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Abstract. We analyze the antecedents of affective states isimulation
problem-solving environment, The Incredible Machin&Even More
Contraptions, through quantitative field observagiof high school students in
the Philippines using that system. We investigdte transitions between
affective states over time, finding that severd¢ctfve states, including flow,
boredom, and frustration, but not surprise, tengeosist over for relatively
long periods of time. We also investigate how stisleusage choices influence
their later affect, finding that gaming the systieads to reduced confusion but
increased boredom.

1 Introduction

In recent years, researchers of intelligent tutpsgstems and interactive learning
environments have investigated ways in which thegstems can be made to
recognize and respond to differences in studerftstta Researchers in these areas
have developed systems which attempt to recogniferehces in student affect,
using a variety of types of data, from biometriosm@s [1,6], to posture data [15], to
interaction patterns in system logs [11]. Work tosdgadeveloping systems that can
reliably detect affect has sparked progress in ldpimg systems that can respond to
differences in affect. For instance, pedagogigehts have been designed with social
intelligence that takes account of a learner’s énal state [13], in order to guide the
learner to an optimal emotional state for learnidy The goal of learning
environments that respond to differences in affedb influence and improve each
student’s affect, and through doing so boost stigdégarning gains and enhance their
overall learning experience.

However, until recently, there has been relativiglle consideration of the natural
dynamics and shifts in students’ affect, in leagnémvironments that do not explicitly
attempt to monitor and alter affect. Understandiffgctive dynamics in non-affective
learning environments will be useful to researchermany fashions. First of all, it
will help us set goals for the design of affectigarning environments. For instance,
the elimination of common affective transitions,es both the start and end affective
states are considered negative (what D’'Mello €i1€] refer to as vicious cycles),
may be as important as creating positive affedtigasitions. In addition, if we know



which transitions between negative and positiveedife states are reasonably
common, we may more easily be able to improve sitstl@ffect by strengthening
naturally occurring beneficial affective transitigras opposed to attempting to create
transitions which seldom occur naturally.

Second, understanding and modeling affective dyoswill provide a baseline to
use in understanding the impact of systems thaimgt to influence affect. If a
common affective transition disappears or a preslipunseen transition develops in
an affective learning environment, it will be eadie infer how the environment has
influenced students’ affect.

Third, a model of affective dynamics will provideidence on the base rate of an
affective state in a given situation beyond just tverall frequency of that affective
state. Understanding affective dynamics may theeefoake it possible to develop
more successful detectors of affect.

Hence, modeling and understanding affective dynammcay lead to the
development of more accurate and useful affecéaening environments.

However, there has only been limited research, tAysinto affective dynamics.
In one early paper on this subject, Guastello aisdcblleagues [12] studied the
dynamics of a single affective state, flow [8], otiene. Two more recent papers have
investigated specific aspects of affective dynami2¥/ello, Taylor, and Graesser
[10] studied the transition between affective ®tdtean intelligent tutoring system,
AutoTutor. They computed the likelihood that leasneould transition between a set
of affective states thought to be relevant to leeymnboredom, flow, confusion,
frustration, delight, and surprise. They foundtthearners experiencing negative
affective states such as boredom and frustratiam Vileely to remain in these states.
They were not likely to transition out of them aintb more positive states such as
flow or delight, nor to potentially more positiveates such as confusion or surprise.

A second recent paper, by Rodrigo et al [16], exawohithe relationship between
these same affective states and a set of potersé#e choices drawn from [3]: on-
task, on-task conversation, off-task conversatiofi;task solitary, inactive, and
gaming the system, focusing on how affective statélsence later usage choices.
Baker, et. al [3] define gaming the system as faftiing to succeed in an educational
environment by exploiting properties of the systeather than by learning the
material and trying to use that knowledge to answeerectly.” This study, conducted
within a simulation problem-solving environment,eTimcredible Machine, found that
boredom, confusion, and the affective state codedeutral were antecedents to
gaming. Frustration, flow, and delight were notirid to be antecedents to gaming
the system.

The findings from [10] and [16] lead to further gtiens: Are the affective state
transitions found in D’Mello et al [10] generaliZzaB Are they particular to intelligent
tutoring systems, or do they hold true for othepety of interactive learning
environments? And, do usage choices influencectife states to the same extent
that affective states influence usage choices?

In this paper, we study these questions withincthrgext of a simulation problem-
solving environment, The Incredible Machine. Wel wiinsider data relevant to these
guestions, and discuss the implications for theigdesof affective learning
environments.



2 Study Methods

We studied affective dynamics within a high schmalthematics class in a private
school in urban Manila, in the Philippines. Studagés ranged from 14 to 19, with
an average age of 16. Thirty-six students partieghan this study (17 female, 19
male).

Each student used The Incredible Machine: Even MBwetraptions [18] (shown
in Figure 1), a simulation environment where therusompletes a series of logical
“Rube Goldberg” puzzles. In each puzzle, the stutlas a pre-selected set of objects
to use, such as scissors, ropes, and pulleysrieagenerators, and animals. The
student must combine these objects in order toraplish a pre-defined goal, such as
lighting a candle or making a mouse run. If a shide stuck, he or she can ask for a
hint; hint messages display where items shouldbatéd in a correct solution to the
current problem (but do not show which item shdagdplaced in each location).

Each student used The Incredible Machine for tenutes, and each student’s
behavior and affect was observed several timeseasrishe used The Incredible
Machine. The observations were conducted using thadewhich incorporated
aspects of Baker et al's [3] quantitative field ehstions of student behavior
categories, and Craig et al's [7] laboratory obagons of affect. The observations
were carried out by a team of six observers, wgrkin pairs. The observers were
Masters students in Education or Computer Scieaoe, all but one had prior
teaching experience. Observations were conductedrdiag to guide that gave
examples of actions, utterances, facial expressionsody language that would
imply a behavior or an affective state, and practithe coding categories in another
school prior to this study.

As in Baker et al, each observation lasted twemriyosds, and was conducted
using peripheral vision, i.e. observers stood diadlg behind or in front of the
student being observed and avoided looking attiisest directly, in order to make it
less clear exactly when an observation was ocaurtfrtwo distinct behaviors were
seen during an observation, only the first behawbserved was coded, and any
behavior by a student other than the student ctlyrbaing observed was not coded.

During the laboratory sessions in which the data gathered, it was not possible
for the entire class to use the software at theestaimme, due to the size of the school
computer laboratory; hence, students used the addtim groups of nine (one student
per computer), during their class time. Each péioliservers was assigned to three
students and alternated between them. Since eaenaltion lasted twenty seconds,
each student was observed once per minute.

Observing students more frequently than in [3,7]dend possible to directly
analyze the relationship between a student’s affecttate at a given time and their
usage choices shortly thereafter.

Within an observation, each observer coded both stivelent’s behavior and
affective state, using coding schemes developegrior research. The observers
trained for the task through a series of pre-olz@n discussions on the meaning of
the usage and affective categories.

The usage categories coded were adapted fromr@Jaee as follows:

1. On-task — working within The Incredible Machine
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Figure 1. A screen shot from The Incredible Machine: Even é/Gontraptions.

On-task conversation— talking to the teacher or another student abdwat T
Incredible Machine, or its puzzles

Off-task conversation— talking about any other topic

Off-task solitary behavior —behavior that did not involve The Incredible
Machine or another person (such as reading a magarisurfing the web)

Inactivity — instead of interacting with other students or tbéveare, the
student stares into space or puts his/her head dawine desk.

Gaming the System- sustained and/or systematic guessing, suchgangn
objects haphazardly or trying an object in everposivable place. Also,
repeatedly and rapidly requesting help in ordétei@te to a solution.

The affective categories coded were drawn from(9,%ince many behaviors can
correspond to an emotion, the observers lookedtfatents’ gestures, verbalizations,
and other types of expressions rather than attegptd explicitly define each
category. The categories coded were:

1.

Boredom — behaviors such as slouching, and resting tha ohi his/her
palm; statements such as “Can we do something’edse? This is boring!”

Confusion —behaviors such as scratching his/her head, reggdtedting at
the same interface elements; statements such ag &Wih't it work?”

Delight — behaviors such as clapping hands or laughing wieasure;
statements such as “Yes!” or “I got it!”

Surprise — behaviors such as jerking back suddenly or ggs@itatements
such as “Huh?” or “Oh, no!”



5. Frustration — behaviors such as banging on the keyboard or guliin
his/her hair; statements such as “This is annoyiogtWhat's going on?!?”

6. Flow — complete immersion and focus upon the system8fcfbehaviors
such as leaning towards the computer or mouthimgtisns to him/herself
while solving a problem

7. The Neutral state, which was coded when the student did npeapto be
displaying any of the affective states above, ergtudent’s affect could not
be determined for certain.

Some of these affective categories may not be riytexclusive (such as
frustration and confusion), though others cleanlg &elight and frustration). For
tractability, however, the observers only coded affiective state per observation.

Past research has suggested that brief observagonke reliable indicators of a
student’s affective state, whether carried out [@por by watching screen-capture
videos [11]. 706 observations were collected, fomgerage of 19.6 observations per
student. Inter-rater reliability was acceptablythagross all observations — Cohen’s
[4] k=0.71 for usage observations;0.63 for observations of affective state.

3 Prior Research with this Data Set

Data from this study was previously used in orderanalyze how affect
influences students’ behavior [16]. In this sectiare will briefly recapitulate the
results reported in that paper, in order to infdhm analyses we present within the
current paper.

Within this data, the most common affective stases\ffow, coded in 61% of the
observations. The dominance of the flow state viaslas to results seen in prior
studies of affect in students using intelligenbtirtg systems [7,10]. The second most
common category was confusion, observed 11% of time. Boredom (7%),
frustration (7%), delight (6%), and the neutraltestgb%) were each seen in a small
but definite proportion of the observations. Bomadavas less common than in
previous work studying affect in intelligent tutogi systems [7,10], but frustration
was more common. Surprise was the rarest catelgotyyas still observed (3%).

The two most common behaviors observed were workingask with the
software (80% of observations), and talking on-t@8 of observations). Gaming the
system was the third most common category of behaebserved 8% of the time.
Off-task conversation and off-task solitary behawi@re quite rare, occurring 0.5%
and 0.3% of the time — this frequency is much lothem the frequency of off-task
behavior in intelligent-tutor classrooms [3] butnggarable to the frequency of off-
task behavior among students playing non-educdtamteon games [20].

Gaming the system was strongly associated withdmneand confusion — a
student who was bored or confused was significamtbye likely to game the system
both at the time he or she was bored/confusedpaadninute afterwards. Frustration



significantly co-occurred with gaming, but was associated with later gaming. The
neutral state was associated with gaming one miatge, but did not co-occur with
gaming. Delight never co-occurred with gaming aogaded gaming.

4 The Antecedents of Affective States

In this section, we will analyze how affect and gesachoices influence a
student’s later affect, specifically looking at hajwven affective states and usage
choices influence the probability of a student beim a specific affective state one
minute later.

In conducting these analyses, it is important ke tato account the base rates of
each affective category. Flow was the dominantgmate within our observations;
hence, flow is likely to be the most common affeetstate that followsny other
affective state. In order to appropriately accolantthe base rate of each affective
category in assessing how likely a transition i® adopt D'Mello et al's [10]
transition likelihood metricL, which is statistically equivalent to Cohen’s 5]
D’Mello et al's L gives the probability that a transition between tffective states
will occur, given the base frequency of the desiimastate, and is computed:

| = Pr(NEXT| PREV) - Pr(NEXT)
(L-Pr(Nexd)

L is scaled between 1 ando. A value of 1 means that the transition will ahgay
occur; a value of 0 means that the transition’slifood is exactly what it would be
given only the base frequency of the destinatiatestValues above 0 signify that the
transition is more likely than it could be expectede given only the base frequency
of the destination state, and values under 0 sighdt the transition is less likely than
it could be expected to be given only the baseugeaqy of the destination state.

For a given transition, we calculate a value fofor each student, and then
calculate the mean and standard error across studéte can then determine if a
given transition is significantly more likely thahance (0), given the base frequency
of the next state, using the two-tailed t-testdoe sample.

4.1 Transitions Between Affective States

In this section, we will examine how a student'teefive state at a given time
influences their affective state at a later timéhim the Incredible Machine. Within
the data, four transitions were significantly orrgiaally significantly (p<0.10) more
likely than chance, and five transitions were digantly or marginally significantly
less likely than chance. Ten transitions did nauoavith sufficient frequency for it to
be possible to compute a standard error valuettarslwill be excluded from formal
statistical analysis (however, it can thereforeitferred that these transitions are
quite rare). With seven affective states, 49 ttiors are theoretically possible. Nine



of the 39 transitions with sufficient data werersiigant or marginally significant; by
chance, one would expect 3.9 transitions to beifgignt or marginally significant.
The probability of 9 of 39 transitions being sigraint or marginally significant is
0.014 (computed by Monte Carlo simulation [14], D0® runs), so it appears quite
unlikely that the pattern of results is due to aean

One very clear pattern that emerged from the datthat affective states are
persistent — if a student is in a given affectitegesat a given time, he or she is likely
to be in that state one minute later as well. Tgatern is true of the transition
boredom-> boredom (Mear = 0.26, SE = 0.11, t(7)=2.27, p=0.06), confusidn
confusion (MearL. = 0.10, SE = 0.06, t(20)=1.68, p=0.11), delightdelight (Mean
L = 0.10, SE = 0.06, t(14)=1.71, p=0.11), fle flow (MeanL = 0.20, SE = 0.12,
t(33)=1.75, p=0.09), and neutrat neutral (MearL = 0.41, SE = 0.09, t(5)=4.59,
p=0.01). It is not clearly true of the transitiondtrated> frustrated (Meah. = 0.12,
SE = 0.08, t(12)=1.56, p=0.14), and appears nbettrue of the transition surprised
-> surprised (Meah = 0.03, SE = 0.06, t(7)=0.54, p=0.61). Interes§in®’Mello et
al [10] found a similar degree of persistence asrdnfiore or less the same affective
states, studying affective transitions within atelligent tutoring system. Both our
results and D’'Mello et al's results found persistéransitions for boredom>
boredom, flow-> flow, confusion—> confusion, and deligh® delight (at the edge of
marginal significance in both studies), and did rimtd significant persistent
transitions for frustrateed frustrated and surprise#ét surprised.

Beyond the state-to-itself transitions, six relasibips were significant or
marginally significant. The neutral state was digantly more likely than chance to
transition to boredom (Meah = 0.23, SE = 0.10, t(5)= 2.44, p=0.06), but
significantly less likely than chance to transittorflow (MeanL =-1.22, SE = 0.37,

BOR |CON |DEL |FLO |FRU |NEU |SUR
BOR |0.26 |000 |-003 |-058 |00l |0.03
(0.11) | (0.13) | (0.03) | (0.42) |(0.06) | (0.08)
CON | 003 |010 |000 |-023 |[-0.03 |-003 |0.03
(0.05) | (0.06) | (0.03) | (0.23) |(0.02) |(0.02) |(0.03)
DEL 002 |0.10 |0.33 -0.01
(0.08) | (0.06) | (0.23) (0.02)
FLO |-0.05 |-004 |-0.03 |020 |0.03 |00l |O0.00
(0.02) | (0.02) | (0.01) | (0.12) |(0.03) |(0.03) |(0.01)
FRU |0.00 |0.15 [-0.05 |-029 |0.12
(0.05) | (0.11) | (0.01) | (0.32) | (0.08)

NEU |0.23 |-0.02 -1.22 | -003 |041
(0.10) | (0.07) (0.37) | (0.04) | (0.09)
SUR -0.02 |0.09 |009 |006 |0.03

(0.04) | (0.38) | (0.12) | (0.12) | (0.06)

Table 1. The transitions between affective states. Horidamtas represent previous affective states, and
vertical columns represent affective states oneutaifater. The first number in each cell is the mealue

of D'Mello’s L across students, the number in parantheses istahdasd error. Cells with insufficient
sample size are left blank (but can be inferrebet@uite rare). Statistically significant relatibips are in
dark grey. Marginally significant relationships amdight grey.




t(5)= -3.29, p=0.02). Flow was significantly leskely than chance to transition to
boredom (MearL = -0.05, SE = 0.02, t(33)= -3.10, p<0.01), confaos{eanL =
-0.04, SE = 0.02, t(33)=-1.86, p=0.07), or deligieanL = -0.03, SE = 0.01, t(33)=
-2.18, p=0.04). Frustration was significantly Iéi&ely than chance to transition to
delight (MeanL = -0.05, SE = 0.01, t(12)= -6.50, p<0.001). Norfe tleese
relationships were significant in D’Mello et al'tudy of affective transitions within
an intelligent tutor. The complete pattern of tiioss is shown in Table 1.

4.2 Usage Choices as an Antecedent to Affect

In this section, we will analyze how a student'sick of how to use a learning
environment at a given time influences their affectstate at a later time. In our
earlier work [16], we found that certain affectigtates are antecedents to certain
usage choices. Specifically, boredom, confusiord #mwe neutral state served as
antecedents to the choice to game the system,hatdi¢light and flow are negative
antecedents to the choice to game the systema(student in flow or delight is less
likely to game one minute later). In the analysissented here, we ask: Does a
student’s current usage choice influence his omffect, the next time it is observed?

Within the data from our study on students using Titcredible Machine, one
antecedent relationship was significantly more ljikehan chance, and three
antecedent relationships were significantly or ritealdy significantly less likely than
chance. Sixteen antecedent relationships did matrogith sufficient frequency for it
to be possible to compute a standard error valod,thus will be excluded from
formal statistical analysis (though these relatigps can be inferred to be quite rare).
With 7 affective states and 6 usage categoriesadt2cedent relationships are
theoretically possible. Four of the 26 antecedefationships with sufficient data
were significant or marginally significant; by cli@) one would expect 2.6
antecedent relationships to be significant or mmaigy significant. The probability of
4 of 26 antecedent relationships being significanimarginally significant is 0.28
(computed by Monte Carlo simulation [14], 100,0aMs), so it appears that the
pattern of results could be due to chance. Howevés still possible to trust that an
individual antecedent relationship is significaihthiat antecedent relationship is still
significant after applying a Bonferroni proceduter], which takes the number of
tests run into account. In this case, we find phatust be less than 0.0018 for the test
to be truly significant. Antecedent relationshiphieh are not significant, given a
Bonferroni procedure, must be considered suggestather than statistically
significant.

As mentioned, four antecedent relationships areisstally significant or
marginally statistically significant. Two involveaming the system. First, a student
who games the system is significantly less likelyoe confused a moment later; this
result is significant even after the Bonferroni ggdure is applied (Mea = -0.11,
SE = 0.02, t(11)= -6.37, p<0.001). Since confusisnan antecedent to gaming
behavior, this suggests that a student who is ceefgames the system to get past a
confusing problem and that the gaming strategy igdigesucceeds in bypassing the
confusing problem, enabling a transition out of tbaefused affective state.

A student who games the system also appears toope likely to be bored a
moment later, though this second result does niat &fter applying the Bonferroni



procedure (Mearh = 0.26, SE = 0.12, t(11)= 2.18, p=0.05). If thidationship is
confirmed by later studies, it will have interegtimplications. Since boredom is also
an antecedent to gaming behavior, this result waulggest that a student who is
bored games the system to alleviate their borednrhthat this strategy backfires,
because the student’'s chance of being bored a eniafier gaming is actually
increased relative to the general incidence obffective state.

It is worth noting that a student who games thaesysdoes not appear to be
more likely to be frustrated a moment later (Méan 0.005, SE = 0.05, t(11)= 0.12,
p=0.91). In our earlier work, we found that frusiba is also not an antecedent to
gaming behavior, but that gaming behavior and fatisth co-occur more than would
be expected by chance. If frustration neither pedsenor follows gaming, but co-
occurs with gaming, it may be the case that thstudent who attempts to game the
system but does not immediately succeed becomssdted until he or she succeeds
in gaming the system, and that his or her frusirainds as soon as the attempt to
game the system is successful.

Two other antecedent relationships are margingdlssically significant — both
involve students who are on-task, working with thestem. On-task behavior is
marginally significantly negatively associated withreduction in both frustration
(MeanL = -0.026, SE = 0.014, t(34)= -1.85, p=0.07) antigtie (MeanL = -0.020,
SE = 0.012, t(34)= -1.68, p=0.10). Neither of thessults hold after applying the
Bonferroni procedure. The complete pattern of fitaoms is shown in Table 2.

BOR |CON |DEL |FLO |FRU |NEU | SUR
GAMING | 026 [-0.41 |-0.02 |-0.47 |00l |0.09

THE (0.12) | (0.02) | (0.04) | (0.29) | (0.05) | (0.08)
SYSTEM

STARING |0.03 |-0.05 |0.15 |-090 |021 |0.05
INTO (0.11) | (0.08) | (0.21) | (0.50) | (0.21) | (0.11)
SPACE

SOLITARY
OFF-TASK

TALKING
OFF-TASK

ON-TASK | 0.00 |0.00 |-0.02 |006 |-0.03 |0.01 |0.00
(0.02) |(0.03) | (0.01) |(0.12) | (0.01) | (0.03) | (0.01)
ON-TASK |-0.03 |-0.07 |0.10 |-0.14 |0.04 |-001 |0.02
CONVERS.| (0.05) | (0.05) | (0.07) | (0.24) | (0.06) | (0.03) | (0.04)

Table 2. Usage choices as antecedents to affective statefzortal rows represent usage choices, and
vertical columns represent affective states oneutaifater. The first number in each cell is the mealue

of D’'Mello’s L across students, the number in parantheses istahdasd error. Cells with insufficient
sample size are left blank (but can be inferrebet@uite rare). Statistically significant relatibips are in
dark grey. Marginally significant relationships amdight grey.



5 Discussion and Conclusions

In this exploratory study, we have investigatedahtecedents of affective states,
both in terms of how affective states precede o#tiferctive states, and in terms of
how usage choices influence later affective statéthin the context of the use of a
simulation-based learning environment, The IncreditMachine: Even More
Contraptions. The first of these issues, how affecstates influence later affective
states, was previously studied by D'Mello and liBeagues [10], in the context of a
very different type of learning environment, areiligent tutoring system, and using
quite different experimental methods. Their maimding was that if a student is in
any affective state at a given time, they are Jikel be in the same affective state a
minute later. We replicated this finding over thejamity of the affective states
studied: flow, boredom, confusion, frustration, afelight (both studies found that
delight > delight was almost significant). At the same tinbeth our study and
D’Mello et al's study found that being surprisedaagiven time isiot associated with
being surprised a moment later. This result isamainter-intuitive — how long can
someone genuinely be surprised? — but this residgests that it is probably
mistaken to conceptualize surprise as being pathefsame category of affective
states as flow, boredom, confusion, frustratiord delight. Instead, perhaps surprise
should be conceptualized as a “transient affectte¢e”, as distinguished from other
“durable affective states”.

An interesting area for future research will bedtermine if the other five
affective states are all persistent to the samaedeg— if some affective states
predominate for 20 minutes in a row whereas othensl to dissipate after 3 or 4
minutes, it will suggest that some affective statesy actually be “moods” [cf. 17;
personal communication, Sidney D’Mello], which ldst considerably longer than
other types of affective states. The data uselisnpgaper was neither lengthy enough
nor did it have a large enough sample to answes thiestion; addressing this
question will be an important focus of future reskain the field. It will be
interesting, as well, to determine if the distinog between moods and affective
states apply across multiple types of learning remvnents, as the distinction between
surprise and other affective states did.

The second major issue investigated in this papew usage choices within
interactive learning environments influence latéfie@, has not to our knowledge
been explicitly addressed in prior research, thotgh converse question, how
affective states influence usage choices, wasesduidi[16]. Our results in this paper
found that relatively few usage choices appearddftoence later affect. This forms
an interesting contrast to the pattern of resultgls], where almost every affective
state significantly influenced whether a studentuldoater game the system. The
combined pattern of results suggests that affedtusage choices may form a mostly
one-way relationship — affect appears to influemsage much more than usage
influences affect. However, we should obtain datgilar to the data obtained in this
paper for a system where off-task behavior is aemmwmmon choice (such as
intelligent tutors [cf. 3]) before concluding thhis pattern is generally true; off-task
behavior may have stronger implications for futaféect than the usage choices
common in the Incredible Machine.



However, the primary relationships between usagécehand affect found in this
study provide insight as to the implications ofdgnts’ usage choices. Given existing
knowledge that both boredom and confusion leadch¢ochoice to game the system
[16], it is interesting that gaming the system sifively associated with future
boredom but negatively associated with future csisiu This result suggests that
gaming the system can be an effective strategyalleviating confusion (albeit a
strategy that carries with it the cost of signifity poorer learning [3]), but not an
effective strategy for alleviating boredom. To theent that students game the system
for different reasons, and with different resulés,system’s responses to gaming
behavior should likely vary depending on why thedsint is gaming.

If we acknowledge that gaming the system doesweligtudents’ confusion,
perhaps we can develop systems to take advantathe @hgagement with the task
that confusion implies, and that attempt to respandaming by helping students to
find more constructive ways to alleviate their amibn (such as, for instance,
supplementary exercises [2]). On the other haimdesgaming the system does not
successfully alleviate boredom, perhaps a systemdfavith a bored student should
attempt to prevent gaming behavior entirely by rigkimmediate measures to
alleviate the student’s boredom. Since such a systey address boredom more
effectively than the student could by gaming, thigproach could completely
eliminate bored students’ incentive to game theesys

Overall, by studying how affect changes over timed how usage choices and
affect influence one another, we will be able taneoto a full and rich picture of
learners’ experiences as they use interactive ilegrenvironments. This knowledge
will be essential to the project of developing lingent affective environments which
can assess differences in students’ affect andvilwhand can respond to those
differences in effective and constructive fashions.
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