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Abstract—Intel’s newer processors come equipped with Soft-
ware Guard Extensions (SGX) technology, allowing developers
to write sections of code that run in a protected area of memory
known as an enclave. In this work, we compare performance
of two scenarios for running existing code on SGX. In one,
a developer manually ports the code to SGX. In the other, a
shim-layer and library OS are used to run the code unmodified
on SGX. Our initial results demonstrate that when running an
existing benchmarking tool under SGX, in addition to being
much faster for development, code running in the library OS
also tends to run at the same speed or faster than code that
is manually ported. After obtaining this result, we then go on
to design a series of microbenchmarks to characterize exactly
what types of workloads would benefit from manual porting.
We find that if the application to be ported has a small sensitive
working set (less than the 6MB available cache size of the CPU),
infrequently needs to enter the enclave (less than 110,000 times
per second), and spends most of its time working on data outside
of the enclave, then it may indeed perform better if it is manually
ported as opposed to run in a shim.

Index Terms—Security, SGX, Benchmarking, Workloads

I. INTRODUCTION

Intel’s Software Guard Extensions (SGX) [1l], [2] is a
hardware-based design that offers developers a unique oppor-
tunity for securing their data even in the presence of compro-
mised system software layers, such as operating systems or
hypervisors. The key abstraction provided by SGX is a secure
enclave, which is embedded within the virtual address space
of an application. When stored inside an enclave, data can be
protected from ex-filtration by even the operating system or a
hypervisor itself, as the SGX hardware performs permission
checks on every memory access and only allows code executed
inside an enclave to access this data. Only the microprocessor
and on-chip caches are trusted in the SGX model; all data is
encrypted and integrity-protected when it leaves the last-level
cache and is written to memory. On a memory access, the
data is decrypted and integrity-checked before being deposited
into the caches. SGX has been implemented in most recent
Intel high-end processors, starting with Skylake, and trusted
computing infrastructures are actively being developed around
SGX, including domains such as anti-virus scanners, copyright
protection, cryptography, and much more [3]. SGX represents
the most significant investment by a major microprocessor
design company into security in several decades.
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To support a widespread deployment of SGX, it is im-
portant to consider the challenges of software development
for SGX-based systems, taking into account the aspects of
performance and ease of software design. In general, there are
two approaches that developers can use if they wish to port
their existing applications to work with SGX. The standard
model of SGX development involves porting or re-building a
program in C or C++ using the Intel SGX SDK [4], which
typically involves a significant amount of effort. The program
needs to be partitioned into secure and insecure portions,
with only security-sensitive code executed inside an enclave.
This porting approach involves non-trivial programming and
sometimes performance overhead. To address these limita-
tions, another approach is to run applications with little or
no modifications using a library OS shim layer. Examples of
this approach include Haven [5]], SCONE [6]] and Graphene-
SGX [7l]. These designs differ in the amount of code that
is brought inside an enclave, and they significantly simplify
programming interfaces for enclaves. We refer to this approach
as shimming in the rest of the paper.

Porting and shimming have a variety of trade-offs related to
the required developer expertise, the security of the resulting
enclave, the size of the software trusted computing base, and
the performance of the resulting code. The goal of this paper is
to provide both anecdotal experiences and hard, measured data
to quantitatively answer, with regards to performance: Porting
or Shimming? We started out by asking an existing developer
with some systems experience, but no SGX experience, to
manually port a portion of version 3 of the Imbench [8] bench-
marking suite to SGX. We then took the same benchmarks
and run them in unmodified form under Graphene-SGX and
compared performance. The results of this comparison showed
that despite the tremendous difference in time investment, on
the order of months, the two approaches produced virtually
the same performance.

Given the significant training time required for a software
engineer to become proficient in building SGX enclaves,
this result caused us to ask a number of questions. From a
performance perspective, is there ever a time when manually
porting an application is worth the effort? What types of
application workloads would benefit from porting as opposed
to shimming? In order to answer these questions, we designed
and implemented a series of new benchmarks to stress-test
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various SGX capabilities. The goal of this study is to flesh
out what type of workloads would benefit from porting vs.
shimming, and to discuss how these results can inform soft-
ware developers.

We designed our benchmarks to explicitly exercise per-
formance overheads inherent in SGX. The first overhead is
associated with longer memory access times on last-level
cache misses for enclave accesses. Due to the overhead of
encryption and integrity checks, every cache miss inside an
enclave takes about 100 cycles more compared to a cache
miss during normal execution, as shown in [9]. Therefore,
if the working set of data consistently manipulated by a
program exceeds the capacity of the last-level cache, but only a
fraction of this data is sensitive and needs protection, it can be
advantageous, in principle, to use the porting approach so that
expensive cache misses are minimized. Indeed, if the entire
application is embedded inside of an enclave due to shimming,
then every cache miss will encounter longer latencies. On the
other hand, if the application fits inside the last-level cache and
does not experience a large number of misses, then putting the
entire application inside an enclave will not incur additional
latency.

Another overhead of enclave-based execution is the latency
to enter and exit the enclave for operations such as system
calls [10]. Since many execution cycles are lost in the course of
these operations, fine-grain entering and exiting of the enclaves
carries performance overhead.

In general, the overheads associated with enclave calls
and memory accesses demonstrate complementary trends. In-
creasing the amount of code and data accessed in enclave
mode exacerbates the lost cycles due to memory accesses
(for memory-bound workloads), but reduces the overhead
of enclave transitions. On the other hand, minimizing the
amount of code and data inside an enclave improves memory
performance, but may require additional enclave transitions in
order to access the code and data inside the enclave.

The benchmarks that we construct in this study stress-test
all of this behavior. Specifically, we study loop-like programs
that access progressively larger amount of data, starting with a
few MB (that comfortably fits in the cache) to the workloads
that access tens of MBs of data, thus significantly exceeding
the cache size and exhibiting poor cache performance. Syn-
ergistically, we also consider various models and frequencies
for entering and exiting enclaves.

The main contributions and the key results of this paper are:

« We develop a series of stress-test benchmarks to exercise
various SGX-related overhead and use these benchmarks
to understand if manually porting applications to SGX
can be better than using a shim layer in terms of perfor-
mance.

« We demonstrate that if the entire application needs to
be protected, then shimming provides nearly the same
performance with a fraction of the development effort.

« We show that if only a fraction of the application needs
to be protected, then porting can result in performance
improvements and we systematically describe conditions

under which this improvement can occur. This result
should be useful for future SGX application developers
and help them decide whether to port their applications
or shim them.

II. BACKGROUND AND RELATED WORK

This section provides background information on Intel SGX,
the Graphene-SGX framework, and benchmarking with LM-
Bench that is required to understand the paper.

A. Intel’s Software Guard Extensions (SGX)

This section provides an overview of Intel’s SGX focusing
on the aspects of its operation necessary to understand this
work. Further details on SGX can be found in [11]. Readers
familiar with SGX can skip to the last paragraph of this section
for a few lesser-known details that are relevant to this paper.

Intel’s SGX is a set of CPU instructions and hardware
modifications designed to protect running code and data from
compromised or malicious system software (such as the op-
erating system, virtualization layer, etc.) The key abstraction
provided by SGX is the secure enclave, a piece of code and
data embedded in a process and protected by the hardware.
The general model is that a process running on the operating
system needs to be partitioned into trusted and untrusted
components. The trusted components become one or more
enclaves and the untrusted components are simply part of
standard memory in the process itself. This means that an
enclave exists in the context of a process.

At boot time, an SGX-enabled processor reserves a fixed
amount of physical memory for the Enclave Page Cache
(EPC). The EPC is a contiguous portion of physical memory,
typically 128 MB in size. All protected enclave data is stored
in the EPC. The contents are protected by the Memory Encryp-
tion Engine (MEE), a hardware component of the processor’s
memory controller that ensures all writes to EPC memory
are encrypted and all reads from EPC memory are decrypted
and integrity checked. The MEE only operates on reads and
writes going to the main memory located outside the CPU.
The processor’s caches (located on the CPU die) cache EPC
contents unencrypted. The MEE ensures that even an attacker
with physical access to the system’s memory and data bus is
unable to learn the contents of enclave memory.

A running process may have more than one enclave, and
enclaves themselves are created and managed by the untrusted
system software, such as the OS. In order to establish an
enclave, the OS first creates an enclave using a new instruction
and then loads the enclave’s code and data into unallocated
pages from the EPC. Next, those pages are assigned to the
enclave using another instruction. After all of the enclave’s
pages have been loaded and assigned, the OS requests that the
hardware disable the loading process and mark the enclave
as initialized. After loading is disabled, the hardware tracks
which EPC pages are assigned to the enclave and ensures that
the contents of those pages can’t be modified except by code
running from within that enclave.



As may be seen, the OS has the ability to modify the
enclave’s contents prior to loading. In order to mitigate this
threat, SGX also supports the ability for enclaves to attest
themselves to external services, such as a cloud-based service.
After loading is complete, the hardware hashes the enclave
memory and associated meta-data in order to produce an en-
clave measurement. This measurement can then be signed by
the hardware’s private key and made available for attestation
of the integrity of the loaded enclave. As part of the attestation
process, an outside attestor can establish a secret key with the
enclave, thus allowing the enclave to establish a secure channel
(over the network using something like TLS) with the external
service. In this way, secrets can be provided to the enclave only
after the integrity of the enclave has been verified.

While a process is running outside the enclave, the hardware
prevents access to enclave memory. If the process needs to
execute code that is located within its enclave, then the OS
uses an enclave enter instruction to transition control-flow
to fixed entry points within the enclave. This operation is
called an ECALL. While running within the enclave, access
is permitted to both the enclave memory and regular memory
of the process. (However, code can only be executed from
enclave memory). If the OS needs to stop enclave execution
for any reason (such as a context switch) then an interrupt
can be used to pause enclave execution and pass control back
to the non-enclave code. During this transition, the enclave’s
registers are saved to enclave memory and then wiped. The
enclave can then be resumed at a later time.

At times, the running enclave may need to call functionality
from outside the enclave. The most common reason for this is
system calls. In this situation, the enclave initiates an OCALL:
A call from inside to outside the enclave. OCALLs are,
essentially, functions located in the non-enclave portion of the
process’ address space. In order to make the call the enclave
copies any relevant arguments to non-enclave memory (in
order to ensure the OCALL code can access them) and initiates
the OCALL. Control is then passed outside of the enclave, the
call is processed by the untrusted code, and control is returned
back to the enclave. After the OCALL returns, the enclave
collects the result from the non-enclave memory.

Memory paging is supported in the sense that pages from
the EPC can be evicted to main memory. The OS manages this
process, but the hardware ensures that evicted page contents
are cryptographically protected prior to eviction. This includes
ensuring the confidentiality and integrity of the contents as
well as a few tricks to prevent replay attacks.

In addition to this general overview, there are a few details
that are particularly relevant to this work. First, while the
amount of memory reserved for enclaves in the enclave page
cache (EPC) is limited to 128MB, in practice only about 90MB
of that is usable. The other memory is used by various parts of
the SGX SDK to manage the execution of a running enclave.
Second, while the MEE protects the contents of EPC pages
that are in main memory, those contents are decrypted prior
to being brought into the cache. This means that the MEE
introduces almost no overhead if the data being accessed is

cached, but there is overhead while reading from memory and
filling the cache [9].

B. Graphene and Shim Layers

Graphene [12] is an open-source library OS that refactors
a traditional OS kernel into an application library. Graphene-
SGX [7]] is a follow-up work that places Graphene inside of an
enclave as shim layer to aid in the execution of applications.
The TCB of Graphene-SGX is similar to that of standard SGX,
except that in addition to trusting the CPU and the application
being protected, we must also trust the Graphene library OS.
In exchange for this slightly expanded TCB, the library OS
can manage any system calls from the hosted application,
meaning that the application does not need to be SGX-aware.
It is important to note that the entire application is brought
into the enclave, and Graphene makes no attempt to partition
the application into enclave and non-enclave segments. The
system is considered to provide a low overhead and it eases
the challenges of developing applications for SGX.

Although our experiments in this work use Graphene-SGX
as the shim layer, there are other systems as well. Haven[S]] im-
plements shielded execution of unmodified server applications
on an untrusted cloud. SCONE[6], instead of protecting in-
dividual applications, protects entire containers. Panoply [13]]
attempts to combine the ease of a tool like Graphene with
smaller TCBs by bringing standard POSIX abstractions to
SGX by means of units of code and data - microns - that are
isolated in SGX containers. SGXKernel [[14] is a switchless
library OS that eliminates the need for enclave transitions
by using in-enclave multi-threading and asynchronous cross-
enclave communication[14]. While Graphene-SGX performs
better when requests can be handled internally, SGXKernel
performs better on calls that require communicating with the
OS.

C. Benchmarking SGX

Some previous works targeted at building tools for SGX also
did some SGX benchmarking. Haven [3], a system for running
unmodified binaries in an enclave, evaluated performance
using a simulated version of SGX and modeled memory
overheads manually. Graphene-SGX [7]] performed extensive
testing of their performance, which indirectly evaluates SGX.
SCONE [6] used a number of micro-benchmarks on SGX
and found that memory accesses are slowed down by the
overhead of accessing EPC pages, memory access penalties
are negligible when data blocks fit into the L3 cache size
(about 8MB), and applications that make a significant number
of system calls incur high costs due to the overhead of enclave
entry-exit transitions. In Opaque [15], a database system using
SGX, the authors found that system performance was limited
by the size of data blocks that could be completely contained
within the EPC. sgx-perf [16] is a profiling tool designed
to help developers find the primary sources of slowdown in
their enclaves. They found that the primary sources of enclave
slowdown are enclave transitions and paging.



Several studies are focused on performance analysis of
SGX. The work of [17] compared Intel SGX to AMD Memory
Encryption Technology, using their own benchmarks measur-
ing floating point workloads inside an enclave, and marshaling
data in and out of the enclave. Their results show that AMD
SEV is faster than Intel SGX when buffer sizes are larger.
Our work is specific to SGX, application to AMD processors
is left for future work. Ngoc et al. [18]] investigated the
performance of SGX on virtualized systems. They noticed
that performance varied noticeably depending on whether
shadow paging or nested paging is used: For memory intensive
workloads shadow paging is faster, but when a high number of
context switches occur nested paging is faster. They propose
dynamically detecting the workload and changing the paging
methodology. They also noted that when SGX is virtualized,
the VM gets access to a smaller EPC, which further impacts
performance.

D. LMBench

To measure performance of operations on native SGX and
compare it against Graphene, we chose to use the LMBench
benchmark suite (version 3). LMBench is a group of micro-
benchmarks that measure latency and bandwidth of various
aspects of a system, including read, write, and copy operations
to a buffer, as well as the latency of system calls and
communication protocols such as UDP and HTTP. We chose
to use LMBench over other benchmarking suites, as it is open
source and is widely used.

E. Hardware and Software Configuration

All benchmarks throughout this study were evaluated on a
Dell Optiplex 7440 machine containing an Intel® Core™i7-
6700 CPU running at 3.4GHz (8MB L3 cache) with 16
gigabytes of RAM. The BIOS was configured to enable SGX
with a 128MB EPC. The operating system is Ubuntu 16.04.06
LTS running Linux kernel version 4.4.0-142. We used the
Intel®SGX Linux SDK version 2.7.1.

SGX allows for different configurations of enclave sizes,
including sizes that go above the EPC limit. When an enclave
requires more memory than the EPC can provide, a paging
feature is enabled that allows for EPC pages to be encrypted
and paged-out. This, obviously, has significant performance
implications. This work is not primarily concerned with eval-
vating performance of the paging implementation in the Intel
SGX SDK, so we ensured that data stored within the enclave is
kept below 90MB in order to prevent paging. For benchmarks
that required data buffers, we use buffer sizes of 20MB, 40MB,
60MB, and 80MB, which keep the workloads within the
boundaries of the usable EPC of 90MB. All results represent
an average of at least 10 runs for each benchmark.

III. INITIAL ANALYSIS OF SHIMMING VS PORTING

Our initial goal was to compare the performance of a
subset of the LMBench micro-benchmarks in two scenar-
ios: 1) running them on Graphene-SGX, and 2) manually
porting them to SGX. As an initial investigation, we ported

Imbench3 benchmarks related to memory performance and
system calls: bw_mem (read, write, read-write, bzero, copy,
bcopy), lat_rand, and lat_syscall.

The manual port ended up being a multi-month effort
requiring the developer to do the following: 1) Follow the SGX
tutorial series [1]] provided by Intel; 2) Significantly modify
LMbench to remove its reliance on fork/exec for execution.
Initially overwhelmed by the prospect of rewriting those
portions using threading model provided by the SGX SDK,
the multi-process/multi-threading ability was simply removed
entirely; 3) Troubleshoot and debug a number of issues related
to memory usage, including tracking down paging activity.

In contrast, the Graphene-SGX port required around a week
of effort.

A. Benchmark Versions

We generated and evaluated four versions of the LMbench
benchmark:

1) Forkless: LMBench, by default, supports running multiple
instances of benchmarks in parallel. It accomplishes this
by having a parent process spawn, and manage, worker
children using fork. Given that our goal was, primarily,
to test SGX performance on a single core, we did not
need this functionality. In addition, SGX enclaves do not
support fork. As such, we modified LMbench to remove
its multi-processing features.

2) SGX: We then took our forkless implementation and
ported it to SGX. This involved actually separating the
code into enclave and non-enclave portions. We took the
general approach of favoring inclusion inside the enclave.
The exception to this is stepping out to execute code that
is forbidden within the enclave, such as making system
calls. To support this, we provided some basic “glue”
code to pass arguments back and forth properly as part
of the OCALL interface.

3) NoSGX: The glue code in the SGX version of the bench-
marks causes some slowdown independent of actually
running on SGX. (The code is required to run on SGX,
but the slowdown it causes is independent of the SGX
hardware.) In order to better distinguish the performance
penalty of the SGX hardware vs. the software modi-
fications required, we also produced a version of the
benchmark that maintains all of the same glue code, but
does not actually run on SGX. It maintains the extra
function calls and argument copying, but without the
overhead of OCALLs or the memory encryption engine.
It has the same code pathways as SGX, without involving
enclave interfaces.

4) Graphene: Lastly, in order to compare our manual port
performance with that of a library OS/shim, we ran our
forkless implementation on Graphene.

B. Performance Results

In this section we will go over the performance results of
the our four versions of LMbench.
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a) Memory Bandwidth: The memory bandwidth bench-
marks are represented in Figures [T}l The results shown are
for buffer sizes of 20MB, 40MB, 60MB and 80MB, and
performance is measured in terms of bandwidth (higher is
better). Fig. [I|measures the performance of reads from a buffer.
A series of reads is performed, with every fourth int being
read. Fig. 2] measures the performance of writes, with every
fourth int written to with a value of 1. Fig.[3]combines read
and write, resulting in every fourth int read and written
to. Fig. E] shows the results for bzero, which measures how
quickly the values of a buffer can be set to zero using bzero.
Figs. [5] and [6] show the performance of two different methods
for copying data between buffers. Since two buffers are now
allocated, the buffer sizes are reduced in order to ensure the
enclave does not grow beyond 90MB and triggers paging.

b) CPU Usage: Fig. [1] is a CPU-intensive workload
showing time taken to generate random numbers using two
different techniques (lower is better). Again, forkless and
NoSGX have similar run times, with SGX and Graphene
running much slower. It is interesting to note that for SGX,
drand48 () is much slower than 1rand48 (), with about
a 30% drop, while for Graphene the numbers remain roughly
the same.

¢) System Calls: Fig.[8|shows the results for benchmarks
that make a lot of system calls (lower is better). The perfor-
mance is roughly the same across all variants, showing that
a workload heavy in enclave transitions performs about the
same in both the manual port and the shim. There are two
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points of difference worthy of discussion. First, the Graphene-
SGX version of the getppid benchmark was faster. This is
because that particular system call is handled by the Graphene
library OS, and so no ECALL to the real OS is required. All
of the other system calls could not be handled solely by the
library OS and so required an ECALL to the actual OS in
order to be fulfilled. Second, stat is slower on the Graphene-
SGX version. This is due to Graphene duplicating some of the
file path management code, making that overall code path for
stat much longer than usual. A similar issue was noted by
Graphene [12] in §6.4.

C. Summary and Discussion

For almost all of the benchmarks, the same pattern emerges:
The manual SGX port and the Graphene-SGX port have
virtually the same performance. While this may seem intuitive
in hindsight, at the time it was not. Our hypothesis when
we started was that manual porting would result in better
performance. Instead, we found that there was almost no
performance benefit for manual porting. Given how much
easier it is to simply run an existing implementation using
shimming, this opens up an interesting question: Is it ever
worthwhile, from a performance perspective, to manually port?
Or does shimming perform just as well for a fraction of the
effort? We explore this question in the next section.
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IV. DETERMINING WHEN PORTING IS BETTER THAN
SHIMMING

Based on the results of the previous section, we now
turn to benchmarking the specific performance attributes that
contribute to enclave slowdown and demonstrate the types of
workloads that can benefit from porting instead of shimming.
Previous work [9]], [10], [16] has identified two leading causes
of performance degradation caused by the SGX hardware:
(1) The memory read and write performance caused by the
memory encryption engine (MEE). (2) The transition time
needed to enter and exit the enclave (ECALLs and OCALLS).
We will now investigate these two overheads further. We note
that while paging has also been identified as a major source of
slowdown, multiple other works [6], [16] have looked at it and
came to the same conclusion: It should be avoided at all costs.
We did not feel the need to re-investigate that point here. It
may be worth investigating in the future if the overhead can
be brought down to reasonable levels [19].

A. Memory Performance

In order to profile enclave memory performance we de-
signed a set of benchmarks that perform accesses to all of
the bytes of a fixed size buffer in a loop. We will then vary
the total size of the buffer. The goal of these benchmarks is
to determine how the size of the enclave working set impacts
performance. We hypothesize, based on previous work [6], [9],
that when the working set is smaller than the cache size, the
performance impact of the MEE will be minimal.
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We start by assuming that all accesses occur inside the
enclave. Our read benchmark is straight-forward and can be
found in Algorithmm As can be seen, we allocate a buffer, fill
it with 1s, and then iterate over it a chosen number of times.
Note that we intentionally do not attempt to flush or otherwise
manage the cache. We also create a version of the benchmark

Algorithm 1 Read Benchmark

./ This runs inside the enclave
: procedure IN_ALLOCATEBUFFER(num_ints)
in_buf < malloc(num_ints * sizeof(int))
for j < 0,num_ints do

in_buflj] + 1
end for
: end procedure

R

8: /I This runs inside the enclave
9: procedure IN_SUMBUFFERREAD(loops, num_ints)

10: sum < 0

11: for i < 0, loops do

12: for j < 0,num_ints do

13: sum < sum + in_bu f[j]
14: end for

15: end for

16: end procedure

17: /I Execution starts here, and this runs inside the enclave
18: procedure IN_READBENCHMARK(loops, num_ints)

19: in_AllocateBuffer(num_ints)
20: sum <+ 0

21: StartTimer()

22: in_SumBuffer(loops, num_ints)

23: StopTimer()
24: end procedure
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Fig. 9: Comparing sequential reads and writes for SGX,
Graphene-SGX, and native

that performs both reads and writes. It differs from the read
benchmark only in that the in_SumBufferRead procedure

has been modified to include the addition of a memory write
after line

We created three versions of this benchmark: (1) an SGX
version that runs the code entirely within an enclave; (2) a
native version that does not involve an enclave at all; (3) the
native version using Graphene. The size of the buffer is varied
and the total time to complete 500 loops is measured. The
performance results can be found in Fig. [0

There are a number of observations to be made. First, for
both the read benchmark and the read+write benchmark, our
SGX version and Graphene both perform almost identically.
This is yet another example of not seeing an advantage to
manual porting. Second, similar to prior work [6], [9] it can
be seen that the penalty for writes is much larger than for
reads. Third, there is a noticeable change in the graph that
occurs between 6 and 8MB. Prior to this point, the lines
are all tightly grouped together. After this, the slope of the
benchmarks using an enclave (SGX and Graphene) increases
and the plots diverge quickly.

The deviation at 6MB deserves further attention.
SCONE [6] noticed the same phenomenon and drew
the same conclusions we have: this is where the capacity
of the last-level cache is exceeded. The particular CPU we
used for evaluation has an 8MB L3 cache. Shimizu et. al. [9]
investigated the cache miss performance more thoroughly and
found that enclave cache miss penalties are on the order of
1.45X when compared to non-enclave miss penalties. Given
that our benchmark repeatedly accesses the same buffer, if
that buffer can fit into the cache, then the memory encryption
engine is not used and there is almost no performance penalty
from running inside an enclave. Once the buffer no longer
fits entirely in the cache, however, the reads and writes
involve main memory accesses, which activates the memory
encryption engine. Our results differ from SCONE [@] in one
important way: They found that sequential reads and writes
had no additional performance penalty over native execution
as long as the working set fits into the EPC. They attributed
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Fig. 10: Comparing performance of reads with different pro-
portions of data split across application and enclave.

Algorithm 2 Read Benchmark with Split Memory Access

1: /I This runs outside the enclave
2: procedure OUT_ALLOCATEBUFFER(num_ints)

3: o_buf <+ malloc(num_ints * sizeof(int))
4: for j < 0, num_ints do

5: o_buf[j] + 1

6: end for

7

: end procedure

8: /I This runs outside the enclave
9: procedure OUT_SUMBUFFERREAD(loops, num_ints)

10: sum <+ 0

11: for i < 0, loops do

12: for j + 0,num_ints do
13: sum <— sum + o_bu f[j]
14: end for

15: end for

16: end procedure

17: /I Execution starts here, and this runs outside the enclave
18: procedure SPLITREADBENCH(loops_out, loops_in, num_ints)

19: in_AllocateBuffer(num_ints)

20: out_AllocateBuffer(num_ints)

21: StartTimer()

22: out_SumBufferRead(loops_out, num_ints)
23: in_SumBufferRead(loops_in, num_ints)

24 StopTimer()
25: end procedure

this to pre-fetching. Our benchmark does not show this same
effect, instead we do show a performance difference for sizes
larger than the cache but still smaller than the EPC. We
have no definitive explanation for this difference, but we
hypothesize it could be related to the multitude of microcode
updates related to Spectre [20] and Foreshadow (L1TF) [3].

We now move on to evaluating the performance when some
memory accesses occur inside the enclave and others occur
outside. In order to do this, we modified our read benchmark
to allow us to specify the percentage of loops that operate on a
buffer outside vs. inside the enclave. This benchmark allocates
two buffers: one inside the enclave and one outside. It then
splits our memory-read loops between them. It first performs
a set of reads outside the enclave, and then moves into the
enclave to perform another set. The detailed algorithm can be
found in Algorithm [2]

We executed the benchmark using three different buffer
sizes (512 KiB, 1 MiB, and 75 MiB) covering sizes that fit



entirely within the cache and sizes that do not. We performed
500 loops, but split them between inside and outside. We
varied the split by 10 percentage points for each test. Our
results can be found in Fig.[I0] As can be seen, for small buffer
sizes that fit entirely within the CPU’s cache (512 KiB and 1
MiB), the split between inside and outside has no effect on
the total runtime of the benchmark. However, when the buffer
exceeds the cache size, we see a linear increase in runtime as
we run more and more of the loops inside the enclave. This is
consistent with Fig. [I] and further demonstrates the penalty in-
curred by the MEE when the CPU cache is exceeded. We have
also included a line showing the Graphene-SGX performance
of this benchmark. Graphene-SGX does not vary at all because
it pulls the entire application inside the enclave, meaning that
none of the reads actually occur outside. Given this, the x-axis
on this chart is not meaningful for Graphene-SGX. The line
shows that, as expected, Graphene-SGX performs the same
as our SGX version when all of the reads occur inside the
enclave.

Conclusions

If the working set of an enclave can fit entirely in the cache,
then the performance overhead due to the MEE is minimal.
This applies equally to a manually ported SGX enclave or
when executing using a shim layer such as Graphene. How-
ever, this opens up an opportunity for finding a workload that
will benefit from manual porting. There is a key difference
between running in Graphene-SGX and doing it manually:
with Graphene-SGX, the entire application must be inside the
enclave. With a manual port, a developer decides what goes
in and what stays out based on security requirements. If an
application can be partitioned in such a way as to ensure that
the working set of data inside the enclave is smaller than the
cache size, then manual porting may be faster. Doing so would
require the developer to transition in and out of the enclave as
needed in order to operate on sensitive data. Given this, the
next logical step is to better evaluate the impact of enclave
entrances and exits.

B. Enclave Exit and Entrance Performance

Entering and exiting the enclave using ECALLs and
OCALLs incurs significant overhead. [10] and [16] both
observed ECALLs and OCALLSs requiring between 5,850 and
14,000 cycles depending the cache state and CPU microcode
revision. This delay has the potential to dominate enclave
performance when compared to the slowdown from the MEE.
In order to confirm this experimentally, we modified our
benchmark to incorporate a variable number of ECALLs. Our
new benchmark is shown in Algorithm [3] This is a modified
version of our read benchmark in Algorithm [T} except that
now the work of summing the data is shared between code
inside and outside the enclave. The main idea is that the buffer
is stored and initialized inside the enclave, and the nested
summing loops run outside. The inner loop (line [I3)) uses an
ECALL to get the sum of a specified number of integers each
time. If the number of integers per read is very large (such as
262,144), then very few ECALLs will be issued during this

Algorithm 3 Read Benchmark with Variable ECALLSs

: /] This runs inside the enclave
: procedure IN_GETPARTIALSUM(idx, howm)
sum < 0
for i < idx, howm do
sum < sum + in_bu f[i]
end for
return sum
: end procedure

AR

9: /I This runs outside the enclave

10: procedure OUT_SUMBUFFERPARTIALREAD(loops, num_ints, ints_per_read)
11: sum < 0

12: for i < 0, loops do

13: for j + 0;j < num_ints;j < j + ints_per_read do

14: sum < sum + in_GetPartial Sum(j, ints_per_read)
15: end for

16: end for

17: end procedure

18: /I Execution starts here, and this runs outside the enclave
19: procedure ECALLBENCHMARK(loops, num_ints, ints_per_read)

20: in_AllocateBuffer(num_ints)

21: sum < 0

22: StartTimer()

23: out_SumBufferPartialRead(loops, num_ints, ints_per_read)

24: StopTimer()
25: end procedure

Impact of Number of ECALLs on Performance
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Fig. 11: Benchmark Completion Time vs. Number of ECALLSs

benchmark. If it is very small (such as 1), then a large number
of ECALLs will occur.

We executed the benchmark, specifying a 4 MiB buffer (so
it fits in the cache) and 10 loops. We varied the number of in-
tegers to read per ECALL to include all powers of two starting
from one (causing 10,485,760 ECALLSs) to 262,144 (causing
40 ECALLSs). The results are presented in Fig. [T1] showing
time for benchmark completion vs. number of ECALLSs. A log-
scale is used on the x-axis in order to emphasize the long tail
that begins the graph. The results show a significant variation
in total time to execute depending on the number of ECALLs.
The farthest left data point (at 40 ECALLs) requires 5.7 ms
to execute, while on the other extreme the same amount of
memory accessed with 10485760 ECALLSs requires almost 57
seconds. This variability is much larger than what is seen
in Fig. [I] reinforcing the idea that the number of enclave
transitions has the ability to dominate the execution time of
the benchmark far more than the overhead from the MEE.

Conclusions



Algorithm 4 Read Benchmark with Split Memory Access and
Variable Enclave Transitions

1: // Execution starts here, and this runs outside the enclave

2: procedure SPLITECALLBENCHMARK(loops_out, loops_in, num_ints_out,
num_ints_in, ints_per_read)

3: in_AllocateBuffer(num_ints_in)

4 out_AllocateBuffer(num_ints_out)

5: sum + 0

6: StartTimer()

7: out_SumBufferPartialRead(loops_out, num_ints_in, ints_per_read)

8 out_SumBufferRead(loops_out, num_ints_out)

9: StopTimer()

10: end procedure

The significant impact of enclave transitions on the per-
formance of our benchmark makes manual partitioning more
challenging in terms of performance. Any separation necessi-
tates transitioning in and out of the enclave, thus impacting
performance. Trading better MEE performance for more en-
clave transitions is not an attractive choice, since the impact
for enclave transitions is more significant.

C. Combining the Effects of Memory and Enclave Transition
Performance

Given our previous results, an application workload that
would benefit from manual porting instead of running in a
shim layer would have the following characteristics:

1) The working set of data inside the enclave is smaller than
the cache size, but the total working set of the application
is larger than the cache size. This would benefit manual
porting, since the shim would pull the entire application
into the enclave, causing expensive cache misses.

2) The application spends a substantial amount of time
working on the larger dataset outside the enclave. This
would benefit manual porting because the memory reads
and writes that occur outside the enclave would be faster
than the in-enclave reads performed by the shim.

3) The application has a relatively small number of enclave
transitions.

Putting this together, a porting-friendly workload is an
application with a larger-than-cache working set (say, 70 MiB)
that could be split into a 2 MiB sensitive portion and a 68 MiB
insensitive portion, with a small number of transitions in and
out of enclave. We now establish how many enclave transitions
are permissible to maintain performance benefits.

We designed a benchmark that combines the relevant prop-
erties of our previous benchmarks. The pseudo-code can be
found in Algorithm [4| There are several variables for such
a benchmark: 1) The number of loops performed inside and
outside (to control the overhead from the MEE). 2) The size
of the inside and outside buffers (to control whether or not the
working sets of each fits into the cache). 3) The number of
integers summed per enclave transition (to control the number
of enclave transitions). ALL memory accesses outside the
enclave are performed first, and then enclave accesses are
performed while inducing enclave transitions.

As a first test, we run the benchmark with 64 MiB out-
side buffer, 1000 outside loops, a 2 MiB internal buffer,

10 internal loops, and we varied the number of integers to
read per ECALL to include all powers of 2 from 1 (causing
5,242,880 ECALLSs) to 262,144 (causing 20 ECALLSs). Much
like our standard split benchmark, we also show the result
for Graphene-SGX, assuming that everything runs inside the
enclave and no ECALLs are required. Fig. [[2Za] shows the
results. As can be seen, Graphene-SGX is unaffected by the
enclave transitions (because they do not actually occur), while
the manual port performance degrades linearly. There are a
number of interesting observations to be made about this
graph. First, the cross-over point between the manual port and
Graphene is at around 2,100,000 ECALLSs. To the left of this
point, our manual port is faster, to the right of this point,
the shim is faster. This illustrates that this benchmark does
indeed help us answer the question of how many transitions
are acceptable for the manual port to be faster. Another point
to notice is that on the far left, where there are almost no code
transitions, the total benchmark time is about 6 seconds. This
actually represents the time required to perform the memory
reads outside the enclave (line[§]in Algorithmd). If we were to
alter the number of outside loops, this point would shift either
up or down, taking the entire line with it. To confirm this, we
repeated the benchmark, but this time doubled the amount of
outside-enclave work to 2000 loops. The results can be seen
in Fig. As expected, when doubling the outside work the
entire blue line shifts up by about 6 seconds for each data
point. The Graphene line, however, instead almost doubles.
The new cross-over point is closer to 4,000,000 ECALLs.

We performed further experiments for 3000, 4000, 5000,
6000, and 7000 external loops and found an interesting
phenomena: For all of the tests, the ratio at the cross-over
point is around 110,000 transitions/second. This rate may be a
good indicator of which workload would benefit from porting:
Workloads meeting the three criteria at the beginning of this
section and that cause less than 110,000 transitions/second
would be faster with a manual port than a shim.

V. KEY TAKE-AWAYS

Based on the results presented in previous sections, what
advice do we have for application developers? If your goal
is to protect your entire application with SGX, then from a
performance perspective it is almost always better to shim
rather than port. Shimming takes significantly less developer
time and can achieve the same basic performance for most
workloads. (However, note our discussion in Sec. [VI-A] below
for a discussion of non-performance factors.) However, if you
only have a small piece of your application that you want to
protect with SGX, then porting may end up being beneficial.

Let’s look again at the workload that benefits from porting
instead of shimming:

1) The working set inside the enclave is smaller than the
processor’s level 3 cache size (§ MB, 6MB of which
is usable), while the working set outside the enclave is
larger than the cache size.

2) The program spends a significant amount of time working
on the larger data set outside the enclave.
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3) The program has an average ECALL/second rate of
around 110,000 or less.

In order to put the 110,000 rate into perspective, we refer
to Weisse et al. [10] and their work profiling some large
server applications. Unoptimized enclave ports of Memcache,
OpenVPN, and Lighttpd were created and their per second
ECALL rates were found to be 200K, 275K, and 270K,
respectively. We suspect it would be difficult to re-architect
those applications to cut the number of ECALLs in half
without placing most of the application into the enclave (which
would increase the working set size beyond that of the cache).
Our results indicate that, from a performance perspective, it is
not worthwhile to manually port these applications.

In practice, what sort of application would exhibit this type
of workload? One that does the vast majority of its work
outside the enclave and only enters the enclave occasionally
to work on small amounts of data. For example, one could
imagine a webserver that wants to use SGX to protect its
private key from compromise. In this scenario, the private key
could be loaded into an enclave which is only used when
establishing new connections and performing the TLS key
exchange. The vast majority of the work (socket communi-
cation, file reading/write, web application execution, and even
the TLS transport encryption itself) would occur outside the
enclave with only infrequent work happening inside. Such a
scenario would benefit from manual partition and porting as
opposed to running the entire webserver in a shim. We expect
that there are actually quite a few applications/workloads like
this: At the core, only a small piece of the application’s
functionality truly needs to be protected.

This implies that application developers need to carefully
consider two issues: How much of their application is truly
sensitive and how frequently that code needs to run. The
smaller the working set of sensitive data, and the less fre-
quently it runs, the more it will benefit from porting. The
larger the working set and/or the more frequently it runs, the
less benefit it will receive from porting. Don’t be too quick
to assume that minimizing the working set of sensitive data
is easy: Reasoning about what portions of an application are

sensitive or not is an open research problem [21], and outside
of very simple examples (such as the private key above) is
very difficult to solve.

VI. LIMITATIONS

In this section we will discuss the limitations of this work.

A. Factors Other Than Performance

While this work sought to investigate port vs shim from a
performance perspective, there are other factors that should be
considered when making the decision:

1) A large trusted computing base (TCB) is usually unde-
sirable. By using a shim layer, the software TCB will
include the SGX SDK, the library OS, and the entirety
of the application. A bug in any of that code could
potentially be used to compromise the enclave. In manual
porting, there is no library OS and only security sensitive
portions of the program need to be included.

2) Partitioning is hard. Determining which portions of your
existing code base are security-sensitive and which are
not is a difficult problem. A mistake could mean that
sensitive data is revealed. Systems like Glamdring [21]]
seek to make the process of partitioning existing code
bases easier and less error prone, but there is a certain
level of confidence in knowing that everything is inside
the enclave.

3) Shim layers may be better optimized than a manual port.
A shim layer used by many people and maintained by
expert developers seems more likely to receive perfor-
mance enhancements. For example, when an advance like
hotcalls [10]] is made available for SGX [22]], if the shim
layer is upgraded to support it then the code can get that
boost for free.

B. Shim-Specific Results

The benchmark results in this work are all obtained using
Graphene-SGX, and as such are specific to it. While we believe
that the general conclusions are applicable to a variety of
shim systems, we have not experimentally verified it. Further
validation of these results could be done by repeating the



experiments using other shim layers such as SCONE [6]]. In
addition, the exact configuration of Graphene-SGX may have
subtle impacts on both the shape and raw measurement values
of the results. We used Graphene-SGX in its default configu-
ration, but settings such as exitless call an implementation
of switchless calls [22]], will impact performance as well.

VII. CONCLUSION

In this work, we benchmark various aspects of Intel’s SGX
in order to answer the question: Port or Shim? Our results
show that if the goal is to protect the entire application with
SGX, then from a performance perspective it is almost always
better to shim rather than port: the development time is much
lower and the performance of the resulting enclave is on-
par with manual porting. Further investigating the issue, we
experimentally determined the characteristics of a workload
that would instead benefit from porting. We discovered that if
an application only has a small sensitive working set (less than
the 6MB available cache size of the CPU), infrequently needs
to enter the enclave (less than 110,000 times per second), and
spends most of its time working on data outside of the enclave
then it may indeed perform better if it is manually partitioned
and ported. Using these results, a developer should be able
to ascertain whether their particular application would benefit
from manual porting as opposed to shimming. Although this
work is primarily concerned with performance, we also discuss
some of the non-performance based issues that should be
considered when deciding whether to port or shim.

Finally, the source code of our benchmarks can be found at
https://github.com/vsecurity-research/sgx-bench
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