This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 7: LAN MAC Protocols Wireless versus Wired

Peter Steenkiste

Spring Semester 2022 http://www.cs.cmu.edu/~prs/wirelessS22/

Outline

• Data link fundamentals

- » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Datalink Functions

- Framing: encapsulating a packet into a bit stream.
	- » Add header, mark and detect frame boundaries, …
- Logical link control: managing the transfer between the sender and receiver, e.g.
	- » Error detection and correction to deal with bit errors
	- » Flow control: avoid that the sender outruns the receiver
- Media access: controlling which device gets to send a frame next over a link
	- » Easy for point-to-point links; half versus full duplex
	- » Harder for multi-access links: who gets to send?

Framing

• Typical structure of a "wired" packet:

- » Preamble: synchronize clocks sender and receiver
- » Header: addresses, type field, length, etc.
- » The data to be send, e.g., an IP packet
- » Trailer: padding, CRC, ..

- How does wireless differ?
	- » Different transmit rates for different parts of packet
	- » Explicit multi-hop support
	- » Control information for physical layer
	- » Ensure robustness of the header

Error Control: Error Detection and Error Recovery

• Detection: only detect errors

- » Make sure corrupted packets get thrown away, e.g. Ethernet
- » Use of error detection codes, e.g. CRC
- Recovery: also try to recover from lost or corrupted packets
	- » Option 1: forward error correction (redundancy)
	- » Option 2: retransmissions

• How does wireless differ?

- » Uses CRC to detect errors, similar to wired
- » Error recovery is much more important because errors are more common and error behavior is very dynamic
- » What approach is used?

Error Recovery in Wireless Error Recovery in Wireless

Se of redundancy:

» Very common at physical layer – see PHY lectures

Se of Automatic Repeat Request (ARQ)

» Use time outs to detect loss and retransmit

• Use of redundancy:

• Use of Automatic Repeat Request (ARQ)

» Use time outs to detect loss and retransmit

• Many variants:

- » Stop and wait: one packet at a time
	- The most common at the datalink
- » Sliding window: receiver tells sender how much to send
	- Many retransmission strategies: go-back-N, selective repeat, …

• When should what variant be used?

» Noise versus bursty (strong) interference

Stop and Wait

- Simplest ARQ protocol
- Send a packet, stop and wait until acknowledgement arrives
- Will examine ARQ issues later in semester
- Limitations?
- What popular for the datalink?

Media Access Control

- How do we transfer packets between two hosts connected to the same network?
- Using point-to-point "links" with "switches" store-and-forward
	- » Very common in wired networks, at multiple layers
- Multiple access networks
	- » Multiple hosts are sharing the same transmission medium
	- » Need to control access to the medium
	- » Taking turn versus contention based protocols
- What is different in wireless?
	- » Is store and forward used?
	- » Is multiple access used?

Datalink Architectures

- Routing and packet forwarding.
- Point-to-Point error and flow control.

Switched ethernet, mesh and ad hoc networks

- Media access control.
- Scalability.

Traditional ethernet, Wifi, Aloha, …

Multiple Access Networks

$$
\overline{O} \circ \overline{O} \circ \overline{O} \circ \overline{O}
$$

- Who gets to send a packet next?
- Scheduled access: explicit coordination ensures that only one node transmits » Coordination introduces overhead – requires inceduled access: explicit coordination

msures that only one node transmits

» Looks cleaner, more organized, but ...

» Coordination introduces overhead – requires

communication (oops)

(andom access: no explicit coordi
	- » Looks cleaner, more organized, but …
	- communication (oops)
- Random access: no explicit coordination
	- » Potentially more efficient, but …
	- » How does a node decide whether it can transmit?
	-
	- » How do you even detect a collision?

Scheduled Access MACs

- Polling: controller polls each nodes
- Reservation systems
	- » Central controller
	- » Distributed algorithm, e.g. using reservation bits in frame
- Token ring: token travels around ring and allows nodes to send one packet
	- » Distributer version of polling
	- » FDDI, …

Outline

• Data link fundamentals

- » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Why ALOHA

Pure ALOHA

- Developed in University of Hawaii in early 1970's.
- It does not get much simpler:
	- 1. A user transmits at will
- 2. If two or more messages overlap in time, there is a collision receiver cannot decode packets **Pure ALOHA**

veloped in University of Hawaii in early 1970's.

loes not get much simpler:

A user transmits at will

If two or more messages overlap in time, there is

a collision – receiver cannot decode packets

Receive veloped in University of Hawaii in early 1970's.
Joes not get much simpler:
A user transmits at will
If two or more messages overlap in time, there is
a collision – receiver cannot decode packets
Receive waits for roundtri
	- 3. Receive waits for roundtrip time plus a fixed
increment lack of ACK = collision
	- 4. After a collision, colliding stations retransmit the packet, but they stagger their attempts randomly to reduce the chance of repeat collisions
	- 5. After several attempts, senders give up
- Although very simple, it is wasteful of bandwidth, attaining an efficiency of at most 1/(2e) = 0.18

Poisson Process Informal: memory less

- A Poisson process of "rate" λ > 0 is a counting process a(t) which satisfies the following conditions:
	- 1. The process has independent increments in disjoint intervals
		- i.e., a(t₁+∆t)-a(t₁) is independent of a(t₂+ δ t)-a(t₂) if [t₁, $,$ t₁+∆t] and [t₂ , t₂+ δ t] are disjoint intervals
	- 2. The increments of the process are stationary.
		- $-$ i.e., a(t₁+∆t)-a(t₁) does not depend on t₁
	- 3. The probability of exactly one event occurring in an bits at the process has independent increments in
disjoint intervals
 $-$ i.e., a(t₁+∆t)-a(t₁) is independent of a(t₂+δt)-a(t₂) if [t₁,
 $-$ i.e., a(t₁+∆t)-a(t₁) is independent of a(t₂+δt)-a(t₂) if [t₁,

	- 4. The probability that more than one event occurs in any infinitesimal interval Δt is P[a(Δt) >1] \cong 0
	- Peter A. Steenkiste \sim 16 \sim 16 16 5. The probability of zero events occurring in Δt is $P[a(\Delta t) = 0] \approx 1 - \lambda \Delta t$

Poisson Distribution

- $P(k) = \frac{(\lambda T)^k e^{-\lambda T}}{L!}$ $k!$ $=\frac{(\lambda_1)^e}{\lambda_1}$ • Above definitions lead to: Probability P(k) that there are exactly k events in interval of length T is,
- We call the above probability the "Poisson distribution" for arrival rate λ
- Its mean and variance are:

$$
E(k) = \lambda T
$$

$$
\sigma_k^2 = E(k^2) - E^2(k) = \lambda T
$$

• Many nice properties, e.g. sum of a N independent Poisson processes is a Poisson process

Pure ALOHA: Model

- Let there be N stations contending for use of the channel.
- Each station transmits λ packets/sec on average based on a Poisson arrival process • Let there be N stations contending for use of
the channel.
• Each station transmits λ packets/sec on
average based on a Poisson arrival process
• All messages transmitted are of the same
fixed length, m, in units of
- All messages transmitted are of the same fixed length, m, in units of time
-
- Since all new packets eventually get through, 'S' is also the network throughput

Pure Aloha: Vulnerability

- Simplification: assume the retransmitted messages are independent Poisson process as well
- The total rate of packets attempting transmission = newly generated packets + retransmitted ones = $\lambda' > \lambda$
- The total traffic intensity (including retransmissions) is ,

Collision between two messages

• The "vulnerable period" in which a collision can occur for a given packet is 2 x m sec

Pure Aloha: Analysis

Calculate the "Probability of no collision" two ways:

1. Probability that there is no arrival in interval 2 x m:

P(no arrival in 2 x m sec) = $e^{-2N\lambda'm} = e^{-2G}$

- 2. Since all new arrivals eventually get through, we have λ/λ' = S/G = Fraction of transmissions that are successful culate the "Probability of no collision" two ways:

robability that there is no arrival in interval 2 x m:

P(no arrival in 2 x m sec) = e<sup>-2N λ 'm = e^{-2G}

ince all new arrivals eventually get through, we have
 $\lambda \lambda$ '</sup>
	-
	- \triangleright S = rate of successful transmissions
	-
- Calculate the "Probability of no collision" two ways:

1. Probability that there is no arrival in interval 2 x m:
 $P(no arrival in 2 x m sec) = e^{-2N\lambda'm} = e^{-2G}$

2. Since all new arrivals eventually get through, we have
 $\lambda/\lambda' = S/G = Fraction$ of t = P(no arrival in 2m sec)
- Thus,

$$
S/G = e^{-2G} \longrightarrow \begin{array}{c} Maximum Throughput \\ S = Ge^{-2G} \end{array}
$$

Analysis Conclusion

Slotted ALOHA

- Transmission can only start at the beginning of each slot of length T
- Vulnerable period is reduced to T
	- » Instead of 2xT in Aloha
- Doubles maximum throughput.

Slotted ALOHA Analysis

- Key point: The "vulnerable period" of the packet of size *m* has been reduced from 2*m* to only *m* !
- Since Poisson arrivals, P(successful transmission) = e^{-G^*} Note: Not 2G
- The throughput is then, $S = Ge^{-G}$
- The throughput S has maximum value of $1/e =$ 0.368 at $G = 1$.

Analysis Results Slotted ALOHA

Discussion of ALOHA

- Maximum throughput of ALOHA is very low $1/(2e) = 18\%$, but
	- » Has very low latency under light load
- Slotted Alohas has twice the performance of basic Aloha, but performance is still poor » Has very low latency under light load
 iotted Alohas has twice the performance of
 asic Aloha, but performance is still poor

» Slightly longer delay than pure Aloha

» Inefficient for variable sized packets!

» Mus
	- » Slightly longer delay than pure Aloha
	- » Inefficient for variable sized packets!
	- » Must synchronize nodes
- Still, not bad for an absolutely minimal protocol!
	- networking technologies (cheap, simple)

Outline

• Data link fundamentals

- » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

"Regular" Ethernet CSMA/CD

- Multiple Access: multiple hosts are competing for access to the channel
- Carrier-Sense: make sure the channel is idle $\frac{\text{``Regular'' Ethernet}}{\text{CSMA/CD}}$

Multiple Access: multiple hosts are competing

for access to the channel

Carrier-Sense: make sure the channel is idle

before sending – "listen before you send"

Collision Detection: collisions are
- Collision Detection: collisions are detected by listening on the medium and comparing the received and transmitted signals
- Collisions results in 1) aborting the colliding transmissions and 2) retransmission of the packets
- Exponential backoff is used to reduce the chance of repeat collisions
	- » Also effectively reduces congestion

Carrier Sense Multiple Access/ Collision Detection (CSMA/CD)

Ethernet Backoff Calculation

- Challenge: how do we avoid that two nodes retransmit at the same time collision
- Exponentially increasing random delay
	- » Infer "number" senders from # of collisions
	- » More senders \rightarrow increase wait time
- First collision: choose K from $\{0,1\}$; delay is K x 512 bit transmission times
- After second collision: choose K from ${0,1,2,3}$
- After ten or more collisions, choose K from {0,1,2,3,4,…,1023}

(ow to Handle Transmission When

Line is Sensed Busy

-persistent scheme:

» Transmit with probability p once the channel goes idle

» Delay the transmission by t_{prop} with the probability (1-p)

-persistent scheme: p = How to Handle Transmission When Line is Sensed Busy

• p-persistent scheme:

- » Transmit with probability p once the channel goes idle
-

• 1-persistent scheme: $p = 1$

» E.g. Ethernet

- *p-persistent scheme*:

 p-persistent scheme:

 Transmit with probability p once the channel

 Delay the transmission by t_{prop} with the proba

 1-persistent scheme: p = 1

 P.D. E.g. Ethernet

 nonpersistent » Reschedule transmission for a later time based on a **Persistent scheme:**
Transmit with probability p once the channel goes idle
Delay the transmission by t_{prop} with the probability (1-p)
persistent scheme: p = 1
E.g. Ethernet
npersistent scheme:
Reschedule transmiss
	- » Senses the channel at that time
	- » Repeat the process

• When is each solution most appropriate?

Dealing with Collisions

- Collisions will happen: nodes can start to transmit "simultaneously"
	- » Vulnerability window depends on length of wire
- Recovery requires that both transmitters can detect the collision reliably
	- » Clearly a problem as shown on previous slide
- How can we guarantee detection?
- 1. Make sure the wire is not too long, and
- 2. Packets are long enough
- These requirements are enforced in the Ethernet standard

Detect Collisions: Example

Time

Ethernet Discussion

• Ethernet does not acknowledge packets

- » Packet loss due to bit errors is rare
- » Collision detection is very reliable
- » ACKs introduced unnecessary overhead
- » Ethernet relies on higher level protocols for recovery
- As bit rates increase, collision detection requires larger minimum sized packets and/or shorter wires
	- » This made the technology unattractive
- Today we exclusively use switched ethernet
	- » Same name, same network properties, same packet format
	- » Completely different technology

So What about Wireless?

- Depends on many factors, but high level:
- Random access solutions are a good fit for data in the unlicensed spectrum
	- » Lower control complexity, especially for contention-based protocols (e.g., Ethernet) ata in the unlicensed spectrum

	» Lower control complexity, especially for contention-based

	protocols (e.g., Ethernet)

	» There may not always be a centralized controller

	» Potentially very efficient because no or limite
	- » There may not always be a centralized controller
	- » Potentially very efficient because no or limited coordination overhead
	- » Our focus in the next few lectures
- Cellular uses scheduled access
	- » Need to be able to guarantee performance
	-
	- » More on this later in the course

Summary

- Wireless uses the same types of protocols as wired networks
	- » But it is inherently a multiple access technology
- Some fundamental differences between wired and wireless may result in different design choices
	- » Higher error rates
	- » Must support variable bit rate communication
	- » Signal propagation and radios are very different