This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 22: RFID and NFC

Peter Steenkiste CS and ECE, Carnegie Mellon University

Spring Semester 2022 http://www.cs.cmu.edu/~prs/wirelessS22/

Announcements

- I have added the survey schedule to the web page
 - » Slots will be 18 minutes long talks should be 15 minutes
 - » For these two lectures, we will need the full length of the lecture time slot
 - » Note that the material presented as part of the surveys is part of the syllabus
- I will post requirements for P2 CP1 on piazza

Some Thoughts about Surveys

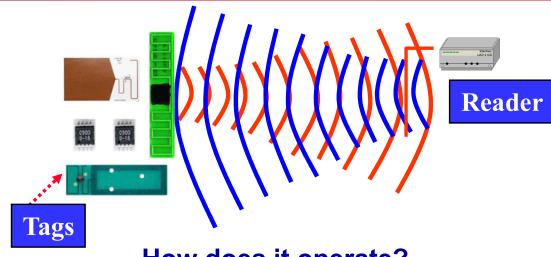
Outline generally looks like:

- » Background: why useful, challenges, design options, etc.
- » Discussion on the three papers:
 - What is the key idea this should be clear (figure!)
 - Some sample results illustrating benefits
 - Do not use terminology specific to the paper
- » Personal opinion on pros or cons (global or per paper)
- Many students use the google templates that is fine but do it wisely!

Common problems (24 pt)

- » No slide numbers
- » Tiny font sizes (12pt) you want it to be bigger! (18pt)
- » 50%-80% of the slide is empty use the space wisely!

Outline


RFIDs

- » Concept and applications
- » EPC and backend processing
- » PHY and MAC
- » Security
- Near Field Communication
- Battery-less devices

- Radio Frequency IDentification (RFID) is a method of remotely storing and retrieving data using devices called RFID tags and RFID Readers
- An enabling technology with many applications
 - » Data can be stored and retrieved from the tag automatically with a Reader
 - » Tags can be read in bulk
 - » Tags can be read without line of sight restrictions
 - » Tags can be write once read many (WORM) or rewritable
 - » Tags can require Reader authentication before exchanging data
 - » Other sensors can be combined with RFID
- Technology has been around for a long time
- Also has critics, e.g. privacy concerns

How Does It Work?

How does it operate?

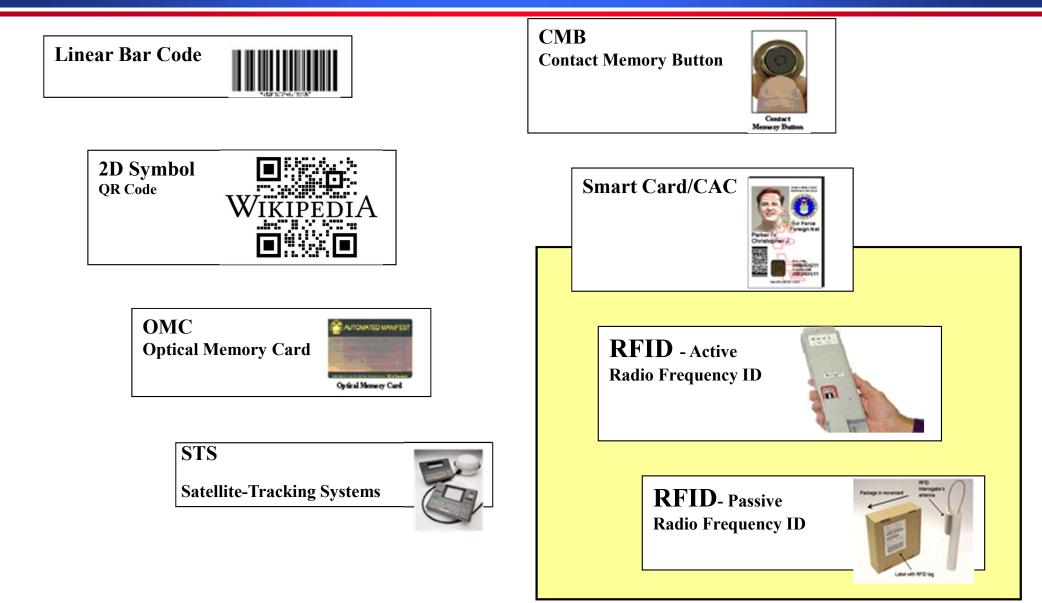
- RFID tags are <u>affixed to objects</u> and stored information may be written and rewritten to an embedded chip in the tag
- Tags can be <u>read remotely</u> when they receive a radio frequency signal from a reader and use the energy to respond
- Can operate over a range of distances
- Readers display tag information or send it over the network to back-end systems

What is **RFID**?

- A means of identifying <u>a</u> <u>unique object or person</u> using a radio frequency transmission
- Tags (or transponders) <u>store information</u>, that can be retrieved wirelessly in an automated fashion
- Readers (or interrogators), either stationary and handheld, can <u>read/write</u> information from/to the tags

Applications

Operational Efficiencies


- » Shipping and Receiving
- » Warehouse management
- » Distribution
- » Asset management

Total Supply Chain Visibility

- » Inventory visibility in warehouses
- » In-transit visibility, asset tracking
- » Pallet, case level
- » Item, instance level

- Shrinkage, counterfeit
 - » Reduce internal theft
 - » Reduce process errors
 - » Avoid defensive merchandizing
 - » Product verification
 - » Origin, transit verification
- Security, Regulations
 - » Total asset tracking
 - » Defense supplies
 - » Container tampering
 - » Animal Tracking

Automated Identification Technology Suite

RF ID Types

- Passive Tags: rely on an external energy source to transmit
 - » In the form of a reader that transmits energy
 - » Relative short range
 - » Very cheap
- Active Tags: have a battery to transmit
 - » Has longer transmission range
 - » Can initiate transmissions and transmit more information
 - » A bit more like a sensor

Battery Assisted Passive tags are a hybrid

- » Have a battery transmit
- » But need to be woken up by an external source

A Bit of History

Early technology was developed in the 40s

- » Originally used as eaves dropping devices
- » Used reflected power to transmit (transponder), e.g. the membrane of a microphone

First RF IDs were developed in the 70s

» Transmission based on reflected energy using information in memory – readers can now distinguish devices

Dramatic growth since then driven by industry

- » Potential for significant gains in areas
- » Big organizations (DOD, Walmart) requiring the use of RFIDs from their vendors for easy inventory control

Set of applications expanded rapidly

Standards

- Passive tags operate in the LF, HF, and UHF unlicensed spectrum
 - 30-300 KHz, 3-30 MHz, 300-3000 MHz
 - Distance drop with frequency
- Transmission consists of a bit stream and CRC
- Many standards exist, mostly incompatible
 - » Early standards mostly defined by the ISO
 - » Widely used standard: ISO/IEC14443
- In 2003 EPCGlobal was formed to promote RFID standards

» Defined a standard for the Electronic Product Code (EPC)

» Also defined standards for coding and modulation

Primary Application Types

Identification and Localization

- Readers monitoring entering and exiting a closed region
 - » Security (RFID in identification cards)
 - » Merchandise in stores
 - » NFC in phones

Readers tracking an RFID-tagged object

- » Business process monitoring (RFID tags on pallets)
- Tags marking a spatial location
 - » An NFC enabled mobile phone passes tags in the infrastructure whose location is known

Example: Smart Card

Public transport system in Singapore

- FeliCa Smart Card
- 2001 2009
- Faster boarding times
- Other uses
 - small payments retail
 - identification
- Replaced by contactless card (RFID)

How Smart are RFIDs?

- Basic tags simply reply with a fixed bit string – "read" the tag
 - » "I am Groot"
 - » Already useful!

Gradual move to richer functionality

- » Changing the state on the tag "write"
 - E.g., keep track of a balance
- » Privacy and security: encryption, access control, ...
 - E.g., different parties and read and write the tag
- » Add computing capabilities (more general than crypto)
- Next step is processors that operate entirely based on harvested ambient energy
 - » Vibrations, RF, solar, ...

Example "Oyster" Card

- Balance is maintained on the card
 - » Cryptographically secured

- The "reader" updates the balance as you enter/leave the metro station
 - » Enter: record when and where you boarded
 - » Leave: update balance on the card
 - » These operations are local
- Readers record all trips and periodically send information to servers
 - » Auditing trail, lost cards, etc.
 - » Riders can check their balance online

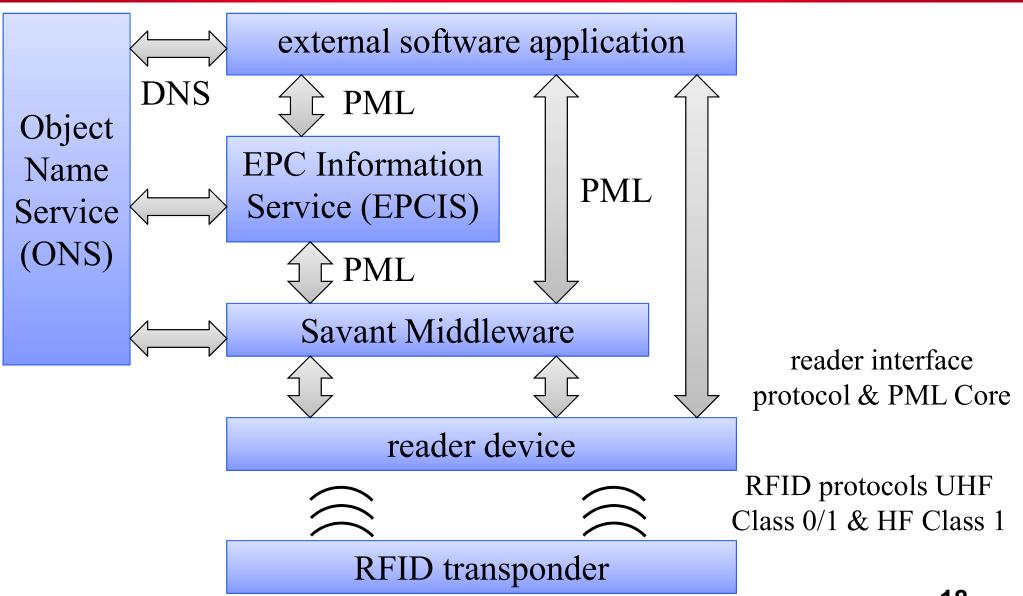
Outline

RFIDs

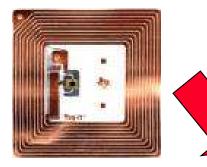
- » Concept and applications
- » EPC and backend processing
- » PHY and MAC
- » Security
- Near Field Communication
- Battery-less devices

Electronic Product Code (EPC)

"A Universal identifier for physical objects"


- » Designed to be unique across all physical objects in the world, over all time, and across all categories of objects.
- » Intended for use by business applications that need to track all diverse physical objects, whatever they may be.
- » urn:epc:id:sgtin:0614141.012345.6285210cc Syringe #62852 (trade item)

Combined multiple components


- » EPC data located on the RFID tag
- » Reader's middleware
- » Locate EPC Information Services (EPCIS), using Web Services like SOAP and WSDL

Not exciting but standardization is critical to wide-spread adoption

EPC Network Concept (2001)

What information does an RFID tag contain?

Gen 2 tags have four memory banks

Bank 0	Bank 1	Bank 2	Bank 3
<u>Reserved Memory</u> •32-bit Kill Password •32-bit Access Password	EPC Memory •16-bit CRC •16-bit Protocol Control •96-bit EPC	Tag Identification Memory * •8-bit Class Identifier •12-bit Tag Designer •12-bit Tag Model Number •32-bit Serial Number (optional)	<u>User Memory *</u> •User-defined format
(64 bits)	(128 bits)	(0, 32, or 64 bits)	(0 or more bits)
Th	e CBP "GDTI-96" bit unique number	A 64-bit TID memory bank con uniquely iden	0

uniquely identifies a tag.

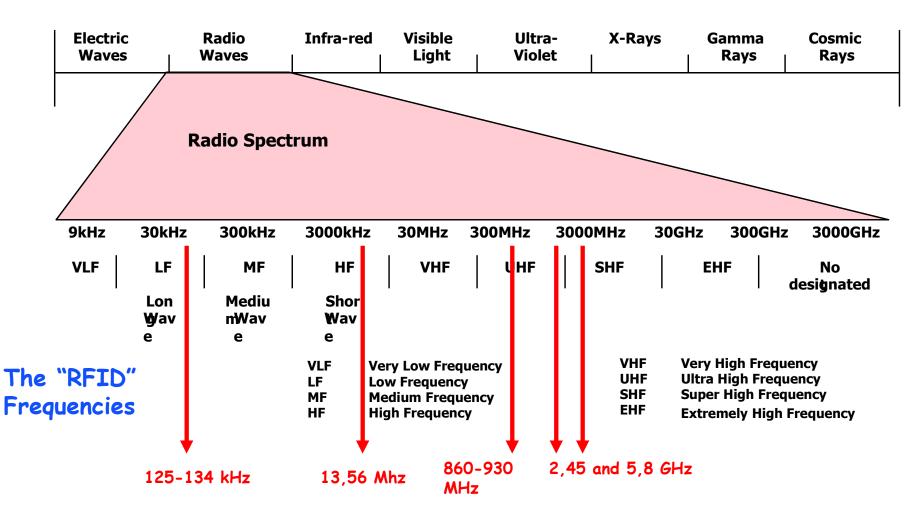
* TID and User Memory banks are not initialized on some Gen 2 tags

Peter A. Steenkiste, CMU

Example to illustrate concept

Passive RFID Tags

Power supply


- » passive: no on-board power source, transmission power from signal of the interrogating reader
- » semi-passive: batteries power the circuitry during interrogation, once woken up by external signal
- » active: batteries power transmissions (can initiate communication, ranges of 100m and more, 20\$ or more)

Frequencies

- » low frequency (LF): 124kHz 135 kHz, read range ~50cm
- » high frequency (HF): 13.56 MHz, read range ~1m
- » ultra high-frequency (UHF): 860 MHz 960 MHz (some also in 2.45GHz), range > 10m

Frequency Bands Passive RFID Tags

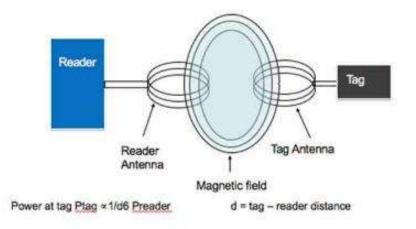
Electromagnetic Spectrum

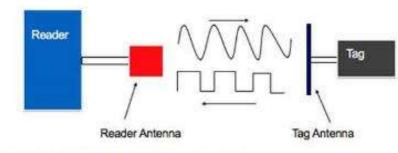
Standards

- ISO 18000: multipart standard for protocols in LF, HF, and UHF bands
- For example, HF:
 - » ISO 14443 (A and B) for "proximity" RFID
 - » ISO 15693 for "vicinity" RFID (basis for ISO 18000 part 3)

Two classes:

- » Class 0: read only
- » Class 1: read/write, can for example be used for tracking
- Many more standards exist!

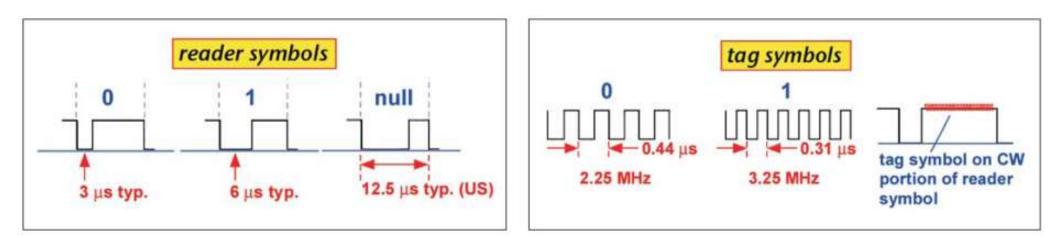

Transmission methods


LF and HF: inductive coupling

- » Coil in the reader antenna and a coil in the tag antenna form an electromagnetic field
- » Tag changes the electric load on the antenna.

UHF: propagation coupling: backscatter

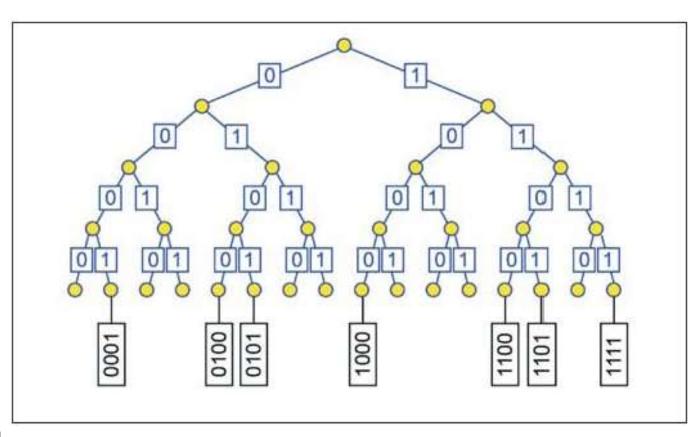
- » Tag gathers energy from the reader antenna
- Microchip uses the energy to change the load on the antenna and reflect back an altered signal
- » Different modulations used by reader and tag



UHF (915MHz) : Far field propagation : Pt × 1/d2

- Depends on the frequency band used
- Different modulations used by reader and tag
 - » Different constraints, e.g. power and complexity
 - » E.g. cannot used amplitude modulation for HF tag (why?)
- Example of EPCGlobal symbols for UHF

What does an RFID tag look like inside a card?



MAC Layer

- Typically assumed that only one reader is present, i.e. no need for MAC on the reader
 - » Multiple readers: can use different frequency bands
- MAC for tags is a challenge: very high concentrations of tags are present in many contexts
 - » And tags are dumb, i.e. cannot have sophisticated protocols (carrier sense, RTS/CTS, ..)
 - » Must also deal with multiple readers operating in the same environment
- Two types of schemes used (standard):
 - » Binary tree resolution: reader explores a tree of tag values
 - » Aloha: tags transmit with a random backoff

Binary Tree Resolution

- Send requests to tags with ids that start with a certain string
- Narrow down search until one tag responds

General Security Concerns

• RFID tags raise a number of security concerns:

- » Privacy risks, e.g., eavesdropping
- » Cloning and forging of tags

Specific disadvantages due to tag limitations

» Some encryption algorithms may be too complex to be implemented on tags

But also specific advantages:

- » Tags are slow to respond, maximum no. of read-out operations
- » Short transmission range means that an adversary has to be physically close

Privacy for Business Networks

Major concern for industry:

- » Supply chain visibility
- » Supply chains and business networks are business assets
- Example provenance checking: competitors may be able to get a lot of information
 - » Depending on how detailed the information associated is:
 - Where an object and its parts where manufactured
 - When it was manufactured
 - By which sub-contractors
 - » Who are the suppliers of a company
 - » Which companies are the customers of a company

Reading Ranges

- Controlling reading range can limit privacy risk
- Nominal read range (RFID standards and product specifications):
 - » 10cm for contactless smartcards (ISO 14443)
- Rogue scanning range: sensitive reader with more powerful antenna or antenna array
 - » 50cm
- Tag-to-reader eavesdropping range: need to power the tag limits range for passive RFIDs
 - » Eavesdropping on communication while another reader is powering the smartcard: > 50cm
- Reader-to-tag eavesdropping: readers transmit at much higher power

Outline

RFIDs

- » Concept and applications
- » EPC and backend processing
- » PHY and MAC
- » Security
- Near Field Communication
- Battery-less devices

Near Field Communication (NFC)

One device combines the functionality of

- » An RFID reader device
- » An RFID transponder (tag)
- » Bit rates ranging from 106 Kbs to 424 Kbs
- Integral part of mobile devices (e.g. mobile phones NFC components can be accessed by software to
- Operates at 13.56 MHz (High frequency band) and is compatible to international standards:
 - » ISO/IEC 18092 (also referred to as NFCIP-1),
 - » ISO/IEC 14443 (smart card technology, "proximity coupling devices" of NFC Forum
 - » ISO/IEC 15693 ("vicinity coupling devices").
- Use of NFC is growing fast
 - » Driven by NFC Forum (founded by Nokia, Philips, and Sony in 2004)
 - » <u>http://www.nfcworld.com/nfc-phones-list/#available</u>

NFC Devices

Modes of operation

 Smart Card emulation (ISO 14443): Example: contactless payment applications Sony FeliCa, Asia MIFARE, Europe Google Wallet

» Phone can act as a contactless credit card

(c) Google

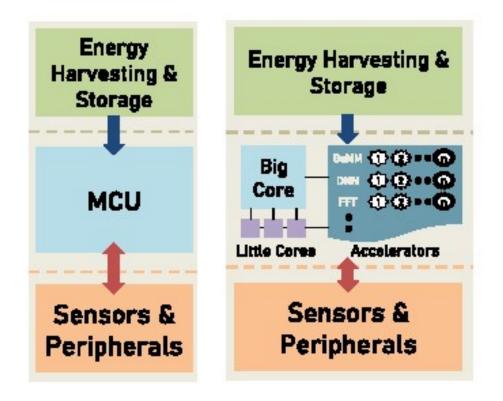
» Information can be generated rather than pre-stored

Reader mode

- » Allows NFC devices to access data from an object with an embedded RFID tag
- » Enables the user to initiate data services, i.e., retrieval of rich content, advertisements, ...
- Peer-to-peer (ISO 18092)
 - » Allows two way communication between NFC devices
 - » NFC can act as smart tag, i.e., generates information

Active and Passive Communication Modes

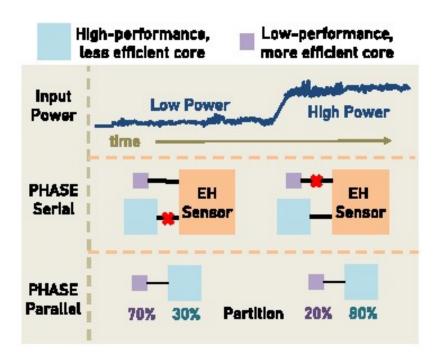
- Passive communication: one device acts as a reader and the other as a tag
 - » Reader generates a field while the other responds
 - » The second device can be a tag or another NFC device
- Active communication: both devices alternatively act as readers
 - » Allows fairly general two way communication
 - » Both devices must have a battery
- Since NFC devices can read and write, they must check for collisions


» Compare received signal with transmitted signal

Outline

RFIDs

- » Concept and applications
- » EPC and backend processing
- » PHY and MAC
- » Security
- Near Field Communication
- Battery-less devices


What is Next: Battery-less Devices

- Devices rely entirely on energy harvesting
 » Solar, RF, …
- Battery can store limited amount of power
 - » Can be used when harvesting is slow or not possible
- Different architectures are being explored
- Goal is to have fairly general architectures

From: A Power-Aware Heterogeneous Architecture Scaling Model for Energy-Harvesting Computers, Desai, Lucia, IEEE Computer Architecture Letters, https://ieeexplore.ieee.org/document/9078058

Example Design

- Adapt level of activity to the available power
- For example, use simple but efficient cores when power levels are low
- Power hungry operations may have to wait
 - » E.g., send data