-Access Control


• MAC attributes:

- » Collision avoidance
- » Energy efficiency
- » Scalability and adaptivity
- The goal is that nodes are asleep most of the time
 - » Energy consumption in receive state or in radio-on idle state are comparable
 - » Idle state (idle listening) is a dominant factor in power consumption
- Nodes transmit very intermittently
- When a node transmit, we must ensure that the receiver is awake
- How can we achieve this in an energy efficient way?

http://research.cens.ucla.edu/people/estrin/resources/conferences/2002jun-Ye-Estrin-Energy.pdf

Synchronous MACs


• TDMA: each node pair has a time slot

- Shortcomings
 - » Necessity to organize nodes in clusters and cluster hierarchies
 - » Gets complicated in larger networks with multiple collision domains
- Possible solution: each node maintains two schedules
 - » Its parent schedule
 - » The schedule it sets for its children
 - » Beacons are used to compensate for clock drifts

Example Asynchronous MAC: B-MAC

- Receiver wakes up periodically
- Before each transmission, the Sender sends a long preamble
 » Equal to the period of the receiver
- It then sends the packet Receiver is awake
- Refinements:
 - » Sender and receiver synchronize clocks: shorter preamble
 - » Coordinate cycle of the receivers: fewer preambles

Delay Tolerant Network with Data Mules

- Clusters are not directly connected by a network to the server
- Cluster heads store data from the cluster nodes
- "Data mules" collect the data periodically
 » Cars, robots, plane, etc.
- When a cluster-head detects a mule, it uploads to it the data it had in store

Outline

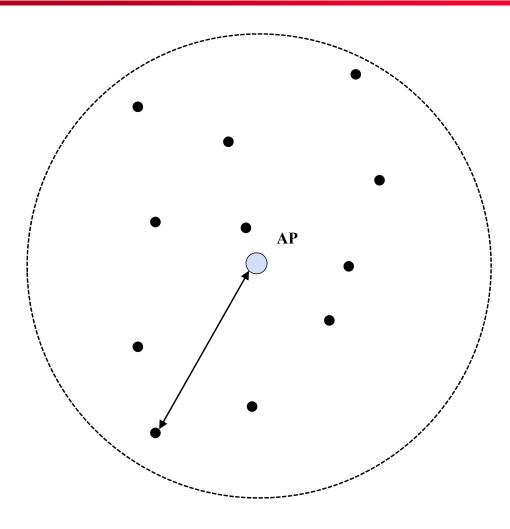
Example applications

Early sensor networks

- » Power management
- » Routing
- » Efficient data collection

Today's sensor networks

Based on slides by Prof JP Hubaux (EPFL), Lama Nachman (Intel), Revathy Narayanan (CMU)


Today's Sensor Networks

- Push toward diverse set of low-power wireless technologies
 - » Differ in MAC, licensed/unlicensed, range, power, target bit rates, ...

New types of MAC technologies

- » IEEE WiFi and PAN technologies: both WiFi and PAN
 - Zigbee, Bluetooth Low Energy, 802.11ah
- » Cellular: LTE-M, NB-IoT
- » Industry-driven technologies using diverse PHY and MAC protocols
 - LoRa, Sigfox, Z-Wave, ...
 - Oten use spread spectrum
 - Protocols are often very simple, e.g., Aloha

Impact of Low Power Communications

• Goals:

- » WiFi: high throughput
- » IoT: minimize power and maximize range

How do we avoid collisions?

- » WiFi: Carrier sense
- » IoT: How well will that work?
- » Hidden terminals, more complex radios

• What can we do?

- » Make communication very robust, e.g., spread spectrum
- » Use very simple protocols, e.g., Aloha with or without retransmission

WiFi HaLow – 802.11ah

- Low power version of WiFi operating in the unlicensed 900 MHz band (2017)
 - » Increased range (1km), lower transmit power
- Based on 802.11a/g but uses 1 MHz channels
 - » 26 channels; can do channel bonding up to 16 MHz
 - » Transmit rates in range of 0.3 to 347 Mbps
- Support for relaying, limiting contention, and power save mode
 - » Relays: increase AP coverage; increase bit rates thus reducing power
 - » Contention-free periods for AP-stations, timed access
 - » Sectorization: groups of nodes can only send in certain time windows, e.g., to reduce hidden terminal effects

IEEE PAN - ZigBee

 802.15.4 PHY layer is used by Zigbee (2003) and some non-IEEE protocols

» Defined for the 900 MHz and 2.4 GHz unlicensed bands

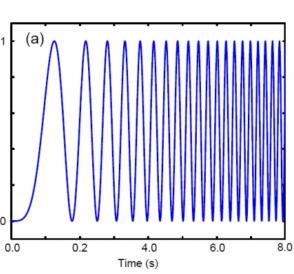
- Uses Direct Sequence Spread Spectrum
- MAC uses CSMA-CA
- Can create star and point-to-point topologies
 » See PAN lecture
- Targets low-bandwidth, relatively short range applications
 - » Up to 250 Kbps, range 10-100 m
 - » 127 byte packets

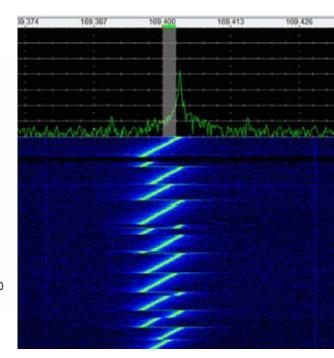
Bluetooth Low Energy

- Lower power consumption and cost than Bluetooth but similar transmissions range
- Not backwards compatible with Bluetooth
 - » Uses the same 2.4 GHz frequencies to radio can be shared
- Uses frequency hopping on 40 2-MHz channels
 - » Compared to 79 1-MHz channels for Bluetooth classic
 - » Also some differences in the frequency hopping
 - » Similar modulation (Gaussian frequency shift keying)
- Targets applications with low bit rates
 - » PHY rates up to 1 Mbps (2 Mbps for Bluetooth 5)
 - » Actual data rates much lower: up to 0.5 Mbps for Bluetooth 5

Low Power Cellular

Narrowband – IoT (NB-IoT) – 2016

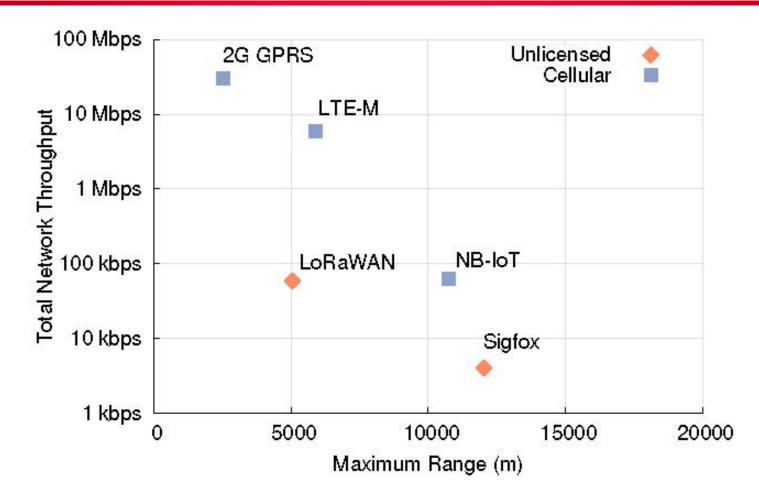

- » Focus on indoor coverage, low bitrates, dense deployments
- » Two categories with different performance
- » Uplink typically faster: 16-159 kbps vs 26-127 kbps


• LTE-M machine type communication - 2016

- » Higher bandwidth including voice, mobility
- » Lower latency but higher cost compared with NB-IoT
- » Uplink 1-7 Mbps Downlink 1-4 Mbps
- Both standards are defined by 3GPP
- Simple node design: single antenna, SISO
 - » Half duplex: always for NB-IoT, optional for LTE-M

LoRaWAN

- Longer range to simplify deployment
 - » "Metropolitan" area cite-wide sensor network
 - » Star topology, up to 10 km of range
- Based on spread spectrum across 125+ KHz band
 - » Chirp spread spectrum
- Sub-GHz bands
 - » 900 MHz in US
- Low throughput
 - » 0.25-27 Kbps
 - » Payload up to 243B
- Aloha protocol
 - » What about capacity?



Ultra-narrowband technology:

- » Transmits in 200 Hz in 200 KHz of sub-GHz spectrum
- » Low data rate 100s of bits/sec
- » Uses differential BPSK phase modulation
- Based on Aloha protocol: transmitter picks a carrier frequency; receiver decodes full band
- Very basic protocol: small packets, no encryption, single bitrate
 - » Payload is 12 bytes uplink, 8 bytes downlink
- Also uses star topology
- Radios are cheaper than LoRaWAN
 - » With roughly double the range

Comparison Throughput versus Range

"Challenge: Unlicensed LPWANs Are not Yes the Path to Ubiquitous Connectivity", Branden Ghena et. al., ACM Mobicom'19

https://dl.acm.org/doi/10.1145/3300061.3345444

Power Efficiency

Network Technology	84 Bytes Per 1 Hour	84 Bytes Per 4 Hours	200 Bytes Per 24 Hours	1000 Bytes Per 24 Hours	
Sigfox (155 dB)	110	29	11	56 🤜	
LoRaWAN (143 dB)	12	3.0	1.1	5.1	Max range
LTE-M (144 dB)	50	25	12	13	
LTE-M (164 dB)	2200	620	150	440	Good
NB-IoT (144 dB)	62	22	13	15	Signal
NB-IoT (164 dB)	1800	520	100	240	orginal