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Outline

• Data link fundamentals
» And what changes in wireless

• Aloha

• Ethernet

• Wireless-specific challenges

• 802.11 and 802.15 wireless standards
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Datalink Functions

• Framing: encapsulating a packet into a bit 
stream.

» Add header, mark and detect frame boundaries, …

• Logical link control: managing the transfer 
between the sender and receiver, e.g. 

» Error detection and correction to deal with bit errors

» Flow control: avoid that the sender outruns the receiver

• Media access: controlling which device gets 
to send a frame next over a link

» Easy for point-to-point links; half versus full duplex

» Harder for multi-access links: who gets to send?
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Framing

• Typical structure of a “wired” packet:
» Preamble: synchronize clocks sender and receiver

» Header: addresses, type field, length, etc.

» The data to be send, e.g., an IP packet

» Trailer: padding, CRC, ..

• How does wireless differ?
» Different transmit rates for different parts of packet

» Explicit multi-hop support

» Control information for physical layer

» Ensure robustness of the header

/Length
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Error Control: Error Detection 
and Error Recovery

• Detection: only detect errors
» Make sure corrupted packets get thrown away, e.g. 

Ethernet
» Use of error detection codes, e.g. CRC

• Recovery: also try to recover from lost or 
corrupted packets

» Option 1: forward error correction (redundancy)
» Option 2: retransmissions

• How does wireless differ?
» Uses CRC to detect errors, similar to wired
» Error recovery is much more important because errors are 

more common and error behavior is very dynamic
» What approach is used?
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Error Recovery in Wireless

• Use of redundancy:
» Very common at physical layer – see PHY lectures

• Use of Automatic Repeat Request (ARQ)
» Use time outs to detect loss and retransmit

• Many variants:
» Stop and wait: one packet at a time

– The most common at the datalink

» Sliding window: receiver tells sender how much to send

– Many retransmission strategies: go-back-N, selective 
repeat, …

• When should what variant be used?
» Noise versus bursty (strong) interference
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Stop and Wait

Time
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• Simplest ARQ protocol

• Send a packet, stop and 
wait until 
acknowledgement 
arrives

• Will examine ARQ 
issues later in semester

• Limitations?

• What popular for the 
datalink?

Sender Receiver
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Media Access Control

• How do we transfer packets between two hosts 
connected to the same network?

• Using point-to-point “links” with “switches” --
store-and-forward

» Very common in wired networks, at multiple layers

• Multiple access networks
» Multiple hosts are sharing the same transmission medium

» Need to control access to the medium

» Taking turn versus contention based protocols 

• What is different in wireless?
» Is store and forward used?

» Is multiple access used?
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Datalink Architectures

• Routing and packet 
forwarding.

• Point-to-Point error 
and flow control.

• Media access 
control.

• Scalability.

Traditional ethernet, Wifi,
Aloha, …

Switched ethernet, mesh 
and ad hoc networks
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Multiple Access Networks

• Who gets to send a packet next?

• Scheduled access: explicit coordination 
ensures that only one node transmits

» Looks cleaner, more organized, but …

» Coordination introduces overhead – requires 
communication (oops)

• Random access: no explicit coordination
» Potentially more efficient, but …

» How does a node decide whether it can transmit?

» Collisions are unavoidable – also results in overhead

» How do you even detect a collision?

A B C D E
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Scheduled Access MACs

• Polling: controller polls 
each nodes

• Reservation systems
» Central controller

» Distributed algorithm, e.g. 
using reservation bits in 
frame

• Token ring: token travels 
around ring and allows 
nodes to send one 
packet

» Distributer version of polling

» FDDI, …

11
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Outline

• Data link fundamentals
» And what changes in wireless

• Aloha

• Ethernet 

• Wireless-specific challenges

• 802.11 and 802.15 wireless standards
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Why ALOHA
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Pure ALOHA

• Developed in University of Hawaii in early 1970’s.
• It does not get much simpler:

1. A user transmits at will
2. If two or more messages overlap in time, there is 

a collision – receiver cannot decode packets
3. Receive waits for roundtrip time plus a fixed 

increment – lack of ACK = collision
4. After a collision, colliding stations retransmit the 

packet, but they stagger their attempts randomly
to reduce the chance of repeat collisions

5. After several attempts, senders give up
• Although very simple, it is wasteful of bandwidth, 

attaining an efficiency of at most 1/(2e) = 0.18
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Poisson Process

• A Poisson process of “rate” l > 0 is a counting 
process a(t) which satisfies the following conditions:

1. The process has independent increments in 
disjoint intervals
– i.e., a(t1+t)-a(t1) is independent of a(t2+t)-a(t2) if   [t1 , 

t1+t] and [t2 , t2+t]  are disjoint intervals

2. The increments of the process are stationary. 
– i.e., a(t1+t)-a(t1) does not depend on t1

3. The probability of exactly one event occurring in an 
infinitesimal interval t is   P[a(t) =1]  lt 

4. The probability that more than one event occurs in 
any infinitesimal interval t is P[a(t) >1]  0

5. The probability of zero events occurring in t is    
P[a(t) =0]  1-lt

Informal: memory less
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P k  lT ke lT–
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• Above definitions lead to: Probability P(k) that there 
are exactly k events in interval of length T is, 

• We call the above probability the “Poisson 
distribution” for arrival rate l

• Its mean and variance are: 

• Many nice properties, e.g. sum of a N independent 
Poisson processes is a Poisson process

Poisson Distribution
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Pure ALOHA: Model

• Let there be N stations contending for use of 
the channel.

• Each station transmits l packets/sec on 
average based on a Poisson arrival process

• All messages transmitted are of the same 
fixed length, m, in units of time

• Let new traffic intensity be S  Nlm
• Since all new packets eventually get through, 

‘S’ is also the network throughput

1 2 3 4 N

R

. . .
l ll
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m
m

time

Collision between two messages

• Simplification: assume the retransmitted messages are 
independent Poisson process as well

• The total rate of packets attempting transmission = newly 
generated packets + retransmitted ones = l’ > l

• The total traffic intensity (including retransmissions) is ,

G = Nl’m

• The “vulnerable period” in which a collision can occur for a 
given packet is 2 x m sec

Pure Aloha: Vulnerability
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Calculate the “Probability of no collision” two ways:

1. Probability that there is no arrival in interval 2 x m:

P(no arrival in 2 x m sec) = e-2Nl’m = e-2G

2. Since all new arrivals eventually get through, we have
l/l’ = S/G = Fraction of transmissions that are successful

» S = rate of successful transmissions
» G = network load – successful transmissions and retransmissions

• So, S/G = Probability of no collision
= P(no arrival in 2m sec)

• Thus,
S/G = e-2G

S = Ge-2G

Pure Aloha: Analysis

Maximum Throughput
of Pure Aloha
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Analysis Conclusion

• S is maximum at
1

   at    0.5
2

S G
e

 

1

2e
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Slotted ALOHA

• Transmission can only start at the beginning 
of each slot of length T

• Vulnerable period is reduced to T 
» Instead of 2xT in Aloha

• Doubles maximum throughput.

x x+3x+2x+1
Packet arrivals
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Slotted ALOHA Analysis

• Key point: The ”vulnerable period” of the packet 
of size m has been reduced from 2m to only m !

• Since Poisson arrivals,
P(successful transmission) = e-G

• The throughput is then,
S = Ge-G

• The throughput S has maximum value of 1/e = 
0.368 at G = 1.

Note: Not 2G
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Analysis Results Slotted ALOHA

1

2e

1

e
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Discussion of ALOHA

• Maximum throughput of ALOHA is very low 
1/(2e) = 18%, but

» Has very low latency under light load

• Slotted Alohas has twice the performance of 
basic Aloha, but performance is still poor

» Slightly longer delay than pure Aloha

» Inefficient for variable sized packets!

» Must synchronize nodes

• Still, not bad for an absolutely minimal 
protocol!

» Good solution if load is low – used in some sensor 
networking technologies (cheap, simple)

• How do we go faster?
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Outline

• Data link fundamentals
» And what changes in wireless

• Aloha

• Ethernet

• Wireless-specific challenges

• 802.11 and 802.15 wireless standards

Peter A. Steenkiste, CMU 26

“Regular” Ethernet
CSMA/CD

• Multiple Access: multiple hosts are competing 
for access to the channel

• Carrier-Sense: make sure the channel is idle 
before sending – “listen before you send”

• Collision Detection: collisions are detected by 
listening on the medium and comparing the 
received and transmitted signals

• Collisions results in 1) aborting the colliding 
transmissions and 2) retransmission of the 
packets

• Exponential backoff is used to reduce the 
chance of repeat collisions

» Also effectively reduces congestion
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Carrier Sense Multiple Access/ 
Collision Detection (CSMA/CD)

Packet?

Sense 
Carrier

Discard 
Packet

Send Detect 
Collision

Jam channel 
b=CalcBackoff()

; wait(b);
attempts++;

No

Yes

attempts < 16

attempts == 16
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Ethernet Backoff Calculation

• Challenge: how do we avoid that two nodes 
retransmit at the same time collision

• Exponentially increasing random delay
» Infer “number” senders from # of collisions

» More senders  increase wait time

• First collision: choose K from {0,1}; delay is K 
x 512 bit transmission times

• After second collision: choose K from 
{0,1,2,3}

• After ten or more collisions, choose K from 
{0,1,2,3,4,…,1023}
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• p-persistent scheme: 
» Transmit with probability p once the channel goes idle

» Delay the transmission by tprop with the probability (1-p)

• 1-persistent scheme: p = 1
» E.g. Ethernet

• nonpersistent scheme: 
» Reschedule transmission for a later time based on a 

retransmission delay distribution (e.g. exp backoff)

» Senses the channel at that time

» Repeat the process

• When is each solution most appropriate?

How to Handle Transmission When
Line is Sensed Busy
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Ethernet Discussion

• Carrier sense is very reliable
» Only fails when nodes transmit “simultaneously”

• Collision detection is very reliable
» Guarantees that senders knows about it and retransmits

• Ethernet does not acknowledge packets
» Packet loss due to bit errors is rare

» Sender “senses losses” and retransmits

» ACKs introduced unnecessary overhead

• Today we exclusively use switched Ethernet
» Same name, same network properties, same packet format

» Completely different technology
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So What about Wireless?

• Depends on many factors, but high level:

• Random access solutions are a good fit for 
data in the unlicensed spectrum

» Lower control complexity, especially for contention-based 
protocols (e.g., Ethernet)

» There may not always be a centralized controller

» Potentially very efficient because no or limited  
coordination overhead

» Our focus in the next few lectures

• Cellular uses scheduled access
» Need to be able to guarantee performance

» Have control over spectrum – simplifies scheduled access 

» More on this later in the course
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Summary

• Wireless uses the same types of protocols as 
wired networks

» But it is inherently a multiple access technology

• Some fundamental differences between wired 
and wireless may result in different design 
choices

» Higher error rates

» Must support variable bit rate communication

» Signal propagation and radios are very different
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Outline

• Data link fundamentals
» And what changes in wireless

• Aloha

• Ethernet

• Wireless-specific challenges

• 802.11 and 802.15 wireless standards
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So What about Wireless?

• Wireless datalink protocols similar to those 
used in wired networks

• Wireless is inherently multiple access
• The specifics depend on many factors, but ..
• Random access solutions are a good fit for data 

in the unlicensed spectrum
» Low control complexity, especially for contention-based 

protocols (e.g., Ethernet)

» No control over the shared spectrum band

• Cellular uses scheduled access
» Need to be able to guarantee performance

» Have control over spectrum – simplifies scheduled access 

» There is always a central controller

Next

Later
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Wireless Ethernet is a 
Good Idea, but … 

• Attenuation is very different from that of a wire
» Depends strongly on distance, frequency

• Wired media have exponential attenuation
» Received power at d meters proportional to 10-kd

» Attenuation in dB = k d, where k is dB/meter

• Wireless attenuation is quadratic in d
» Received power at d meters proportional to d-n

» Attenuation in dB = n log d, where n is path loss 
exponent; n=2 in free space

» So signal level more slowly with distance?

• No!  We cannot igenore the constants!
» Wireless attenuation at 2.4 GHz: 60-100 dB
» In practice numbers are much lower for wired
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Implications for 
Wireless Ethernet

• Collision detection is not practical
» Ratio of transmitted signal power to received power is too 

high at the transmitter
» Transmitter cannot detect competing transmitters (is deaf 

while transmitting)
» So how do you detect collisions? 

• “Listen before you talk” often fails
» Not all nodes can hear each other
» Ethernet nodes can hear each other by design
» Hidden terminals, exposed terminals
» Capture effects

• Made worse by fading
» Changes over time!
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Hidden Terminal Problem

• Lack signal between S1 and S2 and cause 
collision at R1 because carrier sense fails

• Severity of the problem depends on the sensitivity 
of the carrier sense mechanism

» Clear Channel Assessment (CCA) threshold

S1 S2R1

R2
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Exposed Terminal Problem

• Carrier sense prevents two senders from sending at the same 
time even when they cannot reach each other’s receiver

• Severity again depends on CCA threshold
» Higher CCA reduces occurrence of exposed terminals, but can create hidden 

terminal scenarios

S1R1

R2S2
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Capture Effect

• Sender S2 will almost always “win” if there is a 
collision at receiver R.

• Can lead to extreme unfairness and even starvation.

• Solution is power control
» Very difficult to manage in a non-provisioned environment!

S1

S2

R
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Wireless Packet 
Networking Problems

• Some nodes suffer from more interference than others
» Node density

» Traffic volume sent by neighboring nodes

• Leads to unequal throughput

• Similar to wired network: some flows traverse tight bottleneck 
while others do not

39
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Summary
Wireless Challenges

• Wireless signal propagation creates problems 
for “wireless Ethernet”

» Collision Detection is not possible

» Hidden and exposed terminals

» Capture effect

• Aloha uses a very simple protocol: offers low 
latency but has terrible capacity

• Ethernet has much better performance but its 
key features do not work for wireless

• How can we do better for wireless?
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Outline

• Data link fundamentals
» And what changes in wireless

• Ethernet 

• Aloha

• Wireless-specific challenges

• 802.11 and 802.15 wireless standards
» 802 protocol overview

» Wireless LANs – 802.11

» Personal Area Networks – 802.15
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History

• Aloha wireless data network
• Car phones

» Big and heavy “portable” phones
» Limited battery life time
» But introduced people to “mobile networking”
» Later turned into truly portable cell phones 

• Wireless LANs
» Originally in the 900 MHz band
» Later evolved into the 802.11 standard
» Later joined by the 802.15 and 802.16 standards

• Cellular data networking
» Data networking over the cell phone
» Many standards – throughput is the challenge
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Standardization of 
Wireless Networks

• Wireless networks are standardized by IEEE

• Under 802 LAN MAN standards committee

Application

Presentation

Session

Transport

Network

Data Link

Physical

ISO
OSI
7-layer
model Logical Link Control

Medium Access (MAC)

Physical (PHY)

IEEE 802
standards
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Frequency Bands

Low Medium High
Very
High

Ultra
High

Super
High

Infrared
Visible
Light

Ultra-
violet

X-Rays

AM Broadcast
Short Wave Radio FM Broadcast

Television Infrared wireless LAN

Cellular (840MHz)
NPCS (1.9GHz)

2.4 - 2.4835 GHz
83.5 MHz

(IEEE 802.11b
and later)

902 - 928 MHz
26 MHz

• Industrial, Scientific, and Medical (ISM) bands

• Generally called “unlicensed” bands

5 GHz
IEEE 802.11a

and later

Millimeter
wave 60 GHz

IEEE 802.11ad, ay
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The 802 Class of Standards

• List on next two slides

• Some standards apply to all 802 technologies
» E.g. 802.2 is LLC

» Important for inter operability

• Some standards are for technologies that are 
outdated

» Not actively deployed anymore

» Many of the early standards are obsolete
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802 Standards – Part 1
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802 Standards – Part 2

47
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Outline

• 802 protocol overview

• Wireless LANs – 802.11
» Overview of 802.11

» 802.11 MAC, frame format, operations

» 802.11 management

» 802.11*

» Deployment example

• Personal Area Networks – 802.15
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IEEE 802.11 Overview

• Adopted in 1997 with the following goal of 
providing

» Access to services in wired networks

» High throughput

» Highly reliable data delivery

» Continuous network connection, e.g. while mobile

• The protocol defines
» MAC sublayer 

» MAC management protocols and services

» Several physical (PHY) layers: IR, FHSS, DSSS, OFDM

• Wi-Fi Alliance is industry group that certifies 
interoperability of 802.11 products
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Infrastructure and Ad Hoc Mode

• Infrastructure mode: stations communicate with 
one or more access points which are connected 
to the wired infrastructure

» What is deployed in practice

• Two modes of operation:
» Distributed Control Functions - DCF

» Point Control Functions – PCF

» PCF is rarely used - inefficient

• Alternative is “ad hoc” mode: multi-hop, assumes 
no infrastructure

» Rarely used, e.g. military

» Hot research topic!

Our Focus
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802.11 Architecture

STASTA

STA STA

STASTASTA STA

APAP

ESS

BSS

BSSBSS

BSS

Existing 
Wired LAN

Infrastructure 
Network

Ad Hoc 
Network

Ad Hoc 
Network

BSS: Basic Service Set
ESS: Extended Service Set
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Terminology for DCF

• Stations and access points

• BSS - Basic Service Set
» One access point that provides access to wired infrastructure

» Infrastructure BSS

• ESS - Extended Service Set
» A set of infrastructure BSSs that work together

» APs are connected to the same infrastructure

» Tracking of mobility

• DS – Distribution System
» AP communicates with each other

» Thin layer between LLC and MAC sublayers
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Outline

• 802 protocol overview

• Wireless LANs – 802.11
» Overview of 802.11

» 802.11 MAC, frame format, operations

» 802.11 management

» 802.11*

» Deployment example

• Personal Area Networks – 802.15
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How Does WiFi Differ
from Wired Ethernet?

• Signal strength drops off quickly with distance
» Path loss exponent is highly dependent on context

• Should expect higher error rates
» Solutions?

• Makes it impossible to detect collisions
» Difference between signal strength at sender and receiver 

is too big

» Solutions?

• Senders cannot reliably detect competing 
senders resulting in hidden terminal problems

» Solutions?
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