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Abstract

Code injection attacks, despite being well researched,
continue to be a problem today. Modern architectural solu-
tions such as the NX-bit and PaX have been useful in lim-
iting the attacks, however they enforce program layout re-
strictions and can often times still be circumvented by a de-
termined attacker. We propose a change to the memory ar-
chitecture of modern processors that addresses the code in-
jection problem at its very root by virtually splitting memory
into code memory and data memory such that a processor
will never be able to fetch injected code for execution. This
virtual split memory system can be implemented as a soft-
ware only patch to an operating system, and can be used to
supplement existing schemes for improved protection. Our
experimental results show the system is effective in prevent-
ing a wide range of code injection attacks while incurring
acceptable overhead.
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1. Introduction

Despite years of research, code injection attacks con-
tinue to be a problem today. Systems continue to be vulner-
able to the traditional attacks, and attackers continue to find
new ways around existing protection mechanisms in order
to execute their injected code. Code injection attacks and
their prevention has become an arms race with no obvious
end in site.

A code injection attack is a method whereby an attacker
inserts malicious code into a running process and transfers
execution to his malicious code. In this way he can gain
control of a running process, causing it to spawn other pro-
cesses, modify system files, etc. If the program runs at a
privilege level higher than that of the attacker, he has essen-
tially escalated his access level. (Or, if he has no privileges
on a system, then he has gained some.)

A number of solutions exist that handle the code injec-
tion problem on some level or another. Architectural ap-
proaches [1, 2, 3] attempt to prevent malicious code exe-
cution by making certain pages of memory non-executable.

This protection methodology is effective for many of the
traditional attacks, however attackers still manage to cir-
cumvent them [4]. In addition, these schemes enforce spe-
cific rules for program layout with regards to separating
code and data, and as such are unable to protect memory
pages that contain both. Compiler based protection mech-
anisms [5, 6, 7] are designed to protect crucial memory
locations such as function pointers or the return address
and detect when they have been modified. These methods,
while effective for a variety of attacks, do not provide broad
enough coverage to handle a great many modern vulnerabil-
ities [8]. Both of these techniques, architectural and com-
piler based, focus on preventing an attacker from executing
his injected code, but do nothing to prevent him from inject-
ing and fetching it in the first place.

The core of the code injection problem is that modern
computers implement a von Neumann memory architecture
[9]; that is, they use a memory architecture wherein code
and data are both accessible within the same address space.
This property of modern computers is what allows an at-
tacker to inject his attack code into a program as data and
then later execute it as code. Wurster et al [10] proposed a
technique to defeat software self checksumming by chang-
ing this property of modern computers (and hence produc-
ing a Harvard architecture [11, 12]), and inspired us to con-
sider the implications such a change would have on code
injection.

We propose virtualizing a Harvard architecture on top of
the existing memory architecture of modern computers so
as to prevent the injection of malicious code entirely. A Har-
vard architecture is simply one wherein code and data are
stored separately. Data cannot be loaded as code and vice-
versa. In essence, we create an environment wherein any
code injected by an attacker into a process’ address space
cannot even be addressed by the processor for execution. In
this way, we are attacking the code injection problem at its
root by regarding the injected malicious code as data and
making it unaddressable to the processor during an instruc-
tion fetch. The technique can be implemented as a soft-
ware only patch for the operating system, and our imple-
mentation for the x86 incurs a very reasonable performance



penalty, on average between 10 and 20%. Such a software
only technique is possible through careful exploitation of
the two translation lookaside buffers (TLBs) on the x86 ar-
chitecture in order to split memory in such a way that it
enforces a strict separation of code and data memory.

2. Related Work and Motivation

Research on code injection attacks has been ongoing for
a number of years now, and a large number of protection
methods have been researched and tested. There are two
classes of techniques that have become widely supported in
modern hardware and operating systems; one is concerned
with preventing the execution of malicious code after con-
trol flow hijacking, while the other is concerned with pre-
venting an attacker from hijacking control flow.

The first class of technique is concerned with prevent-
ing an attacker from executing injected code using non-
executable memory pages, but does not prevent the at-
tacker from impacting program control flow. This protec-
tion comes in the form of hardware support or a software
only patch. Hardware support has been put forth by both
Intel and AMD that extends the page-level protections of
the virtual memory subsystem to allow for non-executable
pages. (Intel refers to this as the “execute-disable bit”
[3].) The usage of this technique is fairly simple: Program
information is separated into code pages and data pages.
The data pages (stack, heap, bss, etc) are all marked non-
executable. At the same time, code pages are all marked
read-only. In the event an attacker exploits a vulnerability
to inject code, it is guaranteed to be injected on a page that
is non-executable and therefore the injected code is never
run. Microsoft makes use of this protection mechanism in
its latest operating systems, calling the feature Data Execu-
tion Protection (DEP) [1]. This mediation method is very
effective for traditional code injection attacks, however it
requires hardware support in order to be of use. Legacy x86
hardware does not support this feature. This technique is
also available as a software-only patch to the operating sys-
tem that allows it to simulate the execute-disable bit through
careful mediation of certain memory accesses. PAX PAGE-
EXEC [2] is an open source implementation of this tech-
nique that is applied to the Linux kernel. It functions iden-
tically to the hardware supported version, however it also
supports legacy x86 hardware due to being a software only
patch.

The second class of technique has a goal of preventing
the attacker from hijacking program flow, but does not con-
cern itself with the injected code. Works such as Stack-
Guard [5] accomplish this goal by emitting a “canary” value
onto the stack that can help detect a buffer overflow. ProPo-
lice [6] (currently included in gcc) builds on this idea by
also rearranging variables to prevent overflowed arrays from
accessing critical items such as function pointers or the re-

turn address. Stack Shield [7] uses a separate stack for re-
turn addresses as well as adding sanity checking to ret
and function pointer targets. Due to the fact that these tech-
niques only make it their goal to prevent control flow hijack-
ing, they tend to only work against known hijacking tech-
niques. That means that while they are effective in some
cases, they may miss many of the more complicated attacks.
Wilander et al [8], for example, found that these techniques
missed a fairly large percentage (45% in the best case) of at-
tacks that they implemented in their buffer overflow bench-
mark.

Due to the fact that the stack based approaches above
do not account for a variety of attacks, in this work we are
primarily concerned with addressing limitations in the ar-
chitectural support of the execute-disable bit. While this
technique is widely deployed and has proven to be effec-
tive, it has limitations. First, programs must adhere to the
“code and data are always separated” model. In the event a
program has pages containing both code and data the pro-
tection scheme cannot be used. In fact, such “mixed pages”
do exist in real-world software systems. For example, the
Linux kernel uses mixed pages for both signal handling
[13] as well as loadable kernel modules. A second prob-
lem with these schemes is that a crafty attacker can disable
or bypass the protection bit using library code already in the
process’ address space and from there execute the injected
code. Such an attack has been demonstrated for the Win-
dows platform by injecting code into non-executable space
and then using a well crafted stack containing a series of
system calls or library functions to cause the system to cre-
ate a new, executable memory space, copy the injected code
into it, and then transfer control to it. One such example has
been shown in [4].

It is these two limitations in existing page-level pro-
tection schemes (the forced code and data separation and
the bypass methodology) that provide the motivation for
our work, which architecturally addresses the code injec-
tion problem at its core. Note that our architectural ap-
proach is orthogonal to research efforts on system ran-
domization, such as Address Space Layout Randomization
(ASLR) [14, 15, 16, 17] and Instruction Set Randomization
(ISR) [18, 19, 20]. We are also distinct from other work that
focuses specifically on preventing array overflow using a
compiler or hardware, such as [21]. We point out that these
alternate systems all work on a single memory architecture
wherein code and data are accessible within the same ad-
dress space. Our approach, to be described in the next sec-
tion, instead creates a different memory architecture where
code and data are separated.

3. An Architectural Approach

At its root, code injection is a problem because proces-
sors permit code and data to share the same memory address



space. As a result, an attacker can inject his payload as data
and later execute it as code. The underlying assumption re-
lied on by attackers is that the line between code and data
is blurred and not enforced. For this reason, we turn to an
alternative memory architecture that does not permit code
and data to be interchanged at runtime.

3.1. The Harvard and von Neumann Mem-
ory Architectures

Modern computers and operating systems tend to use
what is known as a von Neumann memory architecture [9].
Under a von Neumann system there is one physical memory
which is shared by both code and data. As a consequence
of this, code can be read and written like data and data can
be executed like code. Many systems will use segmentation
or paging to help separate code and data from each other or
from other processes, but code and data end up sharing the
same address space. Figure 1a illustrates a von Neumann
architecture.

An architecture not found in most modern computers
(but found in some embedded devices or operating systems,
such as VxWorks [22]) is known as a Harvard architecture
[11, 12]. Under the Harvard architecture code and data each
have its own physical address space. One can think of a
Harvard architecture as being a machine with two different
physical memories, one for code and another for data. Fig-
ure 1b shows a Harvard architecture.

3.2. Harvard and Code Injection

A code injection attack can be thought of as being carried
out in four distinct, but related, stages:

1. The attacker injects code into a process’ address space.
2. The attacker determines the address of the injected

code.
3. The attacker somehow hijacks the program counter to

point to the injected code.
4. The injected code is executed.

The mediation methods mentioned in section 2 are designed
to handle the problem by preventing either step 3 or 4.
Non-executable pages are designed to prevent step 4, while
compiler based approaches are meant to prevent step 3. In
both cases, however, the malicious code is injected, but ex-
ecution is somehow prevented. Our solution, on the other
hand, effectively stops the attack at step 1 by preventing the
successful injection of the malicious code into a process’
code space. (The purist will note that in the implementa-
tion method described in section 4 the attack is not tech-
nically stopped until step 4, however the general approach
described here handles it at step 1.)

The Harvard architecture’s split memory model makes
it suitable for the prevention of code injection attacks due
to the fact that a strict separation between code and data is
enforced at the hardware level. Any and all data, regard-

less of the source, is stored in a different physical memory
from instructions. Instructions cannot be addressed as data,
and data cannot be addressed as instructions. This means
that in a Harvard architecture based computer, a traditional
code injection attack is not possible because the architec-
ture is not capable of supporting it after a process is initially
setup. The attacker is simply unable to inject any informa-
tion whatsoever into the instruction memory’s address space
and at the same time is unable to execute any code placed
in the data memory. The architecture simply does not have
the “features” required for a successful code injection at-
tack. However, we point out that this does not prevent an
attacker from mounting non control injection attacks (e.g.,
non-control-data attack [23]) on a Harvard architecture. We
touch on these attacks in section 6.

3.3. Challenges in Using a Harvard Archi-
tecture

While a Harvard architecture may be effective at mitigat-
ing code injection, the truth of the matter is that for any new
code injection prevention technique to be practical it must
be usable on modern commodity hardware. As such, the
challenge is to construct a Harvard architecture on top of a
widely deployed processor such as the x86. We first present
a few possible methods for creating this Harvard architec-
ture on top of the x86.

Modifying x86

One technique for creating such an architecture is to make
changes to the existing architecture and use hardware virtu-
alization [24] to make them a reality. The changes required
in the x86 architecture to produce a Harvard architecture are
fairly straight forward modifications to the paging system.

Currently, x86 implements paging by having a separate
pagetable for each process and having the operating system
maintain a register (CR3) that points to the pagetable for
the currently running process. One pagetable is used for
the process’ entire address space, both code and data. In
order to construct a Harvard architecture, one would need
to maintain two different pagetables, one for code and one
for data. As such, our proposed change to the x86 archi-
tecture to allow it to create a Harvard architecture is to cre-
ate an additional pagetable register in order that one can
be used for code (CR3-C) and the other for data (CR3-D).
Whenever an instruction fetch occurs, the processor uses
CR3-C to translate the virtual address, while for data reads
and writes CR3-D is used. An operating system, therefore,
would simply need to maintain two separate pagetables for
each process. This capability would also offer backwards
compatibility at the process level, as the operating system
could simply maintain one pagetable and point both regis-
ters to it if a process requires a von Neumann architecture.
We note that no changes would need to be made to the pro-
cessor’s translation lookaside buffer (TLB) as modern x86
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Figure 1. (a) von Neumann architecture. (b) Harvard architecture

processors already have a separate TLB for code and data.
While this approach to the problem may be effective, the

requirement that the protected system be run on top of hard-
ware virtualization inhibits its practicality. As such, another
approach is needed.

Exploiting x86

Another technique for creating this Harvard architecture is
to make unconventional use of some of the architecture’s
features in order to create the appearance of a memory that
is split between code and data. Through careful use of the
pagetable and the TLBs on x86, it is possible to construct
a Harvard memory architecture at the process level using
only operating system level modifications. No modifica-
tions need to be made to the underlying x86 architecture,
and the system can be run on conventional x86 hardware
without the need for hardware virtualization as in the previ-
ous method.

In the following sections we will further describe this
technique as well as its unique advantages.

4. Split Memory: A Harvard Architecture on
x86

Now that we have established that it is our intention to
exploit, not change, the x86 architecture in order to create
a virtual split memory system, we will now describe the
technique in greater detail.

4.1. Virtualizing Split Memory on x86

In order to speed up pagetable lookup time, many pro-
cessors include a small hardware cache called a translation
lookaside buffer (TLB) which is used to cache pagetable en-
tries. In order to better exploit locality, modern processors
actually split the TLB into two TLBs, one for code and one
for data. This feature can be exploited by a keen operating
system to route data accesses for a given virtual address to
one physical page, while routing instruction fetches to an-
other. By desynchronizing the TLBs and having each con-
tain a different mapping for the same virtual page, every vir-
tual page may have two corresponding physical pages: One
for code fetch and one for data access. In essence, a system
is produced where any given virtual memory address could
be routed to two possible physical memory locations. This
creates a split memory architecture, as illustrated in Figure
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This split memory architecture is an environment

wherein an attacker can exploit a vulnerable program and
inject code into its memory space, but never be able to actu-
ally fetch it for execution. This is because the physical page
that contains the data the attacker managed to write into the
program is not accessible during an instruction fetch, as in-
struction fetches will be routed to an un-compromised code
page. This also creates the unique opportunity to support
and protect pages that contain both code and data by keep-
ing the two physically separated but logically combined.

What to Split

Before we discuss the technical details behind successfully
splitting a given page, it is important to note that different
pages in a process’ address space may be chosen to split
based on how our system will be used.

One potential use of the system is to augment the exist-
ing non-executable page methods by expanding their pro-
tection to allow for protecting mixed code and data pages.
Under this usage of the system, the majority of pages un-
der a process’ address space would be protected using the
non-executable pages, while the mixed code and data pages
would be protected using our technique. Using this scheme,
chances are high that only a few of the process’ pages would
need to be protected using our method. Note that this as-
sumes we have a good understanding of the memory space
of the program being protected.

Another potential use of our system, and the one which
we use in our prototype in section 5.1, is to protect every
page in a process’ memory space. This is a more compre-
hensive type of protection than simply augmenting existing
schemes. Note that in this case, more pages are chosen to



Algorithm 1: Split memory page fault handler
Input: Faulting Address (addr), CPU instruction

pointer (EIP), Pagetable Entry for addr (pte)

if addr == EIP then /* Code Access */1

pte = the code page;2

unrestrict(pte);3

enable single step();4

return;5

else /* Data Access */6

pte = the data page;7

unrestrict(pte);8

read byte(addr);9

restrict(pte);10

return;11

end12

be split and thus protected.

How to Split

Once it is determined which pages will be split, the tech-
nique for splitting a given page is as follows:

1) On program start-up, the page that needs to be split is du-
plicated. This produces two copies of the page in phys-
ical memory. We choose one page to be the target of
instruction fetches, and the other to be the target of data
accesses.

2) The pagetable entry (PTE) corresponding to the page we
are splitting is set to ensure a page fault will occur on a
TLB miss. In this case, the page is considered restricted,
meaning it is only accessible when the processor is in
supervisor mode. We accomplish it by setting or en-
abling the supervisor bit [3] in the PTE for that page.
If supervisor is marked in a PTE and a user-level pro-
cess attempts to access that page for any reason, a page
fault will be generated and the corresponding page fault
handler will be automatically invoked.

3) Depending on the reasons for the page fault, i.e., either
this page fault is caused by a data TLB miss or it is
caused by an instruction TLB miss, the page fault han-
dler behaves differently. Note that for an instruction-
TLB miss, the faulting address (saved in the CR2 reg-
ister [3]) is equal to the program counter (contained in
the EIP register); while for a data-TLB miss, the page
fault address is different from the program counter. In
the following, we describe how different TLB misses are
handled. The algorithm is outlined in algorithm 1.

Loading the Data-TLB

The data-TLB is loaded using a technique called a pagetable
walk, which is a procedure for loading the TLB from within
the page fault handler. The pagetable entry (PTE) in ques-
tion is set to point to the data page for that address, the en-

Algorithm 2: Debug interrupt handler
Input: Pagetable Entry for previously faulting address

(pte)

if processor is in single step mode then1

restrict(pte);2

disable single step();3

end4

try is unrestricted (we unset the supervisor bit in the PTE),
and a read off of that page is performed. As soon as the
read occurs, the memory management unit in the hardware
reads the newly modified PTE, loads it into the data-TLB,
and returns the content. At this point the data-TLB con-
tains the entry to the data page for that particular address
while the instruction-TLB remains untouched. Finally, the
PTE is restricted again to prevent a later instruction access
from improperly filling the instruction-TLB. Note that even
though the PTE is restricted, later data accesses to that page
can occur unhindered because the data-TLB contains a valid
mapping. This loading method is also used in the PAX [2]
protection model and is known to bring the overhead for a
data-TLB load down to reasonable levels.

In algorithm 1 this process can be seen in lines 7–11.
First, the pagetable entry is set to point to the data page
and unrestricted by setting the entry to be user accessible
instead of supervisor accessible. Next, a byte on the page is
touched, causing the hardware to load the data-TLB with a
pagetable entry corresponding to the data page. Finally, the
pagetable entry is re-protected by setting it into supervisor
mode once again.

Loading the Instruction-TLB

The loading of the instruction-TLB has additional compli-
cations compared to that of the data-TLB, namely because
there does not appear to be a simple procedure such as a
pagetable walk that can accomplish the same task. De-
spite these complications, however, a technique introduced
in [10] can be used to load the instruction-TLB on the x86.

Once it is determined that the instruction-TLB needs
to be loaded, the PTE is unrestricted, the processor is
placed into single step mode, and the faulting instruction
is restarted. When the instruction runs this time the PTE is
read out of the pagetable and stored in the instruction-TLB.
After the instruction finishes then the single step mode of
the processor generates an interrupt, which is used as an
opportunity to restrict the PTE.

This functionality can be seen in algorithm 1 lines 2–5
as well as in algorithm 2. First, the PTE is set to point to
the corresponding code page and is unprotected. Next, the
processor is placed into single step mode and the page fault
handler returns, resulting in the faulting instruction being
restarted. Once the single step interrupt occurs, algorithm



2 is run, effectively restricting the PTE and disabling single
step mode.

4.2. Effects on Code Injection

A split memory architecture produces an address space
where data cannot be fetched by the processor for execu-
tion. For an attacker attempting a code injection, this will
prevent him from fetching and executing any injected code.
A sample code injection attack attempt on a split memory
architecture can be seen in Figure 3 and described as fol-
lows:

1. The attacker injects his code into a string buffer start-
ing at address 0xbf000000. The memory writes are
routed to physical pages corresponding to data.

2. At the same time as the injection, the attacker over-
flows the buffer and changes the return address of the
function to point to 0xbf000000, the expected loca-
tion of his malicious code.

3. The function returns and control is transferred to ad-
dress 0xbf000000. The processor’s instruction fetch
is routed to the physical pages corresponding to in-
structions.

4. The attacker’s malicious code is not on the instruc-
tion page (the code was injected as data and therefore
routed to a different physical page) and is not run. In
all likelihood, the program simply crashes.

4.3. Overhead

This technique of splitting memory does not come with-
out a cost, there is some overhead associated with the
methodologies described above.

One potential problem is the use of the processor’s sin-
gle step mode for the instruction-TLB load. This loading
process has a fairly significant overhead due to the fact that
two interrupts (the page fault and the debug interrupt) are
required in order to complete it. This overhead ends up be-
ing minimal overall for many applications due to the fact
that instruction-TLB loads are fairly infrequent, as it only
needs to be done once per page of instructions.

Another problem is that of context switches in the op-
erating system. Whenever a context switch (meaning the
OS changes running processes) occurs, the TLB is flushed.
This means that every time a protected process is switched
out and then back in, any memory accesses it makes will
trigger a page fault and subsequent TLB load. The over-
heard of these TLB loads is significantly higher than a tra-
ditional page fault, and hence causes the majority of our
slowdown. The problem of context switches is, in fact, the
greatest cause of overhead in the implemented system. The
experimental details of the overhead can be seen in section
5.3.

5. Implementation and Evaluation

5.1. Proof of Concept Implementation

An x86 implementation of the above method has been
created by modifying version 2.6.13 of the Linux kernel. In
this section, we present a description of the modifications to
create the architecture.

Modifications to the ELF Loader

ELF is a format that defines the layout of an executable file
stored on disk. The ELF loader is used to load those files
into memory and begin executing them. This work includes
setting up all of the code, data, bss, stack, and heap pages
as well as bringing in most of the dynamic libraries used by
a given program.

The modifications to the loader are as follows: After the
ELF loader maps the code and data pages from the ELF file,
for each one of those pages two new, side-by-side, physical
pages are created and the original page is copied into both of
them. This effectively creates two copies of the program’s
memory space in physical memory. The pagetable entries
corresponding to the code and data pages are changed to
map to one of those copies of the memory space, leav-
ing the other copy unused for the moment. In addition,
the pagetable entries for those pages get the supervisor bit
cleared, placing that page in supervisor mode in order to be
sure a page fault will occur when that entry is needed. A
previously unused bit in the pagetable entry is used to sig-
nify that the page is being split. In total, about 90 lines of
code are added to the ELF loader.

In this particular implementation of split memory the
memory usage of an application is effectively doubled,
however this limitation is not one of the technique itself,
but instead of the prototype. A system can be envisioned
based on demand-paging (only allocating a code or data
page when needed) instead of the current method of proac-
tively duplicating every virtual page. We would anticipate
this optimization to not have any noticeable impact on per-
formance.

Modifications to the Page Fault Handler

Under Linux, the page fault (PF) handler is called in re-
sponse to a hardware generated PF interrupt. The handler is
responsible for determining what caused the fault, correct-
ing the problem, and restarting the faulting instruction.

For our modifications to the PF handler we simply mod-
ify it to handle a new reason for a PF: There was a permis-
sions problem caused by the supervisor bit in the PTE. We
must be careful here to remember that not every PF on a
split page is necessarily our fault, some PFs (such as ones
involving copy-on-write), despite being on split memory
pages, must be passed on to the rest of the PF handler in-
stead of being serviced in a split memory way. If it is deter-
mined that the fault was caused by a split memory page and
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that it does need to be serviced, then the instruction pointer
is compared to the faulting address to decide whether the
instruction-TLB or data-TLB needs to be loaded. (Recall
from algorithm 1 that this is done by simply checking if the
two are the same.)

If the data-TLB needs to be loaded, then the PTE is set
to user mode, a byte on the page is touched, and the PTE
is set back to supervisor mode. This pagetable walk loads
the data-TLB1. In the event the instruction-TLB needs to
be loaded, the PTE is set to user mode (to allow access
to the page) and the trap flag (single-step mode) bit in the
EFLAGS register is set. This will ensure that the debug in-
terrupt handler gets called after the instruction is restarted.
Before the PF handler returns and that interrupt occurs,
however, a little bit of bookkeeping is done by saving the
faulting address into the process’ entry in the OS process
table in order to pass it to the debug interrupt handler.

In total there were about 110 lines of code added to the
PF handler to facilitate splitting memory.

Modifications to the Debug Interrupt Handler

The debug interrupt handler is used by the kernel to han-
dle interrupts related to debugging. For example, using a
debugger to step through a running program or watch a par-
ticular memory location makes use of this interrupt handler.
For the purposes of split memory, the handler is modified
to check the process table to see if a faulting address has
been given, indicating that this interrupt was generated be-
cause the PF handler set the trap flag. If this is the case,
then it is safe to assume that the instruction which originally
caused the PF has been restarted and successfully executed
(meaning the instruction-TLB has been filled) and as such
the PTE is set to supervisor mode once again and the trap
flag is cleared. In total, about 40 lines of code were added to
the debug interrupt handler to accommodate these changes.

1Occasionally the pagetable walk does not successfully load the data-
TLB. In this case, single stepping mode (like the instruction-TLB load)
must be used.

Modifications to the Memory Management System

There are a number of features related to memory manage-
ment that must be slightly modified to properly handle our
system. First, on program termination any split pages must
be freed specially to ensure that both physical pages (the
code page and data page) get put back into the kernel’s pool
of free memory pages. This is accomplished by simply
looking for the split memory PTE bit that was set by the
ELF loader above, and if it is found then freeing two pages
instead of just one.

Another feature in the memory system that needs to be
updated is the copy-on-write (COW) mechanism. COW is
used by Linux to make forked processes run more effi-
ciently. That basic idea is that when a process makes a copy
of itself using fork both processes get a copy of the orig-
inal pagetable, but with every entry set read-only. Then, if
either process writes to a given page, the kernel will give
that process its own copy. (This reduces memory usage in
the system because multiple processes can share the same
physical page.) For split memory the COW system must
copy both pages in the event of a write, instead of just one.

A update similar to the COW update is also made to the
demand paging system. Demand paging basically means
that a page is not allocated until it is required by a process.
In this way a process can have a large amount of available
memory space (such as in the BSS or heap) but only have
physical pages allocated for portions it actually uses. The
demand paging system was modified to allocate two pages
instead of just the one page it normally does.

Overall, about 75 lines of code were added to handle
these various parts related to memory management.

5.2. Effectiveness

The sample implementation was tested for its effective-
ness at preventing code injection attacks using a benchmark
originally put forth by Wilander et al [8]. The benchmark
was modified slightly in order to allow it to handle hav-
ing the code injected on the data, bss, heap, and stack por-
tions of the program’s address space. In addition, four of



Table 1. The number of attacks halted when code is injected onto the data, bss, heap, and stack
segments

Attack Type Hijack Type
Injection Destination

Data BSS Heap Stack

Buffer overflow on stack

Return address � � � �
Old base pointer � � � �
Function pointer as local variable � � � �
Function pointer as parameter � � � �
Longjmp buffer as local variable � � � �
Longjmp buffer as function parameter � � � �

Buffer overflow on heap/bss
Function pointer � � � �
Longjmp buffer � � � �

Buffer overflow of pointers on stack

Return address N/A N/A � N/A
Old base pointer N/A N/A N/A N/A
Function pointer as local variable � � � �
Function pointer as parameter � � � �
Longjmp buffer as local variable � � � �
Longjmp buffer as function parameter � � � �

Buffer overflow on heap/bss

Return address N/A N/A � N/A
Old base pointer N/A N/A N/A N/A
Function pointer as variable � � � �
Longjmp buffer as variable � � � �

the testcases did not successfully execute an attack on our
unprotected system, and so have been labeled “N/A.” Table
1 shows the results of running the benchmark. The check-
marks indicate that the system successfully halted the at-
tack. As can be seen, the system was effective in preventing
all types of code injection attacks present in the benchmark.
The effectiveness of the system is due to the fact that no
matter what method of control-flow hijacking the bench-
mark uses, the processor is simply unable to fetch the in-
jected code.

5.3. Performance
A number of benchmarks, both applications and micro-

benchmarks, were used to test the performance of the sys-
tem. Our testing platform was a modest system, a Pentium
III 600Mhz with 384 MB of RAM and a 100MBit NIC.
When applicable, benchmarks were run 10 times and the
results averaged. Details of the configuration for the tests
are available in table 2. Each result has been normalized
with respect to the speed of the unprotected system.

Four benchmarks that we consider to be a reasonable as-
sessment of the system’s performance can be found in Fig-
ure 4. First, the Apache [25] webserver was run in a thread-
ing mode to serve a 32KB page (roughly the size of Purdue
University’s main index.html). The ApacheBench program
was then run on another machine connected via the NIC to
determine the request throughput of the system as a whole.
The protected system achieved a little over 89% of the un-
protected system’s throughput. Next, gzip was used to com-
press a 256 MB file, and the operation was timed. The pro-
tected system was found to run at 87% of full speed. Third,
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Figure 5. Stress-testing the performance
penalties due to context switching



Table 2. Configuration information used for
performance evaluation

Item Version Configuration
Slackware 10.2.0 Using Linux 2.6.13
Apache 2.2.3 Worker mpm mode, set to spawn

one process with threads
ApacheBench 2.0.41-dev -c3 -t 60 <url/file>
Unixbench 4.1.0 N/A
Nbench 2.2.2 N/A
Gzip 1.3.3 Compress a 256 MB file.
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Figure 6. Closer look into Apache perfor-
mance

the nbench [26] suite was used to show the performance un-
der a set of primarily computation based tests. The slowest
test in the nbench system came in at just under 97%. Finally,
the Unixbench [27] unix benchmarking suite was used as a
micro-benchmark to test various aspects of the system’s per-
formance at tasks such as process creation, pipe throughput,
filesystem throughput, etc. Here, the split memory system
ran at 82% of normal speed. This result is slightly disap-
pointing, however it can be easily explained by looking at
the specific test which performed poorly, which we do be-
low. As can be seen from these four benchmarks, the system
has very reasonable performance under a variety of tasks.

If we simply left our description of the system’s per-
formance to these four tests, some readers may object that
given the description of the system so far and the mention
in section 4.3 of the various sources of overhead, something
must be missing from our benchmarks. As such, two bench-
marks contrived to highlight the system’s weakness can be
found in Figure 5. First, one of the Unixbench testcases
called “pipe based context switching” is shown. This pri-
marily tests how quickly a system can context switch be-
tween two processes that are passing data between each
other. The next test is Apache used to serve a 1KB page. In
this configuration, Apache will context switch heavily while
serving requests. In both of these tests, context switching
is taken to an extreme and therefore our system’s perfor-

mance degrades substantially due to the constant flushing
of the TLB. As can be seen in the graph, both are at or
below 50%. In addition, in Figure 6, we have a more thor-
ough set of Apache benchmarks demonstrating this same
phenomena, namely that for low page sizes the system con-
text switches heavily and performance suffers, where as for
larger page sizes that cause Apache to spend more time on
I/O as well as begin to saturate the system’s network link,
the results become significantly better. These tests show
very poor performance, however we would like to note that
they are shown here to be indicative of the system’s worst
case performance under highly stressful (rather than nor-
mal) conditions.

Overall, the system’s performance is reasonable, in most
cases being between 80 and 90% of an unprotected system.
Moreover, if split memory was supported at the hardware
level as described in section 3.3, the overheard would be al-
most non-existent. Based on previous work [28], we also
have reason to believe that building the split memory sys-
tem on top of an architecture with a software loaded TLB,
such as SPARC, would also provide further performance
improvements.

6. Limitations

There are a few limitations to our approach. First, when
an attack is stopped by our system the process involved will
crash. We offer no attempt at any sort of recovery. This
means an attacker can still exploit flaws to mount denial-of-
service attacks. Second, as shown in other work [29], a split
memory architecture does not lend itself well to handling
self-modifying code. As such, self-modifying programs
cannot be protected using our technique. Next, this pro-
tection scheme offers no protection against attacks which
do not rely on executing code injected by the attacker. For
example, modifying a function’s return address to point to a
different part of the original code pages will not be stopped
by this scheme. Fortunately, address space layout random-
ization [14] could be combined with our technique to help
prevent this kind of attack. Along those same lines, non-
control-data attacks [23], wherein an attacker modifies a
program’s data in order to alter program flow, are also not
protected by this system. We have also not analyzed the sys-
tem’s functionality on programs that include dynamically
loadable modules (such as DLL files on windows) but do
not anticipate that such programs would be difficult to sup-
port.

7. Conclusions

In this paper, we present an architectural approach to pre-
vent code injection attacks. Instead of maintaining the tradi-
tional single memory space containing both code and data,
which is often exploited by code injection attacks, our ap-
proach creates a split memory that separates code and data



into different memory spaces. Consequently, in a system
protected by our approach, code injection attacks may re-
sult in the injection of attack code into the data space. How-
ever, the attack code in the data space can not be fetched for
execution as instructions are only retrieved from the code
space. We have implemented a Linux prototype on the x86
architecture, and experimental results show the system is ef-
fective in preventing a wide range of code injection attacks
while incurring acceptable overhead.
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