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Outline

• Challenges in Wireless Networking

• RF introduction

• Modulation and multiplexing

• Channel capacity

• Antennas and signal propagation

• Modulation

• Diversity and coding

• OFDM
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From Previous Lecture:
The Frequency Domain

• A (periodic) signal can be viewed as a sum of sine 
waves of different strengths.

• Corresponds to energy at a certain frequency

• Every signal has an equivalent representation in the 
frequency domain.

• What frequencies are present and what is their strength (energy)

• We can translate between the two formats using a 
fourier transform
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Relationship between Data Rate 
and Bandwidth

• The greater the (spectral) bandwidth, the 
higher the information-carrying capacity of 
the signal

• Intuition: if a signal can change faster, it  can 
be modulated in a more detailed way and can 
carry more data 

» E.g. more bits or higher fidelity music

• Extreme example: a signal that only changes 
once a second will not be able to carry a lot of 
bits or convey a very interesting TV channel

• Can we make this more precise?
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Adding Detail to the Signal:

sin f

sin 3f

2 sins: f + 3f

3 sins: f + 3f + 5f

4 sins: f + 3f + 5f + 7f

 sins: f + 3f + 5f + 7f + ..
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Some Intuition

• Smooth time domain signal has narrow 
frequency range

» Sine wave → pulse at exactly one frequency

• Adding detail widens frequency range
» Need to add additional frequencies to represent details

» Very sharp edges are especially bad (many frequencies)

• The opposite is also true
» Pulse (very sharp edge!) in time domain has a very wide 

spectrum

» Same is true for random noise (“noise floor”)

• Implication: modulation has a big impact on 
how much (scarce) spectrum is used
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What happens when I 
Double the Bandwidth?

sin f

sin 3f

2 sins: f + 3f

3 sins: f + 3f + 5f

4 sins: f + 3f + 5f + 7f

 sins: f + 3f + 5f + 7f + ..

• Shown here by 
scaling by two along 
time axis

• What happens to 
spectrum use?

• We have to double 
frequencies: f → 2f

• This means that we 
double the frequency 
range
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Increasing the Bit Rate

• Increases the rate at which the 
signal changes.

» Proportionally increases all 
signals present, and thus the 
spectral bandwidth

• Increase the number of bits per 
change in the signal

» Adds detail to the signal, 
which also increases the 
spectral BW
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So Why Don’t we Always Send a 
Very High Bandwidth Signal?

• Channels have a limit on the 
type of signals they can carry 
effectively

• Wires only transmit signals in 
certain frequency ranges

» Stronger attenuation and 
distortion outside of range

• Wireless radios are only 
allowed to use certain parts of 
the spectrum
» The radios are optimized for that 

frequency band

• Distortion makes it hard for 
receiver to extract the 
information
» A major challenge in wireless

T R
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Propagation Degrades 
RF Signals

• Attenuation in free space: signal gets weaker 
as it travels over longer distances

» Radio signal spreads out – free space loss

» Refraction and absorption in the atmosphere

• Obstacles can weaken signal through 
absorption or reflection.

» Reflection redirects part of the signal

• Multi-path effects: multiple copies of the signal 
interfere with each other at the receiver

» Similar to an unplanned directional antenna

• Mobility: moving the radios or other objects 
changes how signal copies add up

» Node moves ½ wavelength -> big change in signal strength
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Transmission Channel 
Considerations

• Example: grey frequencies get 
attenuated significantly

• For wired networks, channel 
limits are an inherent property of 
the wires

• Different types of fiber and copper 
have different properties

• Capacity also depends on the radio 
and modulation used

• Improves over time, even for same 
wire

• For wireless networks, limits are 
often imposed by policy

• Can only use certain part of the 
spectrum

• Radio uses filters to comply

Frequency

Good Bad

Signal
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Outline

• Challenges in Wireless Networking

• RF introduction

• Modulation and multiplexing
» Analog versus digital signals

» Forms of modulation

» Baseband versus carrier modulation

» Multiplexing

• Channel capacity

• Antennas and signal propagation

• Modulation

• Diversity and coding

• OFDM
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Channel Capacity

• Data rate - rate at which data can be 
communicated (bps)

» Channel Capacity – the maximum rate at which data can 
be transmitted over a given channel, under given 
conditions  

• Bandwidth - the bandwidth of the transmitted 
signal as constrained by the transmitter and 
the nature of the transmission medium (Hertz)

• Noise - average level of noise over the 
communications path

• Error rate - rate at which errors occur
» Error = transmit 1 and receive 0; transmit 0 and receive 1
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The Nyquist Limit

• A noiseless channel of bandwidth B can at 
most transmit a binary signal at a capacity 2B

» E.g. a 3000 Hz channel can transmit data at a rate of at 
most 6000 bits/second

» Assumes binary amplitude encoding

• For M levels: C = 2B log2 M
» M discrete signal levels

• More aggressive encoding can increase the 
actual channel bandwidth

» Example: modems

• Factors such as noise can reduce the capacity
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Decibels

• Decibels: ratio between signal powers

decibels (db) = 10log10(P1 / P2)

• Is used in many contexts:
» The loss of a wireless channel, gain of an amplifier, …

• Note that dB is a relative value.

• Absolute value requires a reference point.
» Decibel-Watt – power relative to 1W

» Decibel-milliwatt – power relative to 1 milliwatt (dbm)

• Some example values (WiFi):
» Noise floor -90 dbm

» Received signal strength: -70 to -65 dbm

» Transmit power (2.4 GHz): 20 dbm
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Signal-to-Noise Ratio

• Ratio of the power in a signal to the power 
contained in the noise that is present at a 
particular point in the transmission

» Typically measured at a receiver

• Signal-to-noise ratio (SNR, or S/N)

• A high SNR means a high-quality signal

• Low SNR means that it may be hard to 
“extract” the signal from the noise

• SNR sets upper bound on achievable data rate 

power noise

power signal
log10)( 10dB SNR
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Shannon Capacity Formula

• Equation:

• Represents error free capacity
» It is possible to design a suitable signal code that will 

achieve error free transmission (you design the code)

• Result is based on many assumptions
» Formula assumes white noise (thermal noise)
» Impulse noise is not accounted for
» Various types of distortion are also not accounted for

• We can also use Shannon’s theorem to 
calculate the noise that can be tolerated to 
achieve a certain rate through a channel

 SNR1log2  BC
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Shannon Discussion

• Bandwidth B and noise N are not independent
» N is the noise in the signal band, so it increases with the 

bandwidth

• Shannon does not provide the coding that will 
meet the limit, but the formula is still useful

• The performance gap between Shannon and a 
practical system can be roughly accounted 
for by a gap parameter

» Still subject to same assumptions

» Gap depends on error rate, coding, modulation, etc.

  SNR/1log2BC
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Example of Nyquist and 
Shannon Formulations

• Spectrum of a channel between 3 MHz 
and 4 MHz ; SNRdB = 24 dB

• Using Shannon’s formula

 
251SNR

SNRlog10dB 24SNR

MHz 1MHz 3MHz 4

10dB




B

  Mbps88102511log10 6
2

6 C



Peter A. Steenkiste 20

Example of Nyquist and 
Shannon Formulations

• How many signaling levels are required 
using Nyquist?

• Look out for: dB versus linear values, 
log2 versus log10

 

16

log4

log102108

log2

2
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Outline

• Challenges in Wireless Networking

• RF introduction

• Modulation and multiplexing

• Channel capacity

• Antennas and signal propagation
» How do antennas work

» Propagation properties of RF signals

» Modeling the channel

• Modulation

• Diversity and coding

• OFDM
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What is an Antenna?

• Conductor that carries an electrical signal 
and radiates an RF signal.

» The RF signal “is a copy of” the electrical signal in the 
conductor

• Also the inverse process: RF signals are 
“captured” by the antenna and create an 
electrical signal in the conductor.

» This signal can be interpreted (i.e. decoded)

• Efficiency of the antenna depends on its size, 
relative to the wavelength of the signal.

» E.g. quarter of a wavelength
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Types of Antennas

• Abstract view: antenna is a point source that 
radiates with the same power level in all 
directions – omni-directional or isotropic.

» Not common – shape of the conductor tends to create a 
specific radiation pattern

» Note that isotropic antennas are not very efficient!!

– Unless you have a very large number of receivers

• Common shape is a straight conductor.
» Creates a “disk” pattern, e.g. dipole

• Shaped antennas can be used to direct the 
energy in a certain direction.

» Well-known case: a parabolic antenna

» Pringles boxes are cheaper
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Antenna Types: Dipoles

• General rule: length of the 
antenna should be ~half a 
wavelength

» Length depends on the carrier 
frequency!

» Wavelength at 900MHz: 1 foot

• Simplest: half-wave dipole 
and quarter wave vertical 
antennas

» Very simple and very common

» Elements are quarter 
wavelength of frequency that is 
transmitted most efficiently

» Donut shape radiation
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Multi-element Antennas

• Multi-element antennas have 
multiple, independently 
controlled conductors.

» Signal is the sum of the individual 
signals transmitted (or received) by 
each element

• Can electronically direct the RF 
signal by sending different 
versions of the signal to each 
element.

» For example, change the phase in 
two-element array.

• Covers a lot of different types of 
antennas.

» Number of elements, relative 
position of the elements, control 
over the signals, …

Time
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Directional Antenna Properties

• dBi: antenna gain in dB relative to an isotropic 
antenna with the same transmit power

» Example: an 8 dBi Yagi antenna has a gain of a factor of 6.3  
(8 db = 10 log 6.3)
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Examples 2.4 GHz
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Summary

• The maximum capacity of a channel depends 
on the SINR

» How close you get to this maximum depends on the 
sophistication of the radios

» Distortion of the signal also plays a role – next lecture

• Antennas are responsible for transmitting and 
receiving the EM signals

» The “ideal” isotropic antenna is a point source that 
radiates energy in a sphere

» Practical antennas are directional in nature, as a result of 
the antenna shape or the use of multi-element antennas

» The antenna gain is expressed in dBi
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Outline

• Challenges in Wireless Networking

• RF introduction

• Modulation and multiplexing

• Channel capacity

• Antennas and signal propagation
» How do antennas work

» Propagation properties of RF signals

» Modeling the channel

• Modulation

• Diversity and coding

• OFDM

Bad News
Good News

Story
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Propagation Modes

• Line-of-sight (LOS) propagation.
» Most common form of propagation

» Happens above ~ 30 MHz

» Subject to many forms of degradation (next set of slides)

• Obstacles can redirect the signal and create 
multiple copies that all reach the receiver

» Creates multi-path effects

• Refraction changes direction of the signal 
due to changes in density

» E.g., changes in air temperature, humidity, …

» If the change in density is gradual, the signal bends!
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Impact of Obstacles

• Besides line of sight, signal 
can reach receiver in three 
“indirect” ways.

• Reflection: signal is 
reflected from a large 
object.

• Diffraction: signal is 
scattered by the edge of a 
large object – “bends”.

• Scattering: signal is 
scattered by an object that 
is small relative to the 
wavelength.
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Refraction

• Speed of EM signals depends 
on the density of the material

» Vacuum: 3 x 108 m/sec

» Denser: slower

• Density is captured by 
refractive index

• Explains “bending” of signals 
in some environments

» E.g. sky wave propagation: Signal 
“bounces” off the ionosphere back to 
earth – can go very long distances

» But also local, small scale differences 
in the air density, temperature, etc.

denser
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Fresnel Zones

• Sequence of ellipsoids centered around the LOS path 
between a transmitter and receiver

• The zones identify areas in which obstacles will have 
different impact on the signal propagation

» Capture the constructive and destructive interference due to 
multipath caused by obstacles
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Fresnel Zones

• Zones create different phase 
differences between paths

» First zone: 0-90

» Second zone: 90-270

» Third zone: 270-450

» Etc.

• Odd zones create constructive 
interference, even zones 
destructive 

• Also want clear path in most of 
the first Fresnel zone, e.g. 60%

• The radius Fn of the nth Fresnel 
zone depends on the distances 
d1 and d2 to the transmitter and 
receiver and the wavelength

Ground
Buildings
Etc.
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Sketch of Calculation:
Difference in Path Length

• Goal is to calculate F

• Difference in path length (a1 is small)
» D1 – d1  F * sin a1

• But for small a1 we also have
» sin a1 = tan a1 = F / d1

• So D1 – d1 = F2 / d1

d1

D1

d2

D2F

a1

FYI only
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Sketch of Calculation
Fresnel Radios

• Given D1 – d1 = F2 / d1

So, the difference in path length is:

• (D1 + D2) – (d1 + d1) = l * n

• Or (D1 – d1) + (D2 – d2) = F2 / d1 + F2 / d2

• or

d1

D1

d2

D2F

a1

FYI only


