1
2
3
4
5

6
7
8
9

10
11

1
2
3
4
5

© 0 ~N O

10
11
12
13
14
15
16
17
18

15-122: Principles of Imperative Computation

Recitation Week 8 Nivedita Chopra, Josh Zimmerman

Visualizing AVL trees

Use the visualization at http://www.cs.usfca.edu/ galles/visualization/AVLtree.html to in-
sert these keys into the tree in the following order:

1,2,5,3,4

Then delete the keys 2 and 4.

Two ways of doing rotations

Remember to draw pictures! The way we did rotations in class used the common trick of returning a
new root from the function. This made the function easier to write.

treex rotate_left(treex T)

//@requires is_tree(T) && T != NULL && T—>right != NULL;
//@ensures is_tree(\result);
{
treex R =
}

With a bit more work, we can write a rotate function that keeps the root the same as it was before; this
means we don't have to return a new root. Are any of the lines below unnecessary?

vold rotate_left(treex T)
//@requires is_tree(T) && T != NULL && T—>right != NULL;
//@ensures is_tree();

{
elem x = T—>data;
elem y = T—>right—>data;
treex A = T—>left;
treex B = T—>right—>left;
treex C = T—>right—>right;
T—>data = ;
T—>left = ;

T—>left—>data ;

T—>left—>left = ;
T—>left—>right = ;
T—>right = ;
fix_height()
fix_height();

}

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

1
2
3

AVL rotations

In each of the blank spots below, draw the shape of the tree, including what you know about the height(s)
of the subtrees, and show how the tree needs to be modified to rebalance the tree.
treex rebalance_right(treex T)

//@requires T != NULL && T—>right != NULL;
//@requires is_tree(T—>left) && is_tree(T—>right);

4 // Not specified: T was balanced before an AVL insertion into T—>right

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

//@ensures is_tree(\result);

{
if (height(T—>right) — height(T—>left) == 2) {
if (height(T—>right—>left) > height(T—>right—>right)) {

} else {
//@assert height(T—>right—>left) < height(T—>right—>right);

}
} else {
fix_height(T);
}

return T;

}

Checkpoint 0

The correctness of the rebalance function above depends on the invariant that we didn't write as a
checked precondition: if the tree is unbalanced, then the right subtree results from a single BST insertion
(no rebalancing) into a previously-balanced AVL tree.

What are some inputs that satisfy the preconditions on lines 2 and 3 but violate this (unchecked)
precondition and cause a contract to fail as a result? How could we add a simple precondition that would
exclude this counterexample?

Checkpoint 1
Write a recursive function that finds the maximum element in a BST.

Write a non-recursive function that finds the maximum element in a BST.

