This lecture is being recorded

18-452/18-750 Wireless Networks and Applications Lecture 7: LAN MAC Protocols Wireless versus Wired

Peter Steenkiste

Spring Semester 2022 http://www.cs.cmu.edu/~prs/wirelessS22/

Outline

Data link fundamentals

- » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Datalink Functions

- Framing: encapsulating a packet into a bit stream.
 - » Add header, mark and detect frame boundaries, ...
- Logical link control: managing the transfer between the sender and receiver, e.g.
 - » Error detection and correction to deal with bit errors
 - » Flow control: avoid that the sender outruns the receiver
- Media access: controlling which device gets to send a frame next over a link
 - » Easy for point-to-point links; half versus full duplex
 - » Harder for multi-access links: who gets to send?

Framing

• Typical structure of a "wired" packet:

- » Preamble: synchronize clocks sender and receiver
- » Header: addresses, type field, length, etc.
- » The data to be send, e.g., an IP packet
- » Trailer: padding, CRC, ..

- How does wireless differ?
 - » Different transmit rates for different parts of packet
 - » Explicit multi-hop support
 - » Control information for physical layer
 - » Ensure robustness of the header

Error Control: Error Detection and Error Recovery

Detection: only detect errors

- » Make sure corrupted packets get thrown away, e.g. Ethernet
- » Use of error detection codes, e.g. CRC
- Recovery: also try to recover from lost or corrupted packets
 - » Option 1: forward error correction (redundancy)
 - » Option 2: retransmissions
- How does wireless differ?
 - » Uses CRC to detect errors, similar to wired
 - » Error recovery is much more important because errors are more common and error behavior is very dynamic
 - » What approach is used?

Error Recovery in Wireless

• Use of redundancy:

» Very common at physical layer – see PHY lectures

Use of Automatic Repeat Request (ARQ)

» Use time outs to detect loss and retransmit

Many variants:

- » Stop and wait: one packet at a time
 - The most common at the datalink
- » Sliding window: receiver tells sender how much to send
 - Many retransmission strategies: go-back-N, selective repeat, ...

When should what variant be used?

» Noise versus bursty (strong) interference

Stop and Wait

- Simplest ARQ protocol
- Send a packet, stop and wait until acknowledgement arrives
- Will examine ARQ issues later in semester
- Limitations?
- What popular for the datalink?

Media Access Control

- How do we transfer packets between two hosts connected to the same network?
- Using point-to-point "links" with "switches" -store-and-forward
 - » Very common in wired networks, at multiple layers
- Multiple access networks
 - » Multiple hosts are sharing the same transmission medium
 - » Need to control access to the medium
 - » Taking turn versus contention based protocols
- What is different in wireless?
 - » Is store and forward used?
 - » Is multiple access used?

Datalink Architectures

- Routing and packet forwarding.
- Point-to-Point error and flow control.

Switched ethernet, mesh and ad hoc networks

- Media access control.
- Scalability.

Traditional ethernet, Wifi, Aloha, ...

Multiple Access Networks

- Who gets to send a packet next?
- Scheduled access: explicit coordination ensures that only one node transmits
 - » Looks cleaner, more organized, but ...
 - » Coordination introduces overhead requires communication (oops)
- Random access: no explicit coordination
 - » Potentially more efficient, but ...
 - » How does a node decide whether it can transmit?
 - » Collisions are unavoidable also results in overhead
 - » How do you even detect a collision?

Scheduled Access MACs

- Polling: controller polls each nodes
- Reservation systems
 - » Central controller
 - » Distributed algorithm, e.g. using reservation bits in frame
- Token ring: token travels around ring and allows nodes to send one packet
 - » Distributer version of polling
 - » FDDI, ...

Outline

Data link fundamentals

- » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Why ALOHA

Pure ALOHA

- Developed in University of Hawaii in early 1970's.
- It does not get much simpler:
 - **1.** A user transmits at will
 - 2. If two or more messages overlap in time, there is a collision receiver cannot decode packets
 - 3. Receive waits for roundtrip time plus a fixed increment lack of ACK = collision
 - 4. After a collision, colliding stations retransmit the packet, but they stagger their attempts randomly to reduce the chance of repeat collisions
 - 5. After several attempts, senders give up
- Although very simple, it is wasteful of bandwidth, attaining an efficiency of at most 1/(2e) = 0.18

Informal: memory less Poisson Process

- A Poisson process of "rate" λ > 0 is a counting process a(t) which satisfies the following conditions:
 - 1. The process has independent increments in disjoint intervals
 - i.e., $a(t_1+\Delta t)-a(t_1)$ is independent of $a(t_2+\delta t)-a(t_2)$ if $[t_1, t_1+\Delta t]$ and $[t_2, t_2+\delta t]$ are disjoint intervals
 - **2.** The increments of the process are stationary.
 - i.e., $a(t_1 + \Delta t) a(t_1)$ does not depend on t_1
 - 3. The probability of exactly one event occurring in an infinitesimal interval Δt is $P[a(\Delta t) = 1] \cong \lambda \Delta t$
 - 4. The probability that more than one event occurs in any infinitesimal interval Δt is P[a(Δt) >1] \cong 0
 - 5. The probability of zero events occurring in Δt is $P[a(\Delta t) = 0] \cong 1 \lambda \Delta t$ 16

Poisson Distribution

- Above definitions lead to: Probability P(k) that there are exactly k events in interval of length T is, $P(k) = \frac{(\lambda T)^k e^{-\lambda T}}{k!}$
- We call the above probability the "Poisson distribution" for arrival rate λ
- Its mean and variance are:

$$E(k) = \lambda T$$

$$\sigma_k^2 = E(k^2) - E^2(k) = \lambda T$$

 Many nice properties, e.g. sum of a N independent Poisson processes is a Poisson process

Pure ALOHA: Model

- Let there be N stations contending for use of the channel.
- Each station transmits λ packets/sec on average based on a Poisson arrival process
- All messages transmitted are of the same fixed length, m, in units of time
- Let new traffic intensity be $S \equiv N\lambda m$
- Since all new packets eventually get through, 'S' is also the network throughput

Pure Aloha: Vulnerability

- Simplification: assume the retransmitted messages are independent Poisson process as well
- The total rate of packets attempting transmission = newly generated packets + retransmitted ones = $\lambda' > \lambda$
- The total traffic intensity (including retransmissions) is ,

Collision between two messages

 The "vulnerable period" in which a collision can occur for a given packet is 2 x m sec

Pure Aloha: Analysis

Calculate the "Probability of no collision" two ways:

1. Probability that there is no arrival in interval 2 x m:

P(no arrival in 2 x m sec) = $e^{-2N\lambda'm} = e^{-2G}$

- 2. Since all new arrivals eventually get through, we have
 - λ/λ ' = S/G = Fraction of transmissions that are successful
 - » S = rate of successful transmissions
 - » G = network load successful transmissions and retransmissions
- So,
 S/G = Probability of no collision = P(no arrival in 2m sec)
- Thus,

S/G =
$$e^{-2G}$$
 \longrightarrow Maximum Throughput
S = G e^{-2G} of Pure Aloha

Analysis Conclusion

Slotted ALOHA

- Transmission can only start at the beginning of each slot of length T
- Vulnerable period is reduced to T
 - » Instead of 2xT in Aloha
- Doubles maximum throughput.

Slotted ALOHA Analysis

- Key point: The "vulnerable period" of the packet of size *m* has been reduced from 2*m* to only *m* !
- Since Poisson arrivals, P(successful transmission) = e^{-G^{*}}
- The throughput is then,
 S = Ge^{-G}
- The throughput S has maximum value of 1/e = 0.368 at G = 1.

Analysis Results Slotted ALOHA

Discussion of ALOHA

- Maximum throughput of ALOHA is very low 1/(2e) = 18%, but
 - » Has very low latency under light load
- Slotted Alohas has twice the performance of basic Aloha, but performance is still poor
 - » Slightly longer delay than pure Aloha
 - » Inefficient for variable sized packets!
 - » Must synchronize nodes
- Still, not bad for an absolutely minimal protocol!
 - » Good solution if load is low used in some sensor networking technologies (cheap, simple)

Outline

Data link fundamentals

- » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

"Regular" Ethernet CSMA/CD

- Multiple Access: multiple hosts are competing for access to the channel
- Carrier-Sense: make sure the channel is idle before sending – "listen before you send"
- Collision Detection: collisions are detected by listening on the medium and comparing the received and transmitted signals
- Collisions results in 1) aborting the colliding transmissions and 2) retransmission of the packets
- Exponential backoff is used to reduce the chance of repeat collisions
 - » Also effectively reduces congestion

Carrier Sense Multiple Access/ Collision Detection (CSMA/CD)

Ethernet Backoff Calculation

- Challenge: how do we avoid that two nodes retransmit at the same time collision
- Exponentially increasing random delay
 - » Infer "number" senders from # of collisions
 - » More senders \rightarrow increase wait time
- First collision: choose K from {0,1}; delay is K x 512 bit transmission times
- After second collision: choose K from {0,1,2,3}
- After ten or more collisions, choose K from {0,1,2,3,4,...,1023}

How to Handle Transmission When Line is Sensed Busy

p-persistent scheme:

- » Transmit with probability p once the channel goes idle
- » Delay the transmission by t_{prop} with the probability (1-p)

1-persistent scheme: p = 1

» E.g. Ethernet

nonpersistent scheme:

- » Reschedule transmission for a later time based on a retransmission delay distribution (e.g. exp backoff)
- » Senses the channel at that time
- » Repeat the process

When is each solution most appropriate?

Dealing with Collisions

- Collisions will happen: nodes can start to transmit "simultaneously"
 - » Vulnerability window depends on length of wire
- Recovery requires that both transmitters can detect the collision reliably
 - » Clearly a problem as shown on previous slide
- How can we guarantee detection?
- 1. Make sure the wire is not too long, and
- 2. Packets are long enough
- These requirements are enforced in the Ethernet standard

Detect Collisions: Example

Ethernet Discussion

Ethernet does not acknowledge packets

- » Packet loss due to bit errors is rare
- » Collision detection is very reliable
- » ACKs introduced unnecessary overhead
- » Ethernet relies on higher level protocols for recovery
- As bit rates increase, collision detection requires larger minimum sized packets and/or shorter wires
 - » This made the technology unattractive
- Today we exclusively use switched ethernet
 - » Same name, same network properties, same packet format
 - » Completely different technology

So What about Wireless?

- Depends on many factors, but high level:
- Random access solutions are a good fit for data in the unlicensed spectrum
 - » Lower control complexity, especially for contention-based protocols (e.g., Ethernet)
 - » There may not always be a centralized controller
 - » Potentially very efficient because no or limited coordination overhead
 - » Our focus in the next few lectures
- Cellular uses scheduled access
 - » Need to be able to guarantee performance
 - » Have control over spectrum simplifies scheduled access
 - » More on this later in the course

Summary

- Wireless uses the same types of protocols as wired networks
 - » But it is inherently a multiple access technology
- Some fundamental differences between wired and wireless may result in different design choices
 - » Higher error rates
 - » Must support variable bit rate communication
 - » Signal propagation and radios are very different