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Question 1 [25]: Short Answer
Answer the following questions in the space provided.

α-equivalence

(a) (5 points) Rewrite the following expression so that variables that refer to different binding
sites have different names.

λx : nat.
let w be λx : nat. s x

in let y be λy : nat. λx : nat. rec(y, x, y.x.w x)
in y x x

Solution:
λx : nat.

let succ be λn : nat. s n
in let plus be λn : nat. λm : nat. rec(n,m, n′.y.succ y)
in plus x x

Gödel’s T

(a) (4 points) The number of moves to solve the Tower of Hanoi puzzle is given by the fol-
lowing recurrence relation, where n is the number of disks:{

H(0) = 1

H(n+ 1) = 2H(n) + 1

Define an expression hanoi : nat → nat in Gödel’s T such that hanoi n 7→∗ H(n) for any
n ∈ N. You may assume that the function plus : nat → nat → nat implementing addition
has been defined for you.

Solution:
hanoi , λn : nat.

rec(n,
s z,
x.y. s (plus y y))
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PCF

(a) (6 points) Recall the definition of the binomial coefficient as read off Pascal’s triangle:
P (n, 0) = 1

P (0, k + 1) = 0

P (n+ 1, k + 1) = P (n, k) + P (n, k + 1)

Define an expression coef : nat → nat → nat in PCF such that coef n k 7→∗ P (n, k) for
any n, k ∈ N. You may assume that the function plus : nat → nat → nat implementing
addition has been defined for you.

Solution:

coef , fix[nat→ nat→ nat]coef.
λn : nat. λk : nat.

ifz(k, s z,
k′.ifz(n, z,

n′.plus (coef n′ k′) (coef n′ k)))

Recursive Types

In this following exercises, consider the extension of PCF with sums, products and recursive
types (and nothing else).

The type of a stream processor would be written as follows in an SML-like language:

datatype SP = Get of nat -> SP

| Put of nat * SP

(a) (2 points) Define the type SP using sums, products and recursive types.

Solution:
SP , µt.(nat→ t) + (nat× t)
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(b) (3 points) The following stream processor, written in SML-like syntax, increments every
element of a stream of natural numbers by one:1

val rec adds : SP = Get (fn x => Put (s x, adds))

It reads an element, x, outputs s x (the successor of x), and then calls itself recursively.

Define adds in PCF using the recursive type you defined in the previous exercise. Please
use the abstract syntax forms for sums in your answer, writing, for example, in[τ1][τ2][l](e1)
for an injection of e1 into the left half of the sum type τ1 + τ2.

Solution:
adds , fix[SP](adds.

fold(in[nat→ SP][nat× SP][l](λx : nat.
fold(in[nat→ SP][nat× SP][r](s x, adds)))))

Modernized Algol

(a) (5 points) Define the commands newcounter(a.m) and getcounter[a] such that the first
time getcounter[a] is encountered, it evaluates to ret(z). The second time, ret(s z). Etc...

Solution:

newcounter(a.m) , decl(z; a.m)

setcounter[a] , {x← get[a]; set[a](s(x)); ret(x)}

1In SML, the keywords val rec allow defining recursive functions without using fun. SML would however reject
this example because val rec can be used only with functions.
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Question 2 [25]: Classes and Casts
Let us consider the following variation on typing for objects that is found in common object-
oriented languages. The focus of attention in this question is on the types of objects created
using the new construct; it does not concern the material in Chapter 25 of PFPL.

Typ τ ::= obj

| obj[c]
Exp e ::= new[c](e)

| data[c](e)

There are two classes, cart and pol. Associated with each class, c, is a type, τc, of the instance
data for that class. For example, with the two classes just mentioned, we have

τcart = 〈x ↪→ real, y ↪→ real〉
τpol = 〈ρ ↪→ real, θ ↪→ real〉

The type obj[c] represents the type of objects whose class is known to be c, and whose
instance data is therefore known to be of type τc. Thus we have the following two typing rules
for introducing and eliminating objects:

Γ ` e : τc
Γ ` new[c](e) : obj[c]

Γ ` e : obj[c]

Γ ` data[c](e) : τc

Notice that, so far, we have not made use of the type obj, but only of the types obj[c] for a
known class c.

The dynamics is completely straightforward, with the key rule expressing the inverse relation
between the introduction and elimination forms:

e val
new[c](e) val

e val
data[c](new[c](e)) 7→ e

(a) (5 points) State the canonical forms theorem for the type obj[c]:

Solution: If e val and e : obj[c], then e = new[c](e′) for some class c and some
e′ : τc such that e′ val.

(b) (5 points) The above type system has a fundamental problem that arises when we consider
conditional expressions of the form if e then e1 else e2, where e : bool, e1 is a polar point,
and e2 is a Cartesian point. If e1 and e2 are of different classes, the conditional is ill-typed.
GIve a one-line example of such an expression:

Solution:
if e

then new[cart](〈x ↪→ 1.0, y ↪→ 1.0〉)
else new[pol](〈ρ ↪→ 1.0, θ ↪→ 0.0〉)

(c) (5 points) The usual solution to this problem is to introduce an up-cast that allows us to
weaken the type of an object by “forgetting” its class:

Γ ` e : obj[c]

Γ ` up[c](e) : obj
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The type obj represents the type of any object at all, regardless of its class. Rewrite the
preceding example using upcasts so that the overall type of the conditional is obj:

Solution:
if e

then up[cart](new[cart](〈x ↪→ 1.0, y ↪→ 1.0〉))
else up[pol](new[pol](〈ρ ↪→ 1.0, θ ↪→ 0.0〉))

(d) (5 points) The dynamics of up-casting states that it forms a value of type obj:

e val
up[c](e) val

State the canonical forms theorem for the type obj:

Solution: if e val and e : obj, then e is of the form up[c](e) for some class c and
some e such that e val and e : obj[c].

(e) (5 points) Up-casting solves the problem of the conditional, but it also introduces another
problem: if you know only that an object has type obj, you cannot recover its instance
data. Specifically, if e : obj, then data[c](e) is ill-typed. The usual solution to this
problem is to introduce a down-cast that allows us to recover the class of an object:

Γ ` e : obj

Γ ` down[c](e) : obj[c]

Give a dynamics for down-cast that preserves (does not disrupt) the canonical forms
property for the types obj[c] stated earlier. Be sure to take account of the possibility of
down-casting an object of the wrong class!

Solution:
e 7→ e′

down[c](e) 7→ down[c](e′)

down[c](up[c](e)) 7→ e

c 6= c′

down[c](up[c′](e′)) err
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Question 3 [25]: Databases
We consider a simple abstraction of a relational database in which the type db(τ) represents
a database whose schema is given by the type τ . The schema may be any type at all, but in
practice it is often a labeled product type of the form

〈l1 ↪→ τ1, . . . , ln ↪→ τn〉.

The labels are the columns, or attributes, of the database, and the corresponding types describe
the data in each column. For example, 〈id ↪→ nat, salary ↪→ nat〉 might be the schema of a
database with two columns.

Many programming languages provide access to a database through the three constructs spec-
ified by the following grammar snippet:

e ::= emptyτ | stash(e0, e1) | dbrec(e, e0, x.y.e1) | . . .

emptyτ creates a new database with schema τ without anything in it. stash(e0, e1) adds the
value of e0 as an entry in the database e1. Last, the iterator, dbrec(e, e0, x.y.e1) permits
computing with the entries in the database e: here e0 is the computation to be performed
when this database is empty while x.y.e1 describe what to do when it is not. In this case, x
will be bound to some row in the database, y will be the result of processing the rest of the
database, and e1 is an expression that carries out this computation when the database is not
empty.

The typing rules for emptyτ and stash are as follows:

Γ ` emptyτ : db(τ)
empty

Γ ` e1 : τ Γ ` e2 : db(τ)

Γ ` stash(e1, e2) : db(τ)
stash

You will be asked to write the typing rule for dbrec, but first read on.

The dynamic semantics of the database operators are given by the following rules:

emptyτ val
v empty

e0 val

stash(e0, e1) val
v stash

e0 7→ e′0
stash(e0, e1) 7→ stash(e′0, e1)

s stash

e 7→ e′

dbrec(e, e0, x.y.e1) 7→ dbrec(e′, e0, x.y.e1)
s dbrec1

dbrec(emptyτ , e0, x.y.e1) 7→ e0
s dbrec2

e val

dbrec(stash(e, e′), e0, x.y.e1) 7→
[

e/x
dbrec(e′, e0, x.y.e1)/y

]
e1

s dbrec3
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(a) (5 points) Write the typing rule for dbrec.

Solution:
Γ ` e : db(τ) Γ ` e0 : τ ′ Γ, x : τ, y : τ ′ ` e1 : τ ′

Γ ` dbrec(e, e0, x.y.e1) : τ ′
dbrec

(b) (5 points) Define a function union : db(τ) → db(τ) → db(τ) that, given two databases
with the same schema, creates a database containing the entries of both.

Solution:
λd1 : db(τ).
λd2 : db(τ).

dbrec(d1, d2, x.y.stash(x, y))

(c) (5 points) Give a definition for the function project [li] of type

db(〈l1 ↪→ τ1, . . . , ln ↪→ τn〉)→ db(〈li ↪→ τi〉)

(where 1 ≤ i ≤ n) that computes the projection of a database on the column labeled li.

Solution:
λd : db(〈l1 ↪→ τ1, . . . , ln ↪→ τn〉).

dbrec(d, empty〈li↪→τi〉, x.y.stash(〈li ↪→ x · li〉, y))

(d) (5 points) Give a definition of the function select of type

(τ → bool)→ db(τ)→ db(τ)

that selects those entries of a database that satisfy the given predicate. You can use the
standard elimination form for bool’s given by if(e, etrue, efalse).

Solution:
λp : τ → bool.
λd : db(τn).

dbrec(d, emptyτ , x.y.if(p x, stash(x, y), y))
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(e) (5 points) The above definition of dbrec does not give the programmer access to the rest of
the current database in the recursive case. Define a variant of this construct that permits
that, give its typing rule, and the one evaluation rule that is most affected by this change.

Solution: This variant has the form dbrec′(e, e0, x.x
′.y.e1), which differs from dbrec

by the presence of the additional abstractor x′.

The updated typing rule is:

Γ ` e : db(τ) Γ ` e0 : τ ′ Γ, x : τ, x′ : db(τ), y : τ ′ ` e1 : τ ′

Γ ` dbrec′(e, e0, x.x
′.y.e1) : τ ′

dbrec′

The evaluation rule most affected is s dbrec3, which becomes:

e val

dbrec′(stash(e, e′), e0, x.x
′.y.e1) 7→

 e/x
e′/x′

dbrec(e′, e0, x.y.e1)/y

 e1
s dbrec′3
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Question 4 [25]: Type Safety
In this problem, we will extend PCF with binary trees, and prove safety theorems for this new
extension. Of course, PCF can already encode binary trees, but for this problem, we will treat
them as a primitive concept.

Syntax

We begin by giving the syntax of our language.

Types τ ::= Tree[τ ]

Expressions e ::= nil[τ ]
tree[τ ](e1; e2; e3)
fold(e1; e2; e3)

The type Tree[τ ] is a binary tree in which each node has a piece of associated data of type τ .
Introductory expressions nil and tree are used to create trees. The eliminatory expression is
fold. This has nothing to do with the fold of recursive types, but rather is analagous to the fold
operation of a list.

Static Semantics

Γ ` nil[τ ] : Tree[τ ]
(Nil)

Γ ` e : τ Γ ` e1 : Tree[τ ] Γ ` e2 : Tree[τ ]

Γ ` tree[τ ](e; e1; e2) : Tree[τ ]
(Tree)

Γ ` e : Tree[τ1] Γ ` f : τ1 → τ2 → τ2 → τ2 Γ ` b : τ2

Γ ` fold(e; f ; b) : τ2
(Fold)

(Nil) and (Tree) are straight-forward constructors of type Tree[τ ]. We can use an expression e
of type Tree[τ ] with fold(e; f ; b). The argument b is the base case, or what the expression will
evaluate to if e = nil[τ ]. The argument f is the aggregation function, which takes the value of
the node along with two intermediate results (one for the left subtree and one for the right),
and computes the result.
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Dynamic Semantics

We will use a lazy semantics for trees. Any tree is a value. Node values and subtrees will only
be evaluated when necessary. Therefore, the value judgement for this language is defined as
follows:

(NilVal)
nil[τ ] value tree[τ ](e; t1; t2) value

(TreeVal)

(a) (5 points) : A canonical forms lemma tells us what we can assume about well-typed values.
Complete the following statement (but do not prove):
Lemma 1. (Canonical Forms) If e : Tree[τ ] and e value then...

Solution: either e = nil[τ ] or e = tree[τ ](e1; e2; e3) for some e1 : τ and e2 : Tree[τ ]
and e3 : Tree[τ ].

There are three evaluation steps for fold. The first evaluates the first argument until it is
determined if we are trying to use an empty tree or not. The second transition works on
the empty tree by returning the argument b. The third transition works on the non-empty
tree by first performing a fold on the two subtrees, and then combining the results, along
with the value of the node, e by the function f .

(FoldEval1)
e 7→ e′

fold(e; f ; b) 7→ fold(e′; f ; b) fold(nil[τ ]; f ; b) 7→ b
(FoldEval2)

fold(tree[τ ](e; e1; e2); f ; b) 7→ f e (fold(e1; f ; b)) (fold(e2; f ; b))
(FoldEval3)

Working with Trees

The elimination form for trees, fold, is analogous to the fold operation of a list in ML.
Example: If e : Tree[nat], then
sum(e) = fold(e; (λx : nat.λy : nat.λz : nat.x+ y + z); 0)

will compute the sum of all nodes in the tree.

(b) (5 points) : Write the expression map[τ1][τ2](f), where f : τ1 → τ2 maps one element of
the tree to another, and map[τ1][τ2](f) : Tree[τ1] → Tree[τ2] lifts the operation to act on
trees.

Solution: map[τ1][τ2](f) =
λe : Tree[τ1].fold(e; (λx : τ1.λy : Tree[τ2].λz : Tree[τ2].tree[τ2](f x; y; z)); nil[τ2])
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Proving Progress

Theorem 1. (Progress) If e : τ then either e value or e 7→ e′ for some e′.

(c) (3 points) case (Nil):

Solution: nil[τ ] value

(d) (2 points) case (Tree):

Solution: tree[τ ](e; e1; e2) value

(e) (10 points) case (Fold):
(Hint: When appealing to the inductive hypothesis, there are two subcases to consider.)

Solution: We assume that (i) e : τ1 and (ii) f : τ1 → τ2 → τ2 → τ2 and (iii) b : τ and
need to show that either fold(e; f ; b) value or fold(e; f ; b) 7→ e′ for some e′.

1. e value or e 7→ e′′ for some e′′, by IH on i

2. Assume e value

(a) e = nil[τ1] or e = tree[τ1](e1; e2; e3) for some e1, e2, e3 by CFL, i, 2

(b) Assume e = nil[τ1]

i. fold(e; f ; b) 7→ b, by (FoldEval2) and 2b

(c) Assume e = tree[τ1](e1; e2; e3) for some e1, e2, e3

i. fold(e; f ; b) 7→ f e1 (fold(e2; f ; b)) (fold(e3; f ; b)), by (FoldEval3) and 2c

3. Assume e 7→ e′′, for some e′′

(a) fold(e; f ; b) 7→ fold(e′; f ; b), by (FoldEval1) and 3
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Scratch Work:
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Scratch Work:
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