
COSBench: A Benchmark Tool for Cloud Object Storage Services

Qing Zheng*, Haopeng Chen
Reliable Intelligent and Scalable Systems Group

School of Software, Shanghai Jiao Tong University
Shanghai, China

{mark, chen-hp} @ sjtu.edu.cn

Yaguang Wang, Jiangang Duan, Zhiteng Huang
Intel Asia-Pacific Research and Development Ltd.

Shanghai, China
{yaguang.wang, jiangang.duan,

zhiteng.huang} @ intel.com

Abstract- With object storage services becoming increasingly
accepted as replacements for traditional file or block systems,
it is important to effectively measure the performance of these
services. Thus people can compare different solutions or tune
their systems for better performance. However, little has been
reported on this specific topic as yet. To address this problem,
we present COSBench (Cloud Object Storage Benchmark), a
benchmark tool that we are currently working on in Intel for
cloud object storage services. In addition, in this paper, we also
share the results of the experiments we have performed so far.

Keywords-component; benchmark; object storage; workload;
performance evaluation

I. INTRODUCTION
 According to IDC* [1], the total amount of digital data

worldwide will increase by 48% from last year and reach 2.7
zettabytes by 2012. Most of them are unstructured data such
as images, videos, and documents. The tremendous amount
of these data as well as the unprecedented growth rate poses
a significant challenge on enterprise storage infrastructures.
Today, many of them are moving from conventional SAN
and NAS based systems to object storage services. They
either rely on public services, such as S3 [2], Cloud Storage
[3], and Cloud Files [4], or manage to build their own private
clouds with the help of open source or proprietary solutions
such as Walrus [5], Swift [6], and Haystack [7].

Object storage services provide RESTful interfaces for
one to store and access files in a way that is similar to albeit
simpler than regular file systems. In addition, these services
are often characterized by what is lacking in traditional
technologies: scalability, cost-effectiveness, and easy-of-use,
if not high-performance and availability. For people who are
responsible for providing high-quality object storage services,
performance benchmarking can be of great importance and
usefulness. For example, cloud builders may use benchmark
tools to compare different software realizations or hardware
configurations. Moreover, these tools can also help them
conduct system refactoring or algorithm tuning in order to
achieve optimal performance. However, to the best of our
knowledge, there has been little, if not none, reported study
focusing on benchmark technologies for object storage
services. To help address this problem, we are investigating
related methodologies with the goal of creating a benchmark
tool for characterizing object storage services, thus allowing
people to evaluate various implementations or configurations
of object storage service.

* The work is performed in Intel, where the author is an intern.

There are other storage solutions such as SQL databases
or novel key-value stores. Object stores are different in that
they are designed for unstructured data rather than structured.
In addition, unlike file or block systems which also handle
unstructured data, object stores expose distinct interfaces that
are object based and resource oriented.

Unfortunately, performance benchmarking against object
storage services is not as straightforward as it may appear to
be due to several reasons. To start with, there is currently no
widely-adopted standard on the interfaces of object storage
services, making it challenging for a benchmark tool to work
with different service implementations. Second, a benchmark
tool should be able to simulate diverse usage patterns, which
can also be challenging as it requires a judicious abstraction
of real-world workloads. Finally, it is challenging to design a
tool that is simple, practical, and extensible simultaneously.

In this paper, we present our work on COSBench (Cloud
Object Storage Benchmark), which is a tool that we are
designing and implementing in Intel for benchmarking cloud
object storage services, and is also our current answer to the
challenges we listed above.

TABLE I. STORAGE INTERFACE

Operation Sample RESTful Req. Sample Res. Code
create an object PUT /container/object 201

get an object GET /container/object 200
delete an object DELETE /container/object 204

II. BENCHMARK DESIGN
In object storage services, one creates containers and put

objects into these containers for storage. Containers are just
like directories except there is no sub-container. Objects are
regular files though with limitations. For instance, objects
cannot be locked as files can under POSIX file systems. The
storage interfaces are protocols for operating containers and
objects. Currently we only have 3 core operations defined in
our interface, which is summarized in Table I. Tiny as it is, it
still makes the benchmark tool quite practical, since the 3
operations are enough, or at least adequate, for one to take on
tasks such as bottleneck locating and capacity measuring.
That being said, we are still actively working on adding more
operations, but only in a way that will keep the tool simple
and universal. To achieve the latter, we are investigating the
specification of CDMI (Cloud Data Management Interface)
[8], extracting common operations shared among a variety of
object storage services and then adding them into our storage
interface. On the other hand, in order for the tool to work
with real services, we employ adaptors to map our storage
interface to theirs. The tool now supports S3 [2] and Cloud

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.52

998

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.52

998

Files [4] through the SDKs Amazon and Rackspace provide
respectively. More adaptors will be added in the future.

To simulate diverse usage patterns, we create different
workloads from workload models defined upon our storage
interface. Our current workload model can be configured in
terms of concurrency pattern, access pattern, usage limitation
and others. The details are listed in Table II with examples.
The container range is a numeric range of the names of the
containers that will be used. The operation count and running
time specify the max number of operations issued or the max
period of time passed before a workload terminates. Finally,
when marked as unprepared, a workload will put randomly
generated data into an object store before it gets stressed by
the workload. We are still investigating new attributes for the
model so as to accommodate more complex usage patterns.

TABLE II. WORKLOAD MODEL

Workload Attribute Examples

concurrency pattern worker number 32
container range 1-20

access pattern object size 64KB
read/write ratio READ 80%; WRITE 20%

usage limitation operation count 100
running time 60s

miscellaneous preparation False

TABLE III. PERFORMANCE METRICS

Item Description
response time duration between operation initiation and completion

throughput total number of operations performed per second
bandwidth total amount of data transferred per second

III. CURRENT IMPLEMENTATION
COSBench now has two components, namely controller

and driver, and can operate in two different modes, either
independent or managed. In independent mode, only driver
is used. At runtime, it loads configurations and spawns agent
threads which stress the target service in a way consistent
with the user-defined usage pattern. Under managed mode,
on the other hand, both components are required in that the
controller is added to supervise multiple drivers so that they
can work collaboratively in a distributed environment. In this
case, each driver will spawn an additional daemon thread for
receiving and responding controller commands.

COSBench is currently capable of measuring mainly 3
performance metrics, as listed in Table III. To demonstrate
the effectiveness of the tool, we used it to evaluate the read
performance of a 6-node swift storage cluster we have set up
in our lab. Swift is an open source object store donated by
Rackspace as a project under Openstack. Swift exposes the
same interface as Cloud Files, so COSBench can work on it.
Our swift cluster is comprised of 1 proxy node and 5 storage
nodes. We ran 4 driver instances on 4 different client nodes
with each driver stressing the cluster from 4 to as many as
512 workers using 100% read operations on objects 64 KB
in size from 128 different containers for 300 seconds.

 The hardware configurations are listed in Table IV. The
results are illustrated in Fig. 1 regarding the average response
time and throughput. The read performance increases as the
number of workers per client increases until the throughput

gets saturated at 64 workers per client and reaches its peak at
128 with 5644 read operations performed per second and
each taking 90ms to complete. More workers beyond that
only lineally prolong the response time but do not further
increase the throughput. More experiments will be conducted
in the future where more types of workloads and other object
storage solutions will be included and results compared.

TABLE IV. SWIFT CONFIGURATION

Hardware Configuration (for Swift 1.4.3 on RHEL 6.1)
Proxy Node (P)

CPU 2 * Intel X7560 2.27GHz (HT)
RAM / Disk 64GB / 250GB SATA

Storage Node (S) and Client Node (C)
CPU 2 * Intel X5570 2.93GHz (HT)

RAM / Disk 12GB / 12 * 73GB SAS (DAS)
Network between Nodesa

S-S / S-P / P-C / C-C 1GbE / 10GbE / 10GbE / 2 * 1GbE (bonding)
a. In this table section, S stands for storage node, P proxy node, and C client node

Figure 1. Read performance of the swift cluster

IV. CONCLUSION
We have presented our progress on creating a tool for

benchmarking cloud object storage services. COSBench is
still under our heavy development and is being enhanced in
various aspects. To begin with, we are working on enriching
the storage interface of our tool and adding more supports for
other service implementations. In addition, there are efforts
on the refinement of our existing workload model in order to
sustain more sophisticated usage patterns. Moreover, as it is
also worthwhile to spend time on improving usability, we are
considering adding a GUI and a web-based user interface to
the tool, with both interfaces capable of controlling drivers
and showing results. Finally, we are going to evaluate more
object storage service implementations so that we can gain
more experience and a deeper understanding in this area.

REFERENCES
[1] IDC, http://www.idc.com/
[2] Amazon S3, http://aws.amazon.com/s3/
[3] Google Cloud Storage, http://www.google.com/enterprise/cloud/
[4] Rackspace Cloud Files, http://www.rackspace.com/cloud/
[5] Eucalyptus Walrus, http://open.eucalyptus.com/wiki/
[6] Openstack Swift, http://openstack.org/projects/storage/
[7] Beaver, D.; Kumar, S.; Li, H. C.; Sobel, J. & Vajgel, P., “Finding a

needle in Haystack: facebook's photo storage”, in proceedings of the
9th USENIX conference on Operating systems design and
implementation, USENIX Association, 2010, 1-8

[8] CDMI, http://www.snia.org/cdmi

999999

