This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 5: Physical Layer Modulation and Diversity

> Peter Steenkiste Carnegie Mellon University

Peter A. Steenkiste 1 Spring Semester 2021 http://www.cs.cmu.edu/~prs/wireless21/

Announcements

• Waiting list status

- » Only two people left!
- » There are several open slots so everybody will be able to get in
- We will post the Project 1 handout today

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Coding and diversity
- OFDM

Typical

Bad News

Good News

Story

(Limited) Goals

- Non-goal: turn you into electrical engineers
	- » Of course, some of you already are electrical engineers
- Basic understanding of how modulation can be done
- Understand the tradeoffs involved in increasing the bit rate

From Signals to Packets

Basic Modulation Techniques

- Encode digital data in an $\frac{0}{\sqrt{1-\frac{v^2}{c^2}}}$ analog signal
- Amplitude-shift keying (ASK)
	- » Amplitude difference of carrier frequency
- (FSK)
	- » Frequency difference near carrier frequency
- - » Phase of carrier signal shifted

Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

y digit represented by presence of
constant amplitude
ry digit represented by absence of

$$
s(t) = \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{ binary 0} \end{cases}
$$

– where the carrier signal is Acos(2π $f_c\boldsymbol{t})$

- Inefficient because of sudden gain changes
	- » Only used when bandwidth is not a concern, e.g. on voice lines (< 1200 bps) or on digital fiber
- A can be a multi-bit symbol

How Can We Go Faster?

- Increase the rate at which we modulate the signal, or …
	- » I.e., a higher frequency base signal
	- » Signal time becomes short
- Modulate the signal with "symbols" that send multiple bits
	- » I.e., each symbol represents more information
	- » Longer signal time but more sensitive to distortion
- Which solution is the best depends on the many factors
	- » We will not worry about that in this course

Binary Frequency-Shift Keying (BFSK)

• Two binary digits represented by two different frequencies near the carrier frequency

$$
F_{\text{reg}}(BFSK)
$$
\nary digits represented by two differ
\ncies near the carrier frequency
\n
$$
s(t) = \begin{cases} A \cos(2\pi f_1 t) & \text{binary 1} \\ A \cos(2\pi f_2 t) & \text{binary 0} \end{cases}
$$
\nenergy of and for different terms, the system is frequency.

– where f_1 and f_2 are offset from carrier frequency f_{c} by equal but opposite amounts

- Less susceptible to error than ASK
- Sometimes used for radio or on coax
- Demodulator looks for power around f_1 and f_2

Multiple Frequency-Shift Keying (MFSK) **Example 18 A Follow (Section 18 A Follow 18 A Follow 19 A Follow 19 A Follow 19 A Follow 10 Follow 11 A Follow 10 Follow 11 A Follow 11**

- More than two frequencies are used
- Each symbol represents L bits

$$
s_i(t) = A \cos 2\pi f_i t \quad 1 \le i \le M
$$

$$
- f_{i} = f_{c} + (2i - 1 - M)f_{d}
$$

- L = number of bits per signal element
- M = number of different signal elements = 2 L
- f_c = the carrier frequency
- $-$ f $_{d}$ = the difference frequency
- More bandwidth efficient but more susceptible to error
	- » Symbol length is $T_s = LT$ seconds, where T is bit period

Multiple Frequency-Shift Keying (MFSK)

Phase-Shift Keying (PSK)

- Two-level PSK (BPSK)
- » Uses two phases to represent binary digits **Phase-Shift Keying**
 o-level PSK (BPSK)

Uses two phases to represent binary of
 $(t) = \begin{cases} A \cos(2\pi f_c t) & \text{bin2} \\ A \cos(2\pi f_c t + \pi) \end{cases}$ $\begin{array}{c} \hline \end{array}$ $\left\{ \begin{array}{c} 1 \end{array} \right.$ $\left\lceil \right\rceil$ $s(t) =$ $A\cos(2\pi f_c t)$ bin $A\cos(2\pi f_c t + \pi)$ binary binary 1 binary 0

$$
= \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ A \cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}
$$

=
$$
\begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ -A \cos(2\pi f_c t) & \text{binary 0} \end{cases}
$$

erential PSK (DPSK)
base shift with reference to previous bit
- Binary 0 – signal of same phase as previous signal
burst
- Binary 1 – signal of opposite phase to previous signal burst
signal burst
12

- Differential PSK (DPSK)
	- » Phase shift with reference to previous bit
		- Binary 0 signal of same phase as previous signal
burst
		- Binary 1 signal of opposite phase to previous
signal burst

Phase-Shift Keying Four Level PSK

• Each element represents 2 (or more) bits

ach element represents 2 (or
 $\left(t\right)=\left\{ \begin{array}{l} A\cos\left(2\pi f_c t+\frac{\pi}{4}\right) \ A\cos\left(2\pi f_c t+\frac{3\pi}{4}\right) \ A\cos\left(2\pi f_c t-\frac{3\pi}{4}\right) \end{array}\right.$ \overline{a} \mathcal{L} \overline{a} $\begin{array}{c} \hline \end{array}$ $\left\{ \right.$ $\begin{array}{c} \hline \end{array}$ $s(t) =$ $\overline{}$ \int $\Bigg)$ $\overline{}$ \setminus $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $+$ 4 $\cos 2i$ π $A \cos \left[2\pi f_c t + \frac{\pi}{4} \right]$ 11 $\overline{}$ \int \setminus $\overline{}$ \setminus $\bigg($ $+$ 4 3 $\cos 2i$ π $A\cos\left[2\pi f_c t\right]$ $\overline{}$ \int \setminus $\overline{}$ \setminus $\bigg($ $\overline{}$ 4 3 $\cos 2i$ π $A\cos\left[2\pi f_{c}t\right]$ $\overline{}$ \int \setminus $\overline{}$ \setminus $\left(\right.$ $\overline{}$ 4 $A \cos \left(2\pi f_c t - \frac{\pi}{4} \right)$ 01 $()()$ 10

Quadrature Amplitude uadrature Amplitude
Modulation - QAM
Andrews

• Modulation is based on both the phase and amplitude

• Has many benefits

- » Since two signal properties are used, it can be used for a wide range of symbol sizes
- » It has a simple mathematical representation (next slide)
- » Bonus: it has a very intuitive presentation (figures)
- QAM is the dominating modulation technique for modern, high performance wireless technologies The Solution of the US as many benefits

We Since two signal properties are used, it can be used for a

wide range of symbol sizes

We It has a simple mathematical representation (next slide)

We Bonus: it has a very intui
	-

Time and Point View of Signal

- Remember: communication is based on the transmission of a modulated carrier signal
	-

QAM Signals and Channel State

- A signal is a complex number that represents the signal's amplitude and phase
- The channel state captures how it changes a signal's attenuation and phase
- » The two main channel properties relevant to wireless communication • The two main channel properties relevant to wireless

• c changes over time due to mobility: c(t),

• C is samples c_i

• c typically depends on carrier frequency: c(f

• Frequency selective fading or attenuation

• Th
- c changes over time due to mobility: c(t),
	- » Change is continuous; captured as a sequence of samples c_i
- c typically depends on carrier frequency: c(f)
	- » Frequency selective fading or attenuation
	- » The dependency on f is a concern for wide-band signals
-

Channel Model

Tradeoff: Bit Rate versus radeoff: Bit Rate versus
Error Rate - Informal

- Amplitude and phase modulation places transmitted symbols into 2D space
	- » Represented by a complex number
- Channel distortion "moves" the symbol
	- » Large shift can map it onto another symbol
- Large symbols means denser packing of symbols in the plane Good channels
	- » Results in high bit rate but distortions are more likely to result in errors
- Smaller symbols are more conservative Bad channels
	- » Lower bit rate but more resistant to errors

Signal Constellations

- Each pair (A_k, B_k) defines a point in the plane
- Signal constellation set of signaling points

4 possible points per T sec. 2 bits QAM (see earlier slide)

16 possible points per T sec. 4 bits / pulse

How Does Distortion Impact a Constellation Diagram?

- Changes in amplitude, phase or frequency move the points in the diagram
- **Large shifts can create** uncertainty on what symbol was transmitted
- **Larger symbols are** more susceptible
- Can Adapt symbol size to channel conditions to optimize throughput

/ww.cascaderange.org/presentations/Distortion_in_ine_Digital_worta-r 2.paj
Peter A. Steenkiste **20** www.cascaderange.org/presentations/Distortion in the Digital World-F2.pdf

Adapting to Channel Conditions

• Channel conditions can be very diverse

- » Affected by the physical environment of the channel
- » Changes over time as a result of slow and fast fading
- Fixed coding/modulation scheme will often be inefficient Channel conditions can be very diverse

» Affected by the physical environment of the channel

» Changes over time as a result of slow and fast fading

Fixed coding/modulation scheme will often b

inefficient

» Too conser » Changes over time as a result of slow and fast fading

ixed coding/modulation scheme will often be

nefficient

* Too conservative for good channels, i.e. lost opportunity

* Too aggressive for bad channels, i.e. lots o
	- » Too conservative for good channels, i.e. lost opportunity
	- » Too aggressive for bad channels, i.e. lots of packet loss
- Adjust coding/modulation based on channel
	- » Controlled by the MAC protocol
	-

Good Channel

Summary

• Key properties for channels are:

- » Channel state that concisely captures many of the factors degrading the channel
- » The power budget expresses the power at the receiver
- » Channel reciprocity
- Modulation changes the signal based on the data to be transmitted The power budget expresses the power at the receiver
Channel reciprocity
dulation changes the signal based on the
ta to be transmitted
Can change amplitude, phase or frequency
The transmission rate can be increased by usin
	- » Can change amplitude, phase or frequency
	- » The transmission rate can be increased by using symbols that represent multiple bits
		- Can use hybrid modulation, e.g., phase and amplitude
	- » The symbol size can be adapted based on the channel
	- » Details do not matter!

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
	- » Space, time and frequency diversity
- OFDM

Typical

Bad News

Good News

Story

Diversity Techniques

- The quality of the channel depends on time, space, and frequency
- Space diversity: use multiple nearby antennas and combine signals
	- » Both at the sender and the receiver
- Time diversity: spread data out over time
	- » Useful for burst errors, i.e., errors are clustered in time
- Frequency diversity: spread signal over multiple frequencies
	- » For example, spread spectrum
- Distribute data over multiple "channels"
	- » "Channels" experience different frequency selective fading, so only part of the data is affected

Space Diversity

- Use multiple antennas that pick up/transmit the signal in slightly different locations
- If antennas are sufficiently separated, instantaneous channel conditions are independent The signal in siightly different locations

intennas are sufficiently separated,

instantaneous channel conditions are

independent

in Antennas should be separated by 1/2 wavelength or more

ione antenna experiences deep
	- » Antennas should be separated by ½ wavelength or more
- If one antenna experiences deep fading, the other antenna has a strong signal
- Represents a wide class of techniques
	-
	- » Level of sophistication of the algorithms used
	- » Can use more than two antennas!

Selection Diversity

• Receiver diversity: receiver picks the antenna with the best SNR

» Very easy

- Transmit diversity: sender picks the antenna that offers the best channel to the receiver
	- » Transmitter can learn the channel conditions based on signals sent by the receiver
	-

Simple Algorithm in (older) 802.11 Simple Algorithm in (older)
802.11

Combine transmit + receive selection diversity

Sombine transmit + receive selection diversity

Some packets are acknowledged – why?

Now to explore all channels to find the best one

Co

• Combine transmit + receive selection diversity

- How to explore all channels to find the best one … or at least the best transmit antenna mbine transmit + receive selection diversity
Assume packets are acknowledged – why?
We to explore all channels to find the best one
or at least the best transmit antenna
ceiver:
Uses the antenna with the strongest signal
A
- Receiver:
	- » Uses the antenna with the strongest signal
	- » Always use the same antenna to send the

• Sender:

- » Picks an antenna to transmit and learns about the channel quality based on the ACK X Uses the antenna with the strongest signal

X Always use the same antenna to send the

acknowledgement – gives feedback to the sender

Sender:

X Picks an antenna to transmit and learns about the channel

quality based o
- » Needs to occasionally try the other antenna to explore the channel between all four channel pairs

Receiver Diversity Can we Do Better?

• But why not use both signals?

- » 2 Signals contain more information than 1
- » What can go wrong?

• Simply adding the two signals has drawbacks:

- » Signals may be out of phase, e.g. kind of like multi-path; can reduce the signal strength!
- » We want to make sure we do not amplify the noise

• Maximal ratio combining: combine signals with a weight that is based on their SNR

- » Weight will favor the strongest signal (highest SNR)
- » Also: equal gain combining as a quick and dirty alternative

Receiver Diversity Optimization

- Multiply \vec{y} with the complex conjugate \vec{h} of the channel vector \vec{h}
	- » Aligns the phases of the two signals so they amplify each other
	- » Scales the signals with their magnitude so the effect of noise is not amplified
- \cdot Can learn \overline{h} based on training data

The Details

• Complex conjugates: same real part but imaginary parts of opposite signs

$$
\overrightarrow{\mathbf{h}}^* * \overrightarrow{\mathbf{y}} = \overrightarrow{\mathbf{h}}^* * (\overrightarrow{\mathbf{h}}^* \times \overrightarrow{\mathbf{h}})
$$

Where
$$
h^* = [h_1^* h_2^*] = [a_1 + b_1 i a_2 - b_2 i]
$$

• Result:

signal x is scaled by $a_1^2 + b_1^2 + a_2^2 + b_2^2$ 2 noise becomes: h_1^* ^{*} n_1 + h_2^* ^{*} n_2

Transmit Diversity

- Same as receive diversity but the transmitter has multiple antennas
- Maximum ratio combining: sender "precodes" the signal
	- » Pre-align the phases at receiver and distribute power over the transmit antennas (total power fixed)
- How does transmitter learn channel state?
	- » Channel reciprocity: learn from packets received Y

Adding Redundancy

- Protects digital data by introducing redundancy in the transmitted data.
	- » Error detection codes: can identify certain types of errors
	- » Error correction codes: can fix certain types of errors
- Block codes provide Forward Error Correction (FEC) for blocks of data.
	- » (n, k) code: n bits are transmitted for k information bits
	- » Simplest example: parity codes
	- » Many different codes exist: Hamming, cyclic, Reed- Solomon, …
- Convolutional codes provide protection for a continuous stream of bits.
	- » Coding gain is n/k
	- » Turbo codes: convolutional code with channel estimation

Combine Redundancy with Time Diversity

- Fading can cause burst errors: a relatively long sequence of bits is corrupted
- Spread blocks of bytes out over time so redundancy can help recover from the burst

» Example: only need 3 out of 4 to recover the data

Bits, Symbols, and Chips

- Redundancy and time diversity can be added easily at the application layer
- Can we do it lower in the stack?
	- » Need to adapt quickly to the channel
- So far: use bits to directly modulate the signal
- Idea: add a coding layer provides a level of indirection
- Can add redundancy and adjust level of redundancy quickly based on channel conditions

Discussion

- Error coding increases robustness at the expense of having to send more bits
	- » Technically this means that you need more spectrum
- But: since you can tolerate some errors, you may be able to increase the bit rate through more aggressive modulation xperise of riaving to send more bits

» Technically this means that you need more spectrum

idt: since you can tolerate some errors, you

hay be able to increase the bit rate through

hore aggressive modulation

ioding and » Technically this means that you need more spectrum

Cut: since you can tolerate some errors, you

hay be able to increase the bit rate through

hore aggressive modulation

Coding and modulation combined offer a lot of

e
- Coding and modulation combined offer a lot of flexibility to optimize transmission
- Next steps:
	-
	-

Summary

- Space diversity really helps in overcoming fading
	- » Very widely deployed
	- » Will build on this when we discuss MIMO
- Coding is also an effective way to improve throughput
	- » Widely used in all modern standards
	- » Coding, combined with modulation, can be adapt quickly to channel conditions