18-452/750 Wireless Networks and Applications Lecture 24: Dynamic Spectrum Access

Peter Steenkiste
CSD and ECE, Carnegie Mellon University

Spring Semester 2024 http://www.cs.cmu.edu/~prs/wirelessS24/

Peter A. Steenkiste, CMU

1

Announcements

- Last regular lecture of the semester
 - We still have survey presentations, project 2 presentations, final Q&A
- P2 checkpoint 1 meetings are this week
 - If you have not signed up yet, please do so asap:

https://docs.google.com/spreadsheets/d/18akKRFlqXQBjY Ej2Torf9-OO0ffQYjBenG6kgyZrNDs/edit?usp=sharing

2

Overview

- Spectrum use background
- Concepts and approaches
- DSA technologies
- Case study: TV white spaces
- Some material based on slides by lan Akyildiz, Raj Jain

Peter A. Steenkiste, CMU

3

3

Spectrum Availability

- 300 GHz is huge amount of spectrum!
 - Spectrum can also be reused in space
- Not quite that easy:
 - Most of it is hard or expensive to use!
 - Noise and interference limits efficiency
 - A lot of the spectrum has already been allocated
- FCC controls who can use the spectrum and how
 - Need a license for most of the spectrum
 - Limits on power, placement transmitters, modulation, ...
 - Allocation tries to "optimize benefits for society"
 - National Telecommunications and Information Agency (NTIA) is in charge of federal government communications

Peter A. Steenkiste, CMU

Spectrum Allocation

http://www.ntia.doc.gov/osmhome/allochrt.html

- Most bands are (statically) allocated and can be used only by users with a license
- Some bands do not require a license
- Exampe: Industrial, Scientific, and Medical (ISM) bands"But they are still subject to various constraints on the operator, e.g. 1 W output
 - 433-868 MHz (Europe)
 - 902-928 MHz (US)
 - 2.4000-2.4835 GHz
 - Unlicensed National Information Infrastructure (UNII) band is 5.725-5.875 GHz

Peter A. Steenkiste, CMU

5

Spectrum Allocation in US

6

Different Ways of Controlling Access to Bands

- Licensed spectrum: users need a license to use the spectrum band
 - Cellular, radio/TV broadcast, federal agencies, ...
 - License typically provides exclusive use, i.e. license holder has full control over use of spectrum band
 - Commercial entities often pay for the license, e.g. through an auction
- Unlicensed spectrum: no user license required
 - Various constraints are placed on the radio to improve coexistence between users
 - E.g. transmit power, modulation, MAC, ...
 - Devices must be licensed

Peter A Steenkiste CMU

7

Licensed versus Unlicensed Spectrum: Protocol Implications

- In a licensed band, the license holder has full control over the spectrum use
 - This simplifies optimizing spectrum use
 - Can control transmitters so ..
 - Interference is limited
 - Bandwidth use of devices matches target values
 - Limit transmit paper, e.g., better frequency reuse, ...
- In unlicensed bands, protocols must be designed to deal with many challenges
 - Diverse transmit ranges, interference, ...
 - Diverse protocols that do not coordinate, ...

Peter A. Steenkiste, CMU

New Spectrum is Scarce

- Suppose you need to find X MHz for a new technology or service
 - E.g., request from congress for more mobile broadband spectrum
- All easy-to-use frequencies have been allocated
- Difficult to reallocate existing bands
 - Need to move current users somewhere
 - Significant investment in infrastructure
 - However, some bands do get re-allocated
- Exception: higher frequency bands that become viable because of technology advances

Peter A. Steenkiste, CMU

9

9

But Allocated Spectrum is not Used Effectively

- Many bands are only used in certain regions
 - E.g. big cities, airports, etc.
- Some bands have low utilization or are only used at certain times
 - Driven by events, seasonal, ...
 - Wrong predictions about demand and use
- Some bands are used inefficiently
 - Use outdated technology
 - Expensive to replace
- Static allocation is fundamentally inefficient
 - This is not an unusual problem! Other examples?
 - But the context is unique

Peter A. Steenkiste, CMU

 According to the FCC, spatial and temporal utilization of assigned spectrum ranges from 15% to 85%

How do increase spectrum utilization?

11

Dynamic Spectrum Access

- Make allocation "more dynamic"
 - Can better adjust the allocation to (local) needs
- Main concern: avoid interference to "incumbents"
 - Often have major investment in infrastructure
 - Interference can be fatal, e.g. first responders, business, ...
- Many models are possible:
 - License holder leases spectrum to third party
 - Allow secondary users to coexist with primary users many models
- DSA requires protocols and radios that can sense the presence of primary users
 - Protocols must adapt to local conditions

Peter A. Steenkiste, CMU

Overview

- Spectrum use background
- Concepts and approaches
- DSA technologies
- Case study: TV white spaces

Peter A. Steenkiste, CMU

13

13

Dynamic Spectrum Access (DSA)

 Dynamic spectrum access allows different wireless users and different types of services to utilize radio spectrum

Exclusive-Use Model

Exclusively owned and used by single owner

- Long-term exclusive-use
 - E.g., cellular service licenses
 - Wireless technology can change (GSM, CDMA, OFDMA)
 - Owner and duration of license do not change
- Dynamic exclusive-use (micro-licenses)
 - Non-real-time secondary market
 - Multi-operator sharing homogeneous bands
 - dynamically change spatio-temporal allocation along with the amount of spectrum among multiple operators
 - different technology can be used
 - Multi-operator sharing heterogeneous services

Peter A. Steenkiste, CMU

15

Spectrum Underlay

- Spectrum underlay approach constraints the transmission power of secondary users so that they operate below the interference temperature limit of primary users.
- One possible approach: transmit signals in a very wide frequency band (e.g., UWB communications)
 - Can still achieve a high data rate with very low transmit power/hertz
- It is based on the worst-case assumption that primary users transmit all the time
 - Must be conservative
 - Detecting primary users is hard!

Peter A. Steenkiste, CMU

17

Spectrum Overlay

- A spectrum overlay allows secondary users to identify and exploit the spectrum holes defined in space, time, and frequency
 - "Opportunistic Spectrum Access"
 - approach does not necessarily impose any restriction on the transmission power by secondary users
- Compatible with the existing spectrum allocation

 legacy systems can continue to operate
 without being affected by the secondary users
- Regulatory policies define basic etiquettes for secondary users to ensure compatibility with legacy systems.

Peter A. Steenkiste, CMU

High Level View

 Use of temporally unused spectrum, which is referred to as a spectrum hole or white space.

- How realistic is this?
 - Have we seen examples in the course?
 - Units for Frequency and Time axis? Impact on radio?

Peter A. Steenkiste, CMU

19

19

Overview

- Spectrum use background
- Concepts and approaches
- DSA technologies
- Case study: TV white spaces

20

Example of DSA

 DSA networks is deployed to exploit the spectrum holes through adaptive communication techniques

Main Function in DSA

- Spectrum sensing
 - Detecting unused spectrum and sharing the spectrum without harmful interference with other users
- Spectrum management
 - Capturing the best available spectrum to meet user communication requirements
- Spectrum mobility
 - Maintaining seamless communication requirements during the transition to better spectrum
- Spectrum sharing
 - Providing the fair spectrum scheduling method among coexisting users

Peter A. Steenkiste, CMU

23

23

Spectrum Sensing

- Secondary user monitors the spectrum
 - Must detect primary users that are receiving data within its communication range
- This is very hard!
 - Remember the hidden terminal problem!
 - Some receivers never transmit!

Transmitter Detection Problem

- The general transmitter detection problem
 - Receiver uncertainty (a)
 - Shadowing uncertainty (b)

25

Classification of Spectrum Sensing Techniques

- Transmitter detection approach: the detection of the weak signal from a primary transmitter through the local observations
- **Basic hypothesis**

$$x(t) = \begin{cases} n(t) & H_0, \\ hs(t) + n(t) & H_1, \\ & \text{transmitted signal of the primary users} \end{cases}$$
Channel attenuation

Sensing Techniques

- Energy detection senses for energy in the time of frequency domain
 - · Can be very difficult, e.g. receive only devices
- Matched filter can be used if a priori knowledge of primary user signal is available
 - E.g., modulation type, shaping signal, ...
 - Optimal because it maximizes SNR in AWGN channel
- Cyclostationary detectors look for signals with periodic properties
 - Modulated signals have a mean and autocorrelation that exhibit periodicity.
 - These features are detected by analyzing a spectral correlation function.

Peter A. Steenkiste, CMU

27

27

Cooperative Spectrum Sensing

- Cooperative spectrum sensing methods where information from multiple secondary users is combined for primary user detection.
 - Allows for addressing multi-path fading and shadowing effects - improves the detection probability in a heavily shadowed environment.

the lack of the primary receiver location knowledge is unsolved.

28

Overview

- Spectrum use background
- Concepts and approaches
- DSA technologies
- Use cases: TV white spaces and CBRS

Peter A. Steenkiste, CMU

29

Supporting Secondary Users

- How can secondary users avoid interfering with the primary user of a frequency band?
 - They cannot explicitly coordinate
 - Primary users do not change infrastructure
- Let us look at two examples
 - TV white spaces
 - Citizens Broadcast radio Service (CBRS)

30

TV White Spaces

- TV channels are "allotted" to cities to serve the local area
- Other licensed and unlicensed services are also in TV bands
 - Wireless microphones
- "White Spaces" are the channels that are "not used" by licensed devices at a given location
- FCC regulation allows access by unlicensed devices subject to many rules

Peter A. Steenkiste, CMU

32

Challenges of Using TV White Spaces

- How do we avoid interfering with primary users?
 - Over the air TV broadcast
 - Wireless microphones
- Both use unidirectional communication!
 - One can only the sense the transmitter!
- Solutions considered by FCC
 - Require sensing by white space devices
 - Either individual nodes or a controller (e.g., AP)
 - Geolocation database that lists registered primary users

Peter A. Steenkiste, CMU

35

35

Why Using Geolocation & Database

- Based on prototype test program sensing-only solutions not sufficiently developed
 - Very long scan times, poor performance in presence of strong adjacent channel signal, ..
 - Difficult to reliably detecting wireless microphones
 - Inability to determine presence of passive receive sites
- Disagreement on technical parameters for sensing
 - What is detection threshold for determining presence of a signal? How is measurement accomplished? Type of detector
- Tradeoff between continuing to develop sensing technology first vs. earlier deployment
- Requires geolocation capability in conjunction with a database to provide each device with a list of available channels specific to its location

Peter A. Steenkiste, CMU

TV White Space Rules

- Final rules adopted 9/2010; modified 4/2012
 - First new spectrum for unlicensed devices below 5 GHz in many years
 - Access based on geolocation & database
- Incumbent services protect by database
 - TV broadcast stations, translator and booster stations, cable TV headends, ..
 - Land mobile (in some cities); wireless mics

Example: https://usa.wavedb.com/channelsearch/tvws

37

37

Citizens Broadcast Radio Service CBRS

- The primary users are satellite ground stations and the US Nave – incumbents
 - Uses the 3.5-3.7 GHz
 - Spectrum is only used in certain areas
- In 2020, some of the unused spectrum was auctioned of to Priority Access Licensees (PALs)
 - Most PALs are cellular operators
- General Authorized Access (GAA) users can use the spectrum for free
 - If it is not being used by Incumbents of PALs
 - GAA users need to request access
 - A Spectrum Access System monitors spectrum use
 - · Can be used for private cellular networks, ...

Peter A. Steenkiste, CMU