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Announcements

• Waiting list status
» Only two people left!

» There are several open slots so everybody will be able to 
get in

• We will post the Project 1 handout today
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Outline

• RF introduction

• Modulation and multiplexing

• Channel capacity

• Antennas and signal propagation

• Modulation

• Coding and diversity

• OFDM

Typical 
Bad News

Good News
Story
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(Limited) Goals

• Non-goal: turn you into electrical engineers
» Of course, some of you already are electrical engineers

• Basic understanding of how modulation can 
be done

• Understand the tradeoffs involved in 
increasing the bit rate
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From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0   0   1   0   1   1   1   0   0   0   1

Packets
0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission
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Basic Modulation Techniques

• Encode digital data in an 
analog signal

• Amplitude-shift keying 
(ASK)

» Amplitude difference of carrier 
frequency

• Frequency-shift keying 
(FSK)

» Frequency difference near 
carrier frequency

• Phase-shift keying (PSK)
» Phase of carrier signal shifted
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Amplitude-Shift Keying

• One binary digit represented by presence of 
carrier, at constant amplitude

• Other binary digit represented by absence of 
carrier

– where the carrier signal is Acos(2πfct)

• Inefficient because of sudden gain changes
» Only used when bandwidth is not a concern, e.g. on voice 

lines (< 1200 bps) or on digital fiber

• A can be a multi-bit symbol

 






ts
 tfA c2cos
0

1binary 
0binary 
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How Can We Go Faster?

• Increase the rate at which we modulate the 
signal, or …

» I.e., a higher frequency base signal

» Signal time becomes short

• Modulate the signal with “symbols” that send 
multiple bits

» I.e., each symbol represents more information

» Longer signal time but more sensitive to distortion

• Which solution is the best depends on the 
many factors

» We will not worry about that in this course
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Binary Frequency-Shift Keying 
(BFSK)

• Two binary digits represented by two different 
frequencies near the carrier frequency

– where f1 and f2 are offset from carrier frequency fc by 
equal but opposite amounts

• Less susceptible to error than ASK

• Sometimes used for radio or on coax

• Demodulator looks for power around f1 and f2

 






ts
 tfA 12cos 
 tfA 22cos 

1binary 
0binary 
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Multiple Frequency-Shift 
Keying (MFSK)

• More than two frequencies are used

• Each symbol represents L bits

– f i = f c + (2i – 1 – M)f d
– L = number of bits per signal element

– M = number of different signal elements = 2 L

– f c = the carrier frequency

– f d = the difference frequency

• More bandwidth efficient but more 
susceptible to error

» Symbol length is Ts=LT seconds, where T is bit period

  tfAts ii 2cos Mi 1
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Multiple Frequency-Shift 
Keying (MFSK)
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Phase-Shift Keying (PSK)

• Two-level PSK (BPSK)
» Uses two phases to represent binary digits

• Differential PSK (DPSK)
» Phase shift with reference to previous bit

– Binary 0 – signal of same phase as previous signal 
burst

– Binary 1 – signal of opposite phase to previous 
signal burst

 






ts
 tfA c2cos
  tfA c2cos

1binary 
0binary 








 tfA c2cos

 tfA c2cos
1binary 
0binary 
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Phase-Shift Keying
Four Level PSK

• Each element represents 2 (or more) bits

 









ts







 

4
2cos

 tfA c 11
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Quadrature Amplitude 
Modulation - QAM 

• Modulation is based on both the phase and 
amplitude

• Has many benefits
» Since two signal properties are used, it can be used for a 

wide range of symbol sizes

» It has a simple mathematical representation (next slide)

» Bonus: it has a very intuitive presentation (figures)

• QAM is the dominating modulation technique 
for modern, high performance wireless 
technologies

» 4G, 5G, all recent WiFi standards
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Time (point in space)

Space (snapshot in time)

Time and Point View of Signal

• Remember: communication is based on the 
transmission of a modulated carrier signal

» Focus on amplitude-phase modulation – very common!

• What about a mathematical 
representation of the 
received signal?

» We can then reason 
about the impact of
channel impairments
on the signal and 
error rates

Transmitter

Received
Signal

Transmit

Received

Impact
Distortion
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QAM Signals and Channel State

• A signal is a complex number that represents 
the signal’s amplitude and phase 

• The channel state captures how it changes a 
signal’s attenuation and phase

» The two main channel properties relevant to wireless 
communication

• c changes over time due to mobility: c(t),
» Change is continuous; captured as a sequence of 

samples ci

• c typically depends on carrier frequency: c(f)
» Frequency selective fading or attenuation

» The dependency on f is a concern for wide-band signals

• c is sampled in frequency and time domains
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Channel Model

T Radio R Radio

1. Transmits signal x:
modulated carrier 

at frequency f

5. Doppler effects 
distorts signal

2. Signal is 
attenuated

3. Multi-path +
mobility cause

fading

4. Noise is
added

6. Receives
distorted
Signal y

x x         c +            n = y
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Tradeoff: Bit Rate versus
Error Rate - Informal

• Amplitude and phase modulation places 
transmitted symbols into 2D space

» Represented by a complex number

• Channel distortion “moves” the symbol
» Large shift can map it onto another symbol

• Large symbols means denser packing of 
symbols in the plane

» Results in high bit rate but distortions are more likely to 
result in errors

• Smaller symbols are more conservative
» Lower bit rate but more resistant to errors

Good channels

Bad channels
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Signal Constellations

• Each pair (Ak, Bk) defines a point in the plane

• Signal constellation set of signaling points

4 possible points per T sec.
2 bits QAM (see earlier slide)

Ak

Bk

16 possible points per T sec.
4 bits / pulse

Ak

Bk

(A, B)

(A,-B)(-A,-B)

(-A,B)
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How Does Distortion Impact a 
Constellation Diagram?

• Changes in amplitude, 
phase or frequency 
move the points in the 
diagram

• Large shifts can create 
uncertainty on what 
symbol was 
transmitted

• Larger symbols are 
more susceptible

• Can Adapt symbol size 
to channel conditions 
to optimize throughput

www.cascaderange.org/presentations/Distortion_in_the_Digital_World-F2.pdf
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Adapting to Channel Conditions

• Channel conditions can be very diverse
» Affected by the physical environment of the channel

» Changes over time as a result of slow and fast fading

• Fixed coding/modulation scheme will often be 
inefficient

» Too conservative for good channels, i.e. lost opportunity

» Too aggressive for bad channels, i.e. lots of packet loss

• Adjust coding/modulation based on channel 
conditions – “rate” adaptation

» Controlled by the MAC protocol

» E.g. 802.11a: BPSK – QPSK – 16-QAM – 64 QAM

Bad                                  Good Channel
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Summary

• Key properties for channels are:
» Channel state that concisely captures many of the factors 

degrading the channel

» The power budget expresses the power at the receiver

» Channel reciprocity

• Modulation changes the signal based on the 
data to be transmitted

» Can change amplitude, phase or frequency

» The transmission rate can be increased by using symbols 
that represent multiple bits

– Can use hybrid modulation, e.g., phase and amplitude

» The symbol size can be adapted based on the channel 
conditions – results in a variable bit rate transmission

» Details do not matter!
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Outline

• RF introduction

• Modulation and multiplexing

• Channel capacity

• Antennas and signal propagation

• Modulation

• Diversity and coding
» Space, time and frequency diversity

• OFDM

Typical 
Bad News

Good News
Story
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Diversity Techniques

• The quality of the channel depends on time, 
space, and frequency

• Space diversity: use multiple nearby 
antennas and combine signals

» Both at the sender and the receiver

• Time diversity: spread data out over time
» Useful for burst errors, i.e., errors are clustered in time

• Frequency diversity: spread signal over 
multiple frequencies

» For example, spread spectrum

• Distribute data over multiple “channels”
» “Channels” experience different frequency selective 

fading, so only part of the data is affected 
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Space Diversity

• Use multiple antennas that pick up/transmit 
the signal in slightly different locations

• If antennas are sufficiently separated, 
instantaneous channel conditions are 
independent

» Antennas should be separated by ½ wavelength or more

• If one antenna experiences deep fading, the 
other antenna has a strong signal

• Represents a wide class of techniques
» Use on transmit and receive side - channels are symmetric

» Level of sophistication of the algorithms used

» Can use more than two antennas!



Peter A. Steenkiste 27

Selection Diversity 

• Receiver diversity: receiver picks the antenna with 
the best SNR

» Very easy

• Transmit diversity: sender picks the antenna that 
offers the best channel to the receiver

» Transmitter can learn the channel conditions based on signals 
sent by the receiver

» Leverages channel reciprocity

h1

h2

y

x1

x2

h1

h2

x

y1

y2
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Simple Algorithm in (older) 
802.11 

• Combine transmit + receive selection diversity 
» Assume packets are acknowledged – why?

• How to explore all channels to find the best one 
… or at least the best transmit antenna

• Receiver:
» Uses the antenna with the strongest signal

» Always use the same antenna to send the 
acknowledgement – gives feedback to the sender

• Sender:
» Picks an antenna to transmit and learns about the channel 

quality based on the ACK

» Needs to occasionally try the other antenna to explore the 
channel between all four channel pairs

Transmit Receiver
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Receiver Diversity
Can we Do Better?

• But why not use both signals?  
» 2 Signals contain more information than 1

» What can go wrong?

• Simply adding the two signals has drawbacks:
» Signals may be out of phase, e.g. kind of like multi-path; can 

reduce the signal strength!

» We want to make sure we do not amplify the noise

• Maximal ratio combining: combine signals with a 
weight that is based on their SNR

» Weight will favor the strongest signal (highest SNR)

» Also: equal gain combining as a quick and dirty alternative
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Receiver Diversity Optimization

• Multiply y with the complex conjugate h* of 
the channel vector h

» Aligns the phases of the two signals so they amplify each 
other

» Scales the signals with their magnitude so the effect of 
noise is not amplified

• Can learn h based on training data

h1

h2

x

y1

y2

y  = h * x + n
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The Details

• Complex conjugates: same real part but 
imaginary parts of opposite signs

• Result:

signal x  is scaled by a1
2 + b1

2 + a2
2 + b2

2

noise becomes: h1
* * n1 + h2

* * n2

h*  y  = h*  (h * x + n)

Where h* = [h1
* h2

*] = [ a1+b1i  a2-b2i]
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Transmit Diversity

• Same as receive diversity but the transmitter 
has multiple antennas

• Maximum ratio combining: sender “precodes” 
the signal

» Pre-align the phases at receiver and distribute power over 
the transmit antennas (total power fixed)

• How does transmitter learn channel state?
» Channel reciprocity: learn from packets received Y

h1

h2

y

x1

x2

y  = h * x + n

h* * x
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Adding Redundancy

• Protects digital data by introducing 
redundancy in the transmitted data.

» Error detection codes: can identify certain types of errors
» Error correction codes: can fix certain types of errors

• Block codes provide Forward Error 
Correction (FEC) for blocks of data.

» (n, k) code: n bits are transmitted for k information bits
» Simplest example: parity codes
» Many different codes exist: Hamming, cyclic, Reed-

Solomon, …

• Convolutional codes provide protection for a 
continuous stream of bits.

» Coding gain is n/k
» Turbo codes: convolutional code with channel estimation
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Combine Redundancy with 
Time Diversity

• Fading can cause burst errors: a relatively 
long sequence of bits is corrupted

• Spread blocks of bytes out over time so 
redundancy can help recover from the burst 

» Example: only need 3 out of 4 to recover the data

A1 A2 A4A3 B1 B2 B4B3 C1 C2 C4C3

A1 A2 A3B1 B2 B3C1 C2 C3 A4 B4 C4

A B C

A B C
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Bits, Symbols, and Chips

• So far: use bits to directly 
modulate the signal

• Idea: add a coding layer –
provides a level of indirection

• Can add redundancy and 
adjust level of redundancy 
quickly based on channel 
conditions

• Redundancy and time diversity can be added 
easily at the application layer

• Can we do it lower in the stack?
» Need to adapt quickly to the channel

X bits

Modulated signal

X bits with redundancy
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Discussion

• Error coding increases robustness at the 
expense of having to send more bits

» Technically this means that you need more spectrum

• But: since you can tolerate some errors, you 
may be able to increase the bit rate through 
more aggressive modulation

• Coding and modulation combined offer a lot of 
flexibility to optimize transmission

• Next steps:
» Apply a similar idea to frequency diversity - spread spectrum

» Combine coding with frequency and time diversity - OFDM
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Summary

• Space diversity really helps in overcoming 
fading

» Very widely deployed

» Will build on this when we discuss MIMO

• Coding is also an effective way to improve 
throughput

» Widely used in all modern standards

» Coding, combined with modulation, can be adapt quickly 
to channel conditions


