This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Capacity and Signal Propagation Peter Steenkiste

Carnegie Mellon University

Spring 2022

Peter A. Steenkiste **1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1980 – 1** http://www.cs.cmu.edu/~prs/wirelessS22/

Outline

- Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

From Previous Lecture: The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
	- Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
	- What frequencies are present and what is their strength (energy)
- We can translate between the two formats using a fourier transform

Relationship between Data Rate and Bandwidth

- The greater the (spectral) bandwidth, the higher the information-carrying capacity of the signal
- Intuition: if a signal can change faster, it can be modulated in a more detailed way and can carry more data
	- » E.g. more bits or higher fidelity music
- Extreme example: a signal that only changes once a second will not be able to carry a lot of bits or convey a very interesting TV channel
- Can we make this more precise?

Adding Detail to the Signal:

Some Intuition

• Smooth time domain signal has narrow frequency range

» Sine wave \rightarrow pulse at exactly one frequency

• Adding detail widens frequency range

- » Need to add additional frequencies to represent details
- » Very sharp edges are especially bad (many frequencies)
- The opposite is also true
	- » Pulse (very sharp edge!) in time domain has a very wide spectrum
	- » Same is true for random noise ("noise floor")
- Implication: modulation has a big impact on how much (scarce) spectrum is used

What happens when I Double the Bandwidth?

- Shown here by scaling by two along time axis
- What happens to spectrum use?
- 4 sins: f + 3f + 5f + 7f We have to double frequencies: $f \rightarrow 2f$
	- This means that we double the frequency range

Increasing the Bit Rate

- Increases the rate at which the signal changes.
- » Proportionally increases all signals present, and thus the Time spectral bandwidth
	- Increase the number of bits per change in the signal
		- » Adds detail to the signal, which also increases the spectral BW

So Why Don't we Always Send a Very High Bandwidth Signal?

- Channels have a limit on the type of signals they can carry effectively
- Wires only transmit signals in certain frequency ranges
	- » Stronger attenuation and distortion outside of range
- Wireless radios are only allowed to use certain parts of the spectrum
	- » The radios are optimized for that frequency band
- Distortion makes it hard for receiver to extract the information
	- » A major challenge in wireless

Propagation Degrades RF Signals **Propagation Degrades

RF Signals

Intenuation in free space: signal gets weaker

sit travels over longer distances

» Radio signal spreads out – free space loss

» Refraction and absorption in the atmosphere

» Refraction**

- Attenuation in free space: signal gets weaker as it travels over longer distances
	-
	- » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
	- » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
	- » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up

» Node moves $\frac{1}{2}$ wavelength -> big change in signal strength

Transmission Channel Considerations

- Example: grey frequencies get attenuated significantly
- For wired networks, channel limits are an inherent property of the wires
	- Different types of fiber and copper have different properties
	- Capacity also depends on the radio and modulation used
	- Improves over time, even for same wire
- For wireless networks, limits are often imposed by policy
	- Can only use certain part of the spectrum
	- Radio uses filters to comply

Outline

- Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
	- » Analog versus digital signals
	- » Forms of modulation
	- » Baseband versus carrier modulation
	- » Multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Channel Capacity

- **Channel Capacity

 Data rate rate at which data can be

 Channel Capacity the maximum rate at which data communicated (bps)** communicated (bps)
	- **Channel Capacity**

	Vata rate rate at which data can be

	communicated (bps)

	» Channel Capacity the maximum rate at which data can

	be transmitted over a given channel, under given

	conditions be transmitted over a given channel, under given conditions
- Data rate rate at which data can be

 Channel Capacity the maximum rate at which data can

be transmitted over a given channel, under given

 Bandwidth the bandwidth of the transmitted

signal as constrained by t signal as constrained by the transmitter and the nature of the transmission medium (Hertz) • Data rate - rate at which data can be

communicated (bps)

• Channel Capacity – the maximum rate at which data can

be transmitted over a given channel, under given

• Bandwidth - the bandwidth of the transmitted

signal • Channel Capacity – the maximum rate at which data can

be transmitted over a given channel, under given

• Bandwidth - the bandwidth of the transmitted

signal as constrained by the transmitter and

the nature of the tra
- communications path
- - » Error = transmit 1 and receive 0; transmit 0 and receive 1

The Nyquist Limit

- A noiseless channel of bandwidth B can at most transmit a binary signal at a capacity 2B
	- » E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
	- » Assumes binary amplitude encoding
- For M levels: $C = 2B \log_2 M$
	- » M discrete signal levels
- More aggressive encoding can increase the actual channel bandwidth
	- » Example: modems
- Factors such as noise can reduce the capacity

Decibels

- Decibels: ratio between signal powers decibels (db) = $10log_{10}(P_1 / P_2)$) becibels: ratio between signal powers

decibels (db) = 10log₁₀(P₁ / P₂)

s used in many contexts:

» The loss of a wireless channel, gain of an amplifier, ...

lote that dB is a relative value.

bsolute value requir Necibels: ratio between signal powers

decibels (db) = 10log₁₀(P₁ / P₂)

sused in many contexts:

» The loss of a wireless channel, gain of an amplifier, ...

lote that dB is a relative value.

Indee that dB is a re
- Is used in many contexts:
	- » The loss of a wireless channel, gain of an amplifier, …
- Note that dB is a relative value.
- Absolute value requires a reference point.
	-
	-
- Some example values (WiFi):
	- » Noise floor -90 dbm
	- » Received signal strength: -70 to -65 dbm
	- » Transmit power (2.4 GHz): 20 dbm

Signal-to-Noise Ratio

• Ratio of the power in a signal to the power contained in the noise that is present at a particular point in the transmission

» Typically measured at a receiver

• Signal-to-noise ratio (SNR, or S/N)

$$
(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}
$$

- A high SNR means a high-quality signal
- Low SNR means that it may be hard to "extract" the signal from the noise
- SNR sets upper bound on achievable data rate

Shannon Capacity Formula

• Equation:

$$
C = B \log_2 \left(1 + \text{SNR} \right)
$$

- Represents error free capacity
	- » It is possible to design a suitable signal code that will achieve error free transmission (you design the code)

• Result is based on many assumptions

- » Formula assumes white noise (thermal noise)
- » Impulse noise is not accounted for
- » Various types of distortion are also not accounted for
- We can also use Shannon's theorem to calculate the noise that can be tolerated to achieve a certain rate through a channel

Shannon Discussion

- Bandwidth B and noise N are not independent
	- » N is the noise in the signal band, so it increases with the bandwidth
- Shannon does not provide the coding that will meet the limit, but the formula is still useful
- The performance gap between Shannon and a practical system can be roughly accounted for by a gap parameter
	- » Still subject to same assumptions
	- » Gap depends on error rate, coding, modulation, etc.

$$
C = B \log_2 \left(1 + \text{SNR/T} \right)
$$

Example of Nyquist and Shannon Formulations

• Spectrum of a channel between 3 MHz and 4 MHz; $SNR_{AB} = 24$ dB

$$
B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}
$$

$$
SNR_{dB} = 24 dB = 10 log_{10} (SNR)
$$

 $SNR = 251$

• Using Shannon's formula $C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$ Mbps Example of Nyquist and Shannon Formulations

• How many signaling levels are required using Nyquist?

Shannon Formulations
ow many signaling levels are required
$C = 2B \log_2 M$
$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$
$4 = \log_2 M$
$M = 16$

• Look out for: dB versus linear values, log₂ versus log₁₀

Outline

- Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
	- » How do antennas work
	- » Propagation properties of RF signals
	- » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

What is an Antenna?

- Conductor that carries an electrical signal and radiates an RF signal.
	- » The RF signal "is a copy of" the electrical signal in the conductor
- Also the inverse process: RF signals are "captured" by the antenna and create an electrical signal in the conductor.

» This signal can be interpreted (i.e. decoded)

• Efficiency of the antenna depends on its size, relative to the wavelength of the signal.

» E.g. quarter of a wavelength

Types of Antennas

- Abstract view: antenna is a point source that radiates with the same power level in all Types of Antennas
 Abstract view: antenna is a point source that

radiates with the same power level in all

directions – omni-directional or isotropic.
 A Not common – shape of the conductor tends to create a

specifi Types of Antennas

bstract view: antenna is a point source that

adiates with the same power level in all

irections – omni-directional or isotropic.

» Not common – shape of the conductor tends to create a

specific radia
	- specific radiation pattern
	- » Note that isotropic antennas are not very efficient!!
		- Unless you have a very large number of receivers
- Common shape is a straight conductor.
	- » Creates a "disk" pattern, e.g. dipole
- Shaped antennas can be used to direct the energy in a certain direction.
	- » Well-known case: a parabolic antenna
	- » Pringles boxes are cheaper

Antenna Types: Dipoles

- General rule: length of the antenna should be ~half a wavelength
	- » Length depends on the carrier frequency!
	- » Wavelength at 900MHz: 1 foot
- Simplest: half-wave dipole and quarter wave vertical and antennas
	- » Very simple and very common
	- » Elements are quarter wavelength of frequency that is transmitted most efficiently
	- » Donut shape radiation

Multi-element Antennas

- Multi-element antennas have multiple, independently controlled conductors.
	- » Signal is the sum of the individual signals transmitted (or received) by each element
- Can electronically direct the RF signal by sending different versions of the signal to each element.
	- » For example, change the phase in two-element array.
- Covers a lot of different types of antennas.
	- » Number of elements, relative position of the elements, control over the signals, …

Directional Antenna Properties

- dBi: antenna gain in dB relative to an isotropic antenna with the same transmit power
	-

Examples 2.4 GHz

Summary

- The maximum capacity of a channel depends on the SINR **Summary

The maximum capacity of a channel depends

In the SINR

In the SINR

Superficition of the radios

Distortion of the signal also plays a role – next lecture

Intennas are responsible for transmitting and

Receivin**
	- » How close you get to this maximum depends on the sophistication of the radios
	-
- Antennas are responsible for transmitting and receiving the EM signals
	- » The "ideal" isotropic antenna is a point source that radiates energy in a sphere
	- » Practical antennas are directional in nature, as a result of the antenna shape or the use of multi-element antennas
	- » The antenna gain is expressed in dBi

Outline

- Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
	- » How do antennas work
	- » Propagation properties of RF signals
	- » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Bad News

Good News

Story

Propagation Modes

• Line-of-sight (LOS) propagation.

- » Most common form of propagation
- » Happens above \sim 30 MHz
- » Subject to many forms of degradation (next set of slides)
- Obstacles can redirect the signal and create multiple copies that all reach the receiver

» Creates multi-path effects

- Refraction changes direction of the signal due to changes in density
	- » E.g., changes in air temperature, humidity, …
	- » If the change in density is gradual, the signal bends!

Impact of Obstacles

- Besides line of sight, signal can reach receiver in three "indirect" ways.
- Reflection: signal is reflected from a large object.
- Diffraction: signal is scattered by the edge of a
- Scattering: signal is scattered by an object that is small relative to the wavelength.

Refraction

- Speed of EM signals depends on the density of the material
	- » Vacuum: 3 x 108 m/sec
	- » Denser: slower
- Density is captured by refractive index
- Explains "bending" of signals in some environments
	- » E.g. sky wave propagation: Signal "bounces" off the ionosphere back to
	- » But also local, small scale differences in the air density, temperature, etc.

- Sequence of ellipsoids centered around the LOS path between a transmitter and receiver
- The zones identify areas in which obstacles will have different impact on the signal propagation
	- » Capture the constructive and destructive interference due to multipath caused by obstacles

Fresnel Zones

- Zones create different phase differences between paths
	- » First zone: 0-90
	- » Second zone: 90-270
	- » Third zone: 270-450
	- » Etc.
- Odd zones create constructive interference, even zones destructive
- Also want clear path in most of the first Fresnel zone, e.g. 60%
- The radius ${\sf F_n}$ of the nth Fresnel zone depends on the distances d_1 and d_2 to the transmitter and receiver and the wavelength

Sketch of Calculation: Difference in Path Length FYI only

- Goal is to calculate F
- Difference in path length $(a_1$ is small) s to calculate F

ence in path length (a₁ is

d₁ ≈ F * sin a₁

r small a₁ we also have

u₁ = tan a₁ = F / d₁

– d₁ = F² / d₁

» $D_1 - d_1 \approx F^* \sin a_1$

• But for small a_1 we also have

$$
\mathbf{a}_1 = \tan \mathbf{a}_1 = \mathbf{F} \, / \, \mathbf{d}_1
$$

• So
$$
D_1 - d_1 = F^2 / d_1
$$

Sketch of Calculation Fresnel Radios

• Given $D_1 - d_1 = F^2 / d_1$

So, the difference in path length is:

•
$$
(D_1 + D_2) - (d_1 + d_1) = \lambda * n
$$

• Or $(D_1 - d_1) + (D_2 - d_2) = F^2 / d_1 + F^2 / d_2$

• or
$$
F_n = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}}
$$

FYI only