18-452/18-750
Wireless Networks and Applications

Lecture 18: TCP and Applications on
Mobile Devices

Peter Steenkiste

Spring Semester 2024
http:/lwww.cs.cmu.edu/~prs/wirelessF24/

Peter A. Steenkiste

Impact of Wireless on
Application Performance

+ Bandwidth sharing in the Internet
+ TCP

» Basics

» TCP congestion control

» Impact of RTT

» Impact of Packet Loss

» Establishing a TCP session

» Maintaining TCP sessions while mobile
» Multi-path TCP

Peter A. Steenkiste

Page 1

Network Performance
Properties

* Throughput: end-to-end bandwidth available
between two communicating applications

» Depends on the bandwidth of the links on the network
path

» How much of this bandwidth is available to the
application, i.e., how is bandwidth shared on links

» Properties of the transport protocols used by
applications using the links — how aggressive are they?
+ Latency: time to send a packet end-to-end

» Depends on the propagation delay on all the links and the
queueing delay on the routers
» Packet loss adds delay — impacted by transport protocols

» Queueing delay which is impacted by transport protocols
- how aggressive are they?

Peter A. Steenkiste

Bandwidth Sharing;:
Simple Scenario

* Dumbbell topology: N flows F,-F\ share a
bottleneck link with link capacity of B

» All access links have a more than enough capacity
* What would be a fair bandwidth allocation?
T(F;) = BIN

Peter A. Steenkiste

Page 2

How About a
More Interesting Network

= " o
\ 4
3
0<_RL/5 \) j Rs
o—Rr,[—0

 We have 5 flows that

» Use different paths in the network
» Use paths that have a different number of links
» Use links are shared with different numbers of flows

* Fair bandwidth allocation = equal bandwidth
* In this example, all flows get B/3

Is that reasonable?

Peter A. Steenkiste

Max-Min Fairness

Q— —@
O— R\ ! R, | -
® N)
k R /s\) 2 Rg
3
.‘—_//Rs %

1. ldentify the link that is the most constrained
» Link R1-R3 supports 3 flows; flow 1, 2, and 3 get B/3

2. Subtract the assigned bandwidth from the link capacities
» R1-R3 has 0 left; R3-R5, R3-R4, R3-5 have 2B/3 left; other links: B

3. Repeat steps 1 and 3
» Link R3-R5 supports two flows: flow 5 gets 2B/3

4. Keep Repeating: Flow 4 also gets 2B/3

Peter A. Steenkiste

Page 3

Main TCP Functions

+ Connection management
» Maintain state at endpoints to optimize protocol
» Introduces delay even if you only send 1 byte of data!
* Flow control: avoid that sender outruns the
receiver
» Uses sliding window protocol — can limit throughput!
* Error control: detect and recover from errors
» Lost, corrupted, and out of order packets
+ Congestion control: limits transmit rate to
avoid that senders flood the network

» Lack of congestion control leads to inefficiency and
possibly network collapse

» Very hard problem — was not part of original TCP spec!

Peter A. Steenkiste

Flow and Error Control

* Receivers may have limited space to store
incoming packets
» Sliding window protocol avoids packet drops at receiver

* Receiver informs sender of how much buffer
space it has available, limiting the transmit
rate of the sender

» Throughput is limited to: window size/RTT
» Not a real concern on today’s servers and end-points

* Lost packets must be retransmitted

» Retransmission is based on a time out, so delay can be
significant

» May also delay packets that follow lost packets

Peter A. Steenkiste

Page 4

Goals TCP Congestion Control

» The goal of TCP congestion control is to limit the
transmit rates of senders so traffic can be handled
efficiently by the network

» Similar to traffic control on the road — avoid gridlock

+ ldeally traffic will get a fair bandwidth allocation
» Fair = equal bandwidth under the same conditions

— =) L
.:
N ()
3
/ a X S
&— R~) ®
3
%
@— R, —@ 9
9
TCP Congestion Control 101
A
C
B 100 Mbps \/l] Bottleneck Link
[y
» The bottleneck limits the throughput of senders A and B to
receiver C
» It is congested: there is more traffic than bandwidth
* What should the router do? * What should senders do?
* It drops packets — what else can < Slow down when there is
it do? congestion
» Informally: when the queue is » Congestion event = packet
full, it overflows loss
Peter A. Steenkiste 1 o
10

Page 5

Loss

The Internet design and TCP specifically assume that
packet loss is a sign of congestion

» It is defined as a “congestion event” and TCP will reduce its

transmit rate

This is appropriate in wired networks since practically
all losses are the result of queue overflow
However, wireless channels are more challenging
which can result in higher packet loss rates

» This was a big problem in the early days of WiFi
Solution: wireless network aggressively avoids packet
loss on the wireless ink

» To higher level protocols, the wireless link looks like a wired
one!

» WiFi and cellular use hybrid ARQ: forward error correction and
retransmissions if needed to recover from errors

Peter A. Steenkiste 1 1

11

What Transmit Rate Should a
new TCP Session Use?

TCP
Rate

* Analogy: suppose you want to
know how long it takes to drive
to a new destination?

» It depends on traffic!

* TCP discovers the available
| bandwidth by increasing transmit
g rate exponentially!
» Double the transmit rate every RTT
» Goal: identify good transmit rate quickly

¥ Time This is called “Slow Start”

» Slow Start ends when the sender
observes a congestion event
» Typically packet loss

Peter A. Steenkiste 1 2

12

Page 6

What Rate Should TCP Use
after Slow Start?

* What goals and constraints should be considered?
» The sender wants to go as fast as possible!
» Senders must slows down in response to congestion
« Continuously probe for more bandwidth
» Increase the transmit rate slowly: typically by one MTU per RTT
— MTU = Maximum Transfer Units (max packet size)
— RTT = Round Trip Time
* Reduce rate when there is a congestion event
» Cut the transmit rate in half

TCP Rate

Peter A. Steenkiste

13

13

Relevance to Wireless Networks?

« The RTT of a TCP connection has a
significant impact on throughput

* During Slow Start
» All flows start with the same initial window, e.g., 10 MTU

» But the rate increase depends on the RTT: a factor of 2
increases per RTT

» With a low RTT, rate increases significantly faster!
* During Congestion Avoidance mode

» The window size is increased by 1 MTU per RTT

» Increase is faster when RTT is lower

» Rate decrease is the same for all flows: cut in half

Peter A. Steenkiste

14

14

Page 7

Example

* Flow 1 (blue) has an RTT that is half that of Flow 2 (red)

» 8S: Flow 1’s rate increases four times as fast as Flow 2
» It initial transmit rate is twice as high and it increases twice as fast
» Flow spends less time in SS, when rate is lower

+ Congestion avoidance: rate increases twice as fast

Transmit

Rate

e
Ve

e
P SS Flow 1

Peter A. Steenkiste

15

15

Implications for
Congestion Avoidance

MSS Maximum Segment Size
MSS C RTT = round trip time
Rate = — X \/__ C = constant depends on context
RTT p P = packet loss rate

* In Congestion Avoidance mode, the transmit rate is inverse
proportional to the roundtrip time
» Again, flows with high RTT are at a disadvantage!
» Informal reason: low-RTT flows increase their rate faster, i.e.,
more aggressively
* Moving servers closer to clients has many advantages:
» Transmit rates increase much faster during Slow Start
» Higher throughputs during Congestion Avoidance
» Shorter network paths may reduce significant network bottleneck

* Builds a strong case for edge computing

The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,
Peter A. Steenkiste Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, ACM Sigcomm, 1997

16

16

Page 8

Limitations

* The version of TCP congestion control
describes so far is just the basics

+ Today, many congetion control algorithms
are used with different properties
» All use slow start at the beginning of a session

» Many sometimes interpret RTT increases at congestion
events

— Increased RTT means that queues are filling up,
which may be a sign of congestion

— The goal is to avoid timeouts
» They increase/decrease rates differently
» Etc.

Peter A. Steenkiste 1 7
17
Wireless Challenges for TCP
« Variability in available bandwidth, e.g., due to
changes in channel CSI, handover, ...
» Should be handled by congestion avoidance (later)
* Increases in latency due to MAC protocol and
higher packet loss rate
» They have a surprisingly big impact on TCP!
* Loss of network connectivity, e.g., due to
mobility
» TCP session breaks if the disconnection is long enough
» TCP state is lost, so new connection will have to be
established when reconnected
» For application: not clear how much data was
successfully transmitted
Peter A. Steenkiste 1 8
18

Page 9

Impact of Wireless on TCP
Congestion Control

« Variability in available bandwidth, e.g., due to
changes in channel CSI, handover, ...
» TCP congestion control needs to adapt more often

* Increases in latency due to MAC protocol

» WIFi: uplink and downlink transmissions use a shared
channel with contention-based access

— Delays depend on how busy the channel is
— Exponential backoff can add significant delays
— Much less of a problem in switched ethernet

» Cellular: uses shared channels for uplink and downlink
transmissions with schedules access

— Latencies have historically been high: 10s of msec
— Core network adds additional latency

Peter A. Steenkiste 1 9
19
Cost of Establishing a
TCP Session
* TCP uses a three-way handshake
to establish a TCP session S
» Syn: provides parameters to needed *
for communication Syn/Ack
» Syn/Ack: confirms Syn and /
establishes reverse path
» Ack confirms that the session has \
established ACK
* TLS 1.2 adds another RTT
» Can be avoided based on earlier TCP Two-way
session communication
+ Adds significant latency to short
data transfers
» In addition to the small congestion
window during Slow Start
y y
Peter A. Steenkiste 20
20

Page 10

Mobility Breaks
TCP Connections

Hosts use a 4 tuple to identify a TCP
connection

» <Src Addr, Src port, Dst addr, Dst port>
Changing either IP address of an endpoint
breaks the TCP connection

» Host cannot determine which TCP session an incoming
packet belongs to

» Will send packet to the wrong destination IP address

The problem impacts both nomadic and
mobile users

TCP was not designed to handile this!

Peter A. Steenkiste 21

21

How to Make TCP
Work with Mobility

You need to use a different way of associating
incoming packets with TCP sessions

General idea: add a level of indirection

When the session is established, associate an
“identifier” with the connection, e.g., session ID

» The session ID is included in packets — used to look up TCP
state at the destination

» When a host moves to a new network and gets a new IP
address, the TCP state is updated on both endpoints

» .. but the session ID remains the same
» This must be requires security
Generally not supported for TCP, but
» Google’s QUIC transport protocol does support mobility

Peter A. Steenkiste 22

22

Page 11

Multiple-Path TCP
MPTCP

* Multi-path TCP allows a client to send packets to a
destination over multiple paths
* The most common use case is when one or both
end-points have more than one network interface
» The different network interfaces have different IP address
» They can represent a different source/destination endpoint

C | D
Peter A. Steenkiste 23
23
How Does MPTCP Work?
Application * The application uses one socket for
1 the connection

Socket » It uses traditional primitive for
ocke sending/receiving data

: » There are extra commands for

Multipath TCP control

* The MPTCP connection combines

regular TCP connections

« Error, flow, and congestion control is handled by the
individual TCP connections

« A multipath layer implements the multi-path abstraction
» Implements adding and dropping paths
» Distributes traffic load over the single path session

24

Peter A. Steenkiste

24

Page 12

Using MPTCP

« MPTCP has several interesting use cases

» Networks that are unreliable and or unstable (e.g., bandwidth
fluctuations)

» Recovering from network failres

* Increasing overall throughput was not an explicit
target

» A lot of research on making MPTCP behave fairly with respect
to TCP

» Interesting research but not entirely clear whether this is a
high priority for users
* MPTCP can help with maintaining connectivity
for mobile users
» Mobile phones today support both WiFi and cellular
» Users uses cellular, but sign

Peter A. Steenkiste

25

25

MPTCP and Mobility

* MPTCP can help with maintain connectivity
for mobile users
» Mobile phones today support both WiFi and cellular!

+ Example: user uses WiFi while mobile

» Gets new IP address in new network and may be
disconnected while switching

» Solution:

— before losing connectivity with WiFi 1, add a second
TCP path over cellular

— Cellular path supports TCP session after loss of
connectivity to WiFi 1

— Find new WiFi network, WiFi 2, and connect
— Add a second path over WiFi 2 to MPTCP connection

26

Peter A. Steenkiste

26

Page 13

Outline

* Wireless and the Internet
Mobility: Mobile IP

TCP and wireless
Applications and wireless

Peter A. Steenkiste

27

27

How Does Wireless Impact
Applications

* The layered Internet protocol stack largely
isolates applications from layer 1&2 details

* Except for:
1. Disconnected operation: it is impossible to

hide that fact that the device is no longer
connected to the network

» This is a big deal — not just a detail!

2. Variability in available bandwidth - TCP

» Due to changing channel conditions, handover, ..

3. Higher end-to-end latency (RTT) - TCP

» Due to the extra delay introduced by MAC mechanisms

Peter A. Steenkiste

28

28

Page 14

Applications Care About
Response Time

Vehicle Edgecloud ° . Flow Completion Time”: time
I to deliver a data object
"‘\--_\ » Sometimes called an Application
Data Unit (ADU)
"~~~ Request equest » The unit of data relevant to users
T---Jf v FCT » Image, data set, ...
Response * The FCT can have a
Time Compute sjgnificant impact on the
latency of distributed
______ 1 applications

 -- —l‘l’gs‘aonse . +\esp0nse » Example: Remote Procedure Call

¥ ,* FCT < FCT depends on network

bandwidth and latency

» And other factors

Peter A. Steenkiste 29

29

Flow Completion Time

FCT=S,/T

* Where:
» 8, is the size of the ADU
» T is the throughput of the end-to-end TCP connection

* The throughput T of the network connection
depends on many factors
» Available bandwidth and the end-to-end latency
» For short data transfers
— Most or all of the data set is sent in Slow Start mode
— Establishing the TCP session also adds delay
» See previous lecture for details

Peter A. Steenkiste 30

30

Page 15

Optimizing Content Delivery

« Content delivery is an important application
of the Internet
» Video playback, web browsing, ...
» Used widely on both mobile and stationary devices

* Retrieval of the content is driven by the client

» Follows an RCP model so network bandwidth and latency
have a bit impact

— Good news: ADUs are typically large

* Examples:
» Video streaming: ADU is a video segment
— Key metric: bit rate

» Web browsing: pages consist of many web objects, many
of which can be sent over a single TCP connection

— Key metric: Page Load Time (PLT)

Peter A. Steenkiste

31

31

How Can We Reduce FCT?

* For large transfers, network latency and
bandwidth are a big impact

+ Solution: Content Delivery Networks

* Replicate the content closer to users

» Users can retrieve content from a nearby CDN instead of
a remote centralized data center

* How do users “find” the closest replica that
has the content?

» DNS redirect: when using the domain name (x.com) to
retrieve an IP address, the DNS server use the client’s
location to select the best CDN

* This is a general solution
» Not specific to mobile users

Peter A. Steenkiste

32

32

Page 16

Adapting Web Content to the
Device

* Mobile devices have smaller screens than
computers, laptops, big screen TVs, ...

+ It makes sense to simplify the content
» Smaller images, lower video resolution, ...
» Simplify the web pages: fewer embedded objects, ...
» Saves both bandwidth and device processing time

* Many organizations use different web servers
for mobile devices

» The HTTP protocol provides information that can be used
by the provider to select the right web server and to adapt
the content

» Some of the optimization is also done on the client
* Alternative use proxies that customize content
» Reduces the load on the mobile devices

Peter A. Steenkiste

33

Optimizing Video Delivery

* Key performance metrics: maximize bit rates
while avoiding video stalls

* Video streaming adapts to the available
network bandwidth

* Key idea: estimate available bandwidth based
on delivery time of previous segments
» Segment i has an FCT of T; and size S;
» The available bandwidth is S;/ T;
» All video segments are stored with multiple bit rates
» Assuming a fixed playback time, we can choose the
highest bit rate segment that can be delivered in time

* This is a general solution

Peter A. Steenkiste

34

Page 17

Impact on Mobile Users

* Wireless devices can be used anywhere and
are often used while the user is mobile

* Users expect near-ubiquitous coverage: no
matter where the user is, the cellular network
should be available

» This requires extensive testing: “Can you hear me now?”*
» WIiFi users do not have the same expectation

+ Some environments are challenging

» High speed trains moving at 300 km/h *
» It actually works! With some minor kickups

* Old Verizon commercial
Peter A. Steenkiste + https://doi.org/10.1145/3230543.3230556 35

35

Intermittent Connectivity

* When a device is disconnected, applications
can no longer access the Internet

» When laptops were first introduced, applications would
sometimes just crash, but ...

« Applications that rely on long-lived
connection are problematic by design

* Alternative: REST APIs may help in handling
short disconnections for some applications

Peter A. Steenkiste 36

36

Page 18

REST(full) APIs

« Application programming interface for client
server interactions that is:

» Clean separation of client and server using well defined data
formats and interfaces

» Statelessness: each client request is independent, allowing
the server to complete processing

» REST APIs are viewed a good software engineering practice
since they simplify building systems from components
» Simple example is web interface: HTTP

» HTTP is stateless and supports a well defined set of
requests clients can to servers

» Not just for page retrieval! Much more general

* In our (limited) context: avoids the user of long
lived sessions, failed requests can be retried

* REST: representational state transfer
Peter A. Steenkiste 37

37

Disconnected Operation

* When a device is disconnected, applications
can no longer access the Internet
» When laptops were first introduced, applications would
sometimes just crash, but ...
* Users who are disconnected want to continue
to use their device
» Update calendar, read/write e-mail, edit files, ...
» This is true both on laptop and mobile phones
— But some applications are specific to laptops
* Here are some examples:
» Modifying and using files in a shared file systems

» Applications that use structured data
» Proactive services

Peter A. Steenkiste 38

38

Page 19

Shared File Systems
Example: Coda

» The Coda file system supports disconnected operation

+ Coda is based on the AFS shared file system and
allows disconnected users to work offline
* How does Coda work?

» Before disconnecting, users must replicates (cache) files
of interest on their local device

— The files are available as “normal” files, e.g., they
have their usual file name

» While disconnected, users can read and modify the local
file copies

» Multiple users can have offline copies of the same file

» Since there are multiple copies, we need a replication
strategy

» l.e., how do we maintain consistency

Peter A. Steenkiste 39

39

Replication Strategies

+ Coda uses an “optimistic” strategy

» All users with a copy of the file can modify their local
copy
» This creates a consistency problem

* With a “conservative” strategy, only one copy
of the file can be modified while other copies
are read-only

» This strategy is not practical, e.g., users need to know a
priori what files they may need to modify and they need
to know who gets the “file lock”

* The optimistic strategy raises a consistency
issue

Peter A. Steenkiste 40

40

Page 20

Coda Consistency

* When a user reconnects to the shared file
system, Coda writes modified files back to the
shared file system

+ If only one of the copies has been modified, it
keeps the most recent version
» This is consistent with the Unix file system semantics

* If both copies of the file have been modified
the user is notified and needs to manually
merge the changes

» Coda did provide some tools for common cases

* Does this model sound familiar?

Peter A. Steenkiste 41

41

Other Examples

* Andrew File System (AFS)

» Developed at CMU, starting point for Coda!

» Client acquires a lock when it caches a file — ~prevents
simultaneous changes to files

» Clients can retrieve and change locked files, but they are
made aware of the conflict — also responsible for merge

* Web based file sharing: box, google docs, ...
» Models are all over the map
» Some provide fine grain consistency (e.g., google docs)

» Other provide simply create multiple copies of the file, i.e.,
the service they provide is transferring files between users

* Older file systems such as NFS ignored the
problem
» Were designed for wired networks

Peter A. Steenkiste 42

42

Page 21

Applications Using
Structured Data

* Many distributed applications and services use
structured data, not unstructured files
» Examples: To Do lists, agenda, e-mail, ...

* The shared data can be viewed as “objects”
» Typed data structures with a specific format are only read
and writing by a limited number of functions
« Example: e-mail is based on e-mail servers
» E-mail is created, sent, received, and used by e-mail clients
» Once it has been created, an e-mail is immutable

* As aresult, e-mails can be read, composed,
and deleted offline

» The e-mail client keeps a log of the e-mail activity and
replays it once it is connected to the server

» Multiple users can even share an account

Peter A. Steenkiste

43

43

Other Applications

+ Similar solutions can be used for other
applications, e.g., calendars and to-do lists
» Tasks are appointments and tasks
* Unfortunately, data types are typically not
immutable
» E.g., reschedule an appointment or delay a task
* The solution is to record changes and replay
them once a devices reconnects to the server
» If there are no conflicting changes, merging is easy
 If multiple users make conflicting changes,
they require manual resolution

» E.g., one user moves an appointment while another user
canceled it

Peter A. Steenkiste

44

44

Page 22

Proactive Services

+ Some servers are proactive: they initiate operations,
instead of just responding to client requests
+ Examples
» Pushing new e-mails, new tasks, .. proactively to clients

+ Challenge: mobile clients may have different IP
addresses as they move around
» How does the server “find” them?
* Whenever a client reconnects to the network, it
contacts the server

» Server can then give them updates and (possibly) start
pushing updates proactively, or client polls regularly

* The problem is actually more complicated

» Network Address Translation boxes (NATs) often require
that the client polls (FYI only) — clients needs to poll
server periodically

Peter A. Steenkiste 45

45

Resource Constrained
Mobile Device

* Mobile phones and wearable devices are
resource constrained
» Limited power and compute cycles
» Many reasons: cost, weight, size, ...

* For compute-intensive applications,
computational offloading is an attractive
alternative

» Use the huge, elastic resource pool provide by the cloud
» Clouds cycles are also cheap and offer statistical
multiplexing

* Challenges:

» Partitioning the application, shared state
» Load on the network, network latency, cost, ...

Peter A. Steenkiste 46

46

Page 23

Edge Computing

+ Offloading computing to remote clouds can
result in high FCTs
» Bandwidth of WAN connections can be low
» High end-to-end latency hurts TCP performance
+ Solution: edge computing
» Build smaller clouds (cloudlets) near population centers
» They can support low latency applications efficiently
» Edge computing is also used for virtualized cellular RANs
+ Example: computational offloading for
autonomous driving to edge clouds
» Silly view: a Raspberry Pi at each basestation
» Use nearby edge clouds (e.g., a few tens of miles)

Peter A. Steenkiste 47

47

Outline

* Wireless and the Internet
Mobility: Mobile IP

TCP and wireless

+ Applications and wireless

* Disruption tolerant networks

Peter A. Steenkiste 48

48

Page 24

Challenged Networks

* Violate one or more of Internet’s assumptions
» End-points may rarely/never be online at the same time
» Very long delay path, frequent disconnections, ...

» Have naming semantics for their particular application
domain

» Not be well served by the current end-to-end TCP/IP

* Examples
» Terrestrial mobile networks
» Some ad-hoc networks
» Sensor/actuator networks

* Goals for “disruption tolerant” networks

» Achieve interoperability between very diverse types
networks

» Sometimes also called disruption tolerant

~

Peter A. Steenkiste 49
49
Mobile network ,’/V \\\ B
- ! l Yl . Ad hoc network
_J\\\ ’r/') - SN
\— X ; 2
Se__L-h "y
d & /g *=/A
N 7 N L = ——— U
K % NS E“-----._!
. ! e 7Y E———
/ S '
- ’ AN /!
< ' de .
g ‘A
— \
=
J -
V\\
[FA]
Sensor network
Peter A. Steenkiste 50
50

Page 25

High-level Architecture

« Characteristics:
» Operate as an overlay above the existing transport layers
» Based on an abstraction of message switching
— Bundle
— Bundle forwarder (DTN gateway)
— Store-and-forward gateway function between different networks

source DTN gatway DTN gateway destination

« Constituent of DTN architecture

» Region: internally homogenous, i.e. same network stack,
addressing, ...

» DTN gateway: Interconnection point between region boundaries
» Name Tuple: {Region name, Entity name}

Peter A. Steenkiste 51

51

Example DTN

Region B — Sensor network

UserHost
{A, UserHost}

=== DTN gateway

Peter A. Steenkiste 52

52

Page 26

Finding Mobile Hosts:
Two Simple Solutions

* Routing: mobile nodes keep “home” IP address
grédpadvertise route to mobile address as /32 in

» Leverages LPM semantics - should work!!
» Bad idea: scalability

* DNS: mobile nodes get “local” IP address and
update name-address binding in DNS

» DNS allows clients to update their address on the DNS
servers of the address

* This should work but it is a terrible idea
» It results in a lot of write traffic to DNS
— Increases the load on the DNS servers
— Raises security concerns
» DNS relies heavily on caching of name-address pair
— Frequent updates reduce efficiency of caching 53

Peter A. Steenkiste

53

Old Slides

54

Peter A. Steenkiste

54

Page 27

