18-452/18-750 Wireless Networks and Applications Lecture 23: Localization

Peter Steenkiste
Carnegie Mellon University

Spring Semester 2024 http://www.cs.cmu.edu/~prs/wirelessS24/

Peter A. Steenkiste, CMU

1

1

Announcements

- I added a slide with a sketch of the binary search algorithm for RFID tags to the lecture
- Homework 3 has been posted
 - » It uses gradescope for submission and grading
- Please sign up for P2 meetings next week
 - » See Piazza for URL

Peter A. Steenkiste, CMU

Outline

- Properties of localization procedures
- Approaches
 - » Proximity
 - » Trilateration and triangulation (GPS)
 - » Finger printing (RADAR)
 - » Hybrid systems

Peter A. Steenkiste, CMU

3

3

Properties of localization procedures

- Data types used for specifying locations
- Reference systems
- Processing: localized vs centralized
- Data quality
 - » Accuracy and precision
 - » Scale
- Deployment aspects
 - » Limitations
 - » Cost
- → Very diverse systems lots of research

Peter A. Steenkiste, CMU

Data types

- · Point locations in terms of coordinates:
 - » physical or geometric locations
 - » GPS: latitude and longitude, height
 - » Cartesian coordinate system based on three orthogonal planes
- Extended region locations given by names:
 - » symbolic locations
 - » CMU, Wean Hall, room 8202

Peter A. Steenkiste, CMU

5

5

Location-awareness

- Location model: data structure that organizes locations
- Location-based routing
 - » symbolic location model
 - » geometric location model
 - » hybrid location model

Examples

- » symbolic location model: address hierarchy DH.Floor2.2105
- » geometric location model: GPS coordinate (12.3456°N, 123.456°E)
- » hybrid location model: combination of address and coordinate DH.Floor2.2105.Seat(0,4)

Peter A. Steenkiste, CMU

Quality of Position Information

Positioning accuracy:

largest distance between an estimated position and the true position

Only pairs of precision and accuracy make sense

Precision:

the ratio with which a given accuracy is reached, averaged over many repeated attempts

Example:

average error of less than 20cm in 95% of cases

Peter A. Steenkiste, CMU

7

7

Precision vs. Accuary Accurate Inaccurate (systematic error) Precise (reproducibility error) Peter A. Sleenkiste, CMU Imprecise (NU) Imprecise (reproducidation-decuracy-and-precision-3)

Approaches

- Proximity: estimate distance between two nodes
- Trilateration and triangulation
 - » using elementary trigonometric properties: a triangle is completely determined,
 - if two angles and a side length are known
 - if the lengths of all three sides are known
 - » infer a 3d position from information about two triangles
- Fingerprinting (scene analysis)
 - » using radio characteristics as fingerprint to identify it
- Hybrid methods: multiple sources of information

Peter A. Steenkiste, CMU

9

9

Proximity and Distance

- Binary nearness: using finite range of wireless communication and/or threshold
 - » within range of a beacon signal from a source with known position
 - » yields region locations, e.g.: cell in cellular network
- Distance measurement (ranging)
 - » Received signal strength
 - » Time of flight (time of arrival)
 - » Time difference of arrival

Peter A. Steenkiste, CMU

Measuring Location: Trigonometry Basics

- · Triangles in a plane
 - » Lateration: <u>distance</u> measurement to known reference points
 - a triangle is fully determined by the length of its sides
 - Time of Flight (e.g. GPS, Active Bat)
 - Attenuation (e.g. RSSI)
 - » Angulation: measuring the <u>angle</u> with respect to two known reference points and a reference direction or a third point
 - a triangle is fully determined by two angles and one side as shown
 - Phased antenna arrays
 - aircraft navigation (VOR)

- all craft flavigation (VOK)

1

Peter A. Steenkiste, CMU

11

Trilateration Station 1 Station 2 Peter A. Steenkiste, CMU http://gpsvorld.com/innovation-where-are-we/

Mathematical Background

- Computing positions between three known positions (x_i, y_i) and an unknown position (x_u, y_u) given distances r_i btw (x_i, y_i) and (x_u, y_u)
- Yields three equations $(x_i-x_{ij})^2 + (y_i-y_{ij})^2 = r_i^2$
- Linear equations by subtracting 3rd from 1st and 2nd: quadratic terms x_u² and y_u² disappear
 - » $2(x_3 x_1)x_u + 2(y_3 y_1)y_u = (r_1^2 r_3^2) (x_1^2 x_3^2) (y_1^2 y_3^2)$ » $2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$
- In 3D: yields two points
- Positioning with imprecise information:
 - » Add redundancy: over determined solution
 - » Least squares estimates

Peter A. Steenkiste, CMU

15

15

GPS

- · Radio-based navigation system developed by DoD
 - » Initial operation in 1993
 - » Fully operational in 1995
- System is called NAVSTAR
 - » NAVigation with Satellite Timing And Ranging
 - » Referred to as GPS
 - » Has been improved over time
- Series of 24 (now 32) satellites, in 6 orbital planes
- Works anywhere in the world, 24 hours a day, in all weather conditions and provides:
 - » Location or positional fix
 - » Velocity, direction of travel
 - » Accurate time

www.fws.gov/southeast/gis/training_2k5/GPS_overview_APR_04.ppt 16

Peter A. Steenkiste, CMU

GPS Constellation

 24 satellites are needed to guarantee that 4 are always visible everywhere

- **Extra satellites** provide redundancy
 - » Deal with maintenance, replacement, ...

4 Satellites in each Plane 20,200 km Altitudes, 55 Degree Inclination

Peter A. Steenkiste, CMU

 $https://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html$

17

17

GPS involves 5 Basic Steps

- Satellite Ranging
 - » Determining distance from satellite
- Trilateration
 - » Intersection of spheres
- Timing
 - » Why consistent, accurate clocks are required
- Positioning
 - » Knowing where satellite is in space
- Correction of errors
 - » Correcting for ionospheric and tropospheric delays

Peter A. Steenkiste, CMU

How GPS works?

- Range from each satellite calculated range = time delay X speed of light
- Technique called <u>trilateration</u> is used to determine your position or "fix"
 - » Intersection of spheres as described earlier
- At least 3 satellites required for 2D fix
- However, 4 satellites are used
 - » The 4th satellite used to calculate drift of clock in GPS receivers relative to that of the satellites
 - » Yields much better accuracy and provides 3D fix

19

19

Peter A. Steenkiste, CMU

Satellite Positions

- Each satellite has an atomic clock that keeps time very accurately
 - » Satellites synchronize their clocks
 - » Also periodically synchronize with the true time maintained on earth
- Satellites also know their location very accurately

Peter A. Steenkiste, CMU

Determining Range

- Each satellite periodically generates a pseudo random code
 - » Receivers also locally generate the codes in synchronized fashion
- Receivers measure Time of Arrival (TOA) of codes
- Transmission includes Time of Transmission (TOT) of code and the location of the satellite at that time
 - » Allows receiver to calculate Time of Flight and distance

21

Three Satellite Ranges Known 20,000 km radius Located at one of these 2 points. However, one point can easily be eliminated because it is either not on earth or moving at impossible rate of speed. Peter A. Steenkiste, CMU

Accurate Timing is the Key

- Satellites have very accurate atomic clocks
- Receivers have less accurate clocks
- Measurements made in nanoseconds
 - » Speed of light (c) ~ 1 ft/nanosecond
- 1/100th of a second error could introduce error of 1,860 miles
- Discrepancy between the satellite clock and the receiver clocks must be resolved
- Fourth satellite is used to solve the 4 unknowns (X, Y, Z and receiver clock error)

Peter A. Steenkiste, CMU 23

23

Satellite Positioning

- Required in the equation to solve the 4 unknowns is the actual location of the satellite.
 - » 3 coordinates for location, plus clock drift of receiver relative to the satellite clocks
- Satellites are in relatively stable orbits and constantly monitored on the ground
- Satellite's position is broadcast in the "ephemeris" data streamed down to receiver
 - » Downloading complete set of almanac data requires 12.5 minutes (transmitted at 50 bps)

Peter A. Steenkiste, CMU 24

Sources of Errors

- Largest source is due to the atmosphere
 - » Atmospheric refraction
 - Charged particles
 - Water vapor
- Other sources:
 - » Geometry of satellite positions
 - » Multi-path errors
 - » Satellite clock errors
 - » Satellite position or "ephemeris" errors
 - » Quality of GPS receiver

25

Peter A. Steenkiste, CMU

25

Limits of Localization Using Signal Strength

- Measuring distance based on signal strength is an attractive idea
 - » RSS does not require additional hardware
 - » RSS declines with distance
- But accuracy is quite limited
 - » 802.11 technology with a range of methods and environments tested
 - » Median localization error of 10ft and 97th percentile of 30ft
- Many technologies have higher accuracy
 - » E.g., UWB, use of AoA (multiple antennas), ...
- How about using time of arrival?
 - » E.g., based on sound, radar-like techniques, ...
 - » Reflections can also create inaccuracies: longer path!

Peter A. Steenkiste, CMU

CAESAR: Carrier Sense-based Ranging

- Question: can we use time of flight ranging using commodity WiFi hardware?
- Yes, but it gets a bit messy
 - » Need to include SNR measurement
- Local station determines location of (mobile) remote stations
- Design criteria
 - » Exploit standard 802.11 protocol implementations
 - » Real time results
 - » Low cost (low network usage, no additional hardware, minimal calibration)

Peter A. Steenkiste, CMU

28

28

CAESAR: Adjustment to Noise

- Method depends on correct estimation of response time, which depends on the SNR
- Automatic gain control is used if
 - » Preferred region (PR): no AGC
 - » Strong signal detected (SSD): e.g. subtract 30dB from from signal
 - » Weak signal detected (WSD): may need adjust signal to to bring it into PR (or signal is not detected)
- Proposed solution:
 - » Detect states SSD, WSD, and preferred range
 - » Use different values for Time for Frame Detection (t_{FD})

Peter A. Steenkiste, CMU

30

30

Outline

- Properties of localization procedures
- Approaches
 - » Proximity
 - » Trilateration and triangulation (GPS)
 - » Finger printing (RADAR)
 - » Hybrid systems

Peter A. Steenkiste, CMU

Angle of Arrival (AoA)

- A measures the direction of the incoming signal using a radio array.
- By using 2 anchors, A can determine its position
- Alternatively: the anchor measure the angle of A's signal and coordinate

Peter A. Steenkiste, CMU

32

Angle of Arrival Techniques

- Antenna arrays are increasingly popular
- They are usually used to steer the signal, but can be used to identify the angle at which it arrives
- Difference in arrival time can be used to measure angle

Peter A. Steenkiste, CMU

33

Outline

- Properties of localization procedures
- Approaches
 - » Proximity
 - » Trilateration and triangulation (GPS)
 - » Finger printing (RADAR)
 - » Hybrid systems

Peter A. Steenkiste, CMU

34

34

Location Fingerprinting

- Fingerprint Methods for Recognizing Locations
 - » Examples
 - Visual identification of places from photos
 - Recognition of horizon shapes
 - Measurement of signal strengths of nearby networks (e.g. RADAR)
 - » Method: computing the difference between a feature set extracted measurements with a feature database
 - » Advantages: passive observation only (protect privacy, prevent communication overhead)
 - » Disadvantage: access to feature database needed

Peter A. Steenkiste, CMU

RADAR: Key Idea

RSS from multiple APs tends to be unique to a location

36

Hybrid Technologies

- Cell phones: have many other sensors
 - » Accelerometer, compass, ...
- Can be used to estimate the user's walking speed, direction, ...
- This information can be combined with finger printing based techniques
- Especially useful if finger printing provides accurate location in specific locations
 - » When entering a store, escalator, elevators
 - » Can use the other sensors starting with these well-knownlocations

Peter A. Steenkiste, CMU

Literature

- H. Karl and A. Willig (2005). Protocols and Architectures for Wireless Sensor Networks, Ch. 9 Localization and positioning. John Wiley & Sons.
- P. Bahl and V. N. Padmanabhan (2000). RADAR: An In-Building RF-based User Location and Tracking System. IEEE INFOCOM 2000, pp. 775-784.
- E. Elnahrawy et al. (2004). The limits of localization using signal strength: a comparative study. IEEE SECON 2004, pp. 406-414.
- D. Giustiniano, and S. Mangold (2011). CAESAR: Carrier Sense-Based Ranging in Off-The-Shelf 802.11 Wireless LAN. ACM CONEXT 2011.

Peter A. Steenkiste, CMU