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Abstract.  A recent innovation in student knowledge modeling is the 

replacement of static estimates of the probability that a student has guessed or 

slipped with more contextual estimation of these probabilities [2], significantly 

improving prediction of future performance in one case. We extend this method 

by adjusting the training set used to develop the contextual models of guessing 

and slipping, removing training examples where the prior probability that the 

student knew the skill was very high or very low. We show that this adjustment 

significantly improves prediction of future performance, relative to previous 

methods, within data sets from three different Cognitive Tutors. 

1 Introduction 

Developing accurate models of students’ knowledge as they use educational software is 

valuable for many goals. First, it enables learning systems to respond more accurately to 

differences in student knowledge, optimizing the amount of practice each student 

receives on each skill [cf. 9]. Second, estimates of student knowledge are often a useful 

component in the development of models of more complex behavioral constructs, such as 

gaming the system [3], which are in turn increasingly used in analyses of learning and 

motivation [cf. 4,10]. As such, assessments of student knowledge are one of the key 

building-blocks of educational data mining. 

One popular and validated method for modeling students’ knowledge is Corbett and 

Anderson’s [9] Bayesian Knowledge Tracing model, which has been used within 

Cognitive Tutors [cf. 1] for mathematics [1], computer programming [9], and reading 

skill [7]. This model is statistically equivalent to the two-node dynamic Bayesian network 

used in many other learning environments [14].  

Bayesian Knowledge Tracing keeps a running assessment of the probability that a student 

currently knows each skill, continually updating that estimate based on student behavior 

and algorithms derived from Bayes Theorem. In order to do this, Bayesian Knowledge 

Tracing uses four parameters for each skill, including a probability that the student will 

“guess” and obtain a correct answer without knowing the skill (G) and a probability that 

the student will “slip” and obtain an incorrect answer even though the student knows the 

skill (S). In Corbett and Anderson [9], these parameters are estimated from data for each 

skill and are invariant across context (i.e. for a given skill, any student will always have 

the same probability of slipping, no matter what the situation is). 

Recent work has attempted to improve on Corbett and Anderson’s original approach. 

Beck and Chang [6,7] noted that multiple sets of parameters fit performance data equally 

well within Corbett and Anderson’s approach, and introduced a method for selecting a 

single best set of parameters, using Dirichlet Priors fit across skills. The Dirichlet Priors 



 

 

method significantly improved fit to data from the Geometry  Cognitive Tutor[6], but did 

not improve fit to data from a Cognitive Tutor for middle school mathematics [2].  

In other recent work, Baker, Corbett, and Aleven [2] presented a method for estimating 

the guess (G) and slip (S) model parameters contextually. In this approach the model’s 

estimate of the probability that an action is a guess or slip is no longer invariant – instead, 

it depends on details of the action (such as how much time the action took, and how often 

the student requested help on the skill in the past). Though the Contextual Guess and Slip 

approach used about half as many parameters as Corbett and Anderson’s original 

approach and Beck and Chang’s Dirichlet Priors approach, it was significantly more 

successful at predicting student performance within an intelligent tutoring system for 

middle school mathematics [2] than either of these two earlier approaches.  

In this paper, we propose an extension to the Contextual Guess and Slip method. 

Specifically, we refine the training set used to generate the contextual models of guessing 

and slipping, in order to make the training set more representative of the situations where 

these estimates will affect predictions of future student performance. We study this new 

model both in the same data set as [2] and replicate its effectiveness in two new data sets, 

from Cognitive Tutors on Geometry and Algebra. This paper’s contribution is both in 

showing that this extension significantly improves the model, and in showing that the 

Contextual Guess and Slip method improves prediction in multiple intelligent tutors.  

2 Bayesian Knowledge-Tracing 

As previously mentioned, the Contextual Guess and Slip model of student knowledge is 

an extension of Corbett and Anderson’s [9] Bayesian Knowledge Tracing model. Both 

models compute the probability that a student knows a given skill at a given time, 

interpreting data on student performance with a four-parameter model.  

In the models’ canonical form, each problem step in the tutor is associated with a single 

cognitive skill. The model assumes that at any given opportunity to demonstrate a skill, a 

student either knows the skill or does not know the skill, and may either give a correct or 

incorrect response (help requests are treated as incorrect by the model). A student who 

does not know a skill generally will give an incorrect response, but there is a certain 

probability (called G, the Guess parameter) that the student will give a correct response. 

Correspondingly, a student who does know a skill generally will give a correct response, 

but there is a certain probability (called S, the Slip parameter) that the student will give 

an incorrect response. At the beginning of using the tutor, each student has an initial 

probability (L0) of knowing each skill, and at each opportunity to practice a skill the 

student does not know, the student has a certain probability (T) of learning the skill, 

regardless of whether their answer is correct.  

However, the parameter values are different between models. In Corbett and Anderson’s 

approach and Dirichlet Priors, each skill has four parameter values, used in all situations. 

In the Contextual Guess and Slip model, each skill has two parameter values used in all 

situations (L0, T), and two parameter values which vary according to context (G, S). 



 

 

The system’s estimate that a student knows a skill is continually updated, every time the 

student gives a first response (a correct response, error, or help request) to a problem step. 

First, the system re-calculates the probability that the student knew the skill before 

making the attempt, using the evidence from the current step. Then, the system accounts 

for the possibility that the student learned the skill during the problem step. The equations 

for these calculations are:  
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The simplest baseline approach to fitting a Bayesian Knowledge Tracing model is to 

allow each of the four parameters to take on any value between 0 and 1. Corbett and 

Anderson [9] instead used a bounded approach, where the guess and slip parameters are 

not allowed to rise above pre-chosen thresholds. Beck and Chang [7] showed that both of 

these approaches are prone to the “identifiability problem”, where multiple models can fit 

the data equally well. They proposed that models be chosen using Dirichlet Priors, which 

chooses a single best model by biasing parameters towards values that fit the whole data 

set well. Within this paper, we fit parameters for the Dirichlet Priors approach using 

Bayes Net Toolkit-Student Modeling (BNT-SM) [6]. 

However, the baseline and Dirichlet Priors approaches may result in parameters which 

are “theoretically degenerate” [2]. The conceptual idea behind using Bayesian 

Knowledge Tracing to model student knowledge is that knowing a skill generally leads to 

correct performance, and that correct performance implies that a student knows the 

relevant skill. A model deviates from this theoretical conception, and thus is theoretically 

degenerate, when its guess (G) parameter or slip (S) parameter is greater than 0.5. A slip 

parameter over 0.5 signifies that a student who knows a skill is more likely to answer 

incorrectly than correctly; similarly, a guess parameter over 0.5 signifies that a student 

who does not know a skill is more likely to answer correctly than incorrectly. 

3 The Contextual Guess and Slip Model of Student Knowledge 

Baker, Corbett, and Aleven [2] proposed a new way of fitting parameters: estimating 

whether each individual student response is a guess or a slip based on contextual 

information (such as prior history and the speed of response), rather than using fixed 

guess and slip probability estimates across situations. This modeling approach was tested 

within a data set from an intelligent tutor for middle school mathematics, and 

significantly reduced the degree of model degeneracy. This approach was significantly 

better at predicting student performance than models developed using the Dirichlet 

Priors, bounded, and baseline methods, despite using substantially fewer parameters. 

The first step of the Contextual Guess and Slip method is to label a set of existing student 

actions with the probability that these actions involve guessing or slipping, using the 

Dirichlet Priors skill estimates. The set of student actions to be labeled is drawn (in this 



 

 

approach) from the set of first actions on each problem step, on the set of skills for which 

the Dirichlet Priors model is not theoretically degenerate. This set of skills was used, 

rather than all skills, in order to avoid training the models to include model degeneracy. 

Each student action (N) is labeled with the probability that it represents a guess or slip, 

using information about the two actions afterwards (N+1, N+2). Using information about 

future actions gives considerable information about the true probability that a student’s 

action at time N was due to knowing the skill – if actions N, N+1, and N+2 are all 

correct, it is (in most cases) unlikely that N’s correctness was due to guessing. The 

probability that the student guessed or slipped at time N (i.e., the action at time N, which 

we term An) is directly obtainable from the probability that the student knew the skill at 

time N, given information about the action’s correctness: 

P(An is guess | An is correct) = 1- P(Ln)  P(An is slip | An is incorrect) = P(Ln) 

Next, the probability that the student knew the skill at time N can be calculated, given 

information about the actions at time N+1 and N+2 (which we term A+1+2). This is done 

by using Bayes’ Rule to combine 1) the probability of the actions at time N+1 and N+2 

(A+1+2), given the probability that the student knew the skill at time N (Ln); 2) the prior 

probability that the student knew the skill at time N (Ln); and 3) the initial probability of 

the actions at time N+1 and N+2 (A+1+2). 

In equation form, this gives:  ����| ������ �
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The probability of the actions at times N+1 and N+2 is computed as 
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The probability of the actions at time N+1 and N+2, in the case that the student knew the 

skill at time N (Ln), is a function of the probability that the student guessed or slipped at 

each opportunity to practice the skill. C denotes a correct action; ~C denotes an incorrect 

action (an error or help request). 
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The probability of the actions at time N+1 and N+2, in the case that the student did not 

know the skill at time N (Ln), is a function of the probability that the student learned the 

skill between actions N and N+1, the probability that the student learned the skill 

between actions N+1 and N+2, and the probability of a guess or slip. 
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Once the set of actions is labeled with estimates of whether each action was a guess or 

slip, the labels are used to train models that can accurately predict at run-time the 

probability that a given action is a guess or slip. The original labels were developed using 

future knowledge, but the machine-learned models predict guessing and slipping using 

only data about the action itself and events before the action (i.e. no future data is used).  

For each action, a set of 23 features are distilled to describe that action, including 

information on the action itself (time taken, type of interface widget) and the action’s 

historical context (for instance, how many errors the student had made on the same skill 

in past problems). Linear Regression is then used, within Weka [16], to create 2 models 

predicting the probability of guessing (model 1) and slipping (model 2).  

Finally, these 2 models are used within Bayesian Knowledge Tracing to dynamically 

estimate the probability that each response is a guess or a slip. The first action of each 

opportunity to use a skill is labeled (using the machine-learned models) with predictions 

as to how likely it is to be a guess or slip, and parameter values are fit for P(T) and P(L0), 

for each skill. At this point, this model – like the earlier work – can make a prediction 

about student knowledge each time a student attempts to use a skill for the first time on a 

given problem step. It is worth noting that this model involves considerably fewer 

parameters than previous models – whereas the Dirichlet Priors and baseline models had 

exactly 4 parameters per skill, this model fits just over 2 parameters per skill (parameters 

for T and L0 for each skill, with parameters for G and S amortizes across all skills). 

4 Choice of Data Set Used to Train Contextual Models 

In the version of the Contextual Guess and Slip method published in [2], the data set used 

to train a knowledge model is the set of first actions on each problem step, on the set of 

skills for which the Dirichlet Priors model is not theoretically degenerate. However, there 

are potential drawbacks to using this data set. Specifically, if the data set involves 

significant amounts of over-practice, there may be a large number of actions for which a 

student has a probability close to 1 of knowing the relevant skill. On these actions, the 

estimated probability that any incorrect response is due to a slip may be very close to 1, 

and the probability that any correct response is due to a guess may be very close to 0. 

To give an example: Let us consider a skill which has Dirichlet Prior values of P(G) = 0.3 

P(S) = 0.2, P(T) = 0.1, and at the current opportunity to practice the skill P(Ln-1) = 0.99. 

If the current action is incorrect (~C), and the following two actions are not correct 

(~C,~C), it is reasonable to assume that the current incorrect action is due to not knowing 

the skill, rather than a slip. However, the probability that the current action was a slip will 

be very high, 97.6%, according to the equations above, because of the very high value of 

P(Ln-1). This may be the correct prediction in this context; but if the model trains on this 

prediction and then uses it in different contexts when P(Ln-1) is further from 1, the 

probability that those actions are slips may be overestimated. (One explanation for why 

three errors in a row could occur on a skill with very high P(Ln-1) is that the mapping 

between actions and skills may have errors [cf. 8,9]; fixing such errors is a research topic 

in its own right [cf. 5,8]). 



 

 

Pragmatically, it is more important for 

these estimations to be accurate when 

(Ln) is distant from 0 and 1. As P(Ln-1) 

approaches 1, P(S) has less and less 

impact on P(Ln) – the base probability 

is too extreme. This can be seen in 

Figure 1. Similarly, as P(Ln-1) 

approaches 0, P(G) has less and less 

impact on P(Ln). Hence, it is more 

important for the model to be highly 

accurate in cases where P(Ln) is not 

very close to 0 or 1.  

One way to accomplish this is to 

truncate the training set, so that actions 

where P(Ln-1) is too close to 0 or 1 are 

omitted. We choose the cutoffs 0.1 and 0.9, to err on the side of truncating too much 

rather than truncating too little. Hence, only cases where 0.1 < P(Ln-1) < 0.9 are included 

in the training set for the models of guessing and slipping. We can then follow the 

procedure given in the previous section to create the machine learned models of guessing 

and slipping, and then use these models in the model of student knowledge. 

We call the resultant knowledge model Truncated Training Set Contextual Guess and 

Slip, or Contextual-Trunc for short. In the following sections, we will compare this model 

to a version of the Contextual model without any truncation of the training set, and to the 

Dirichlet Priors model. To avoid bias, all models are evaluated on non-truncated data.  

5 Data 

We evaluate the models of knowledge tracing discussed here within data sets drawn from 

three Cognitive Tutors, on Algebra, Geometry, and Middle School mathematics. 

Cognitive Tutors are a popular type of interactive learning environment now used by 

around half a million students a year in the USA. In Cognitive Tutors, students solve 

problems, with exercises chosen based on the student knowledge model [1], on-demand 

help, and instant feedback. Cognitive Tutors have been shown to significantly improve 

student performance on standardized exams and tests of problem-solving skill [13]. 

The Algebra and Geometry data sets were obtained from the Pittsburgh Science of 

Learning Center DataShop (https://learnlab.web.cmu.edu/datashop/). The DataShop is a 

public resource for the learning science community, giving free access to anonymized  

Table 1. The size of each data set (after exclusion of actions not labeled with skills) 

 Actions Problem Steps Skills Students 

Middle School 581,785 171,987 253 232 

Algebra 436,816 136,408 88 59 

Geometry 244,398 32,997 144 88 



 

 

data sets of student use of learning software. The Middle School data set was previously 

collected by the authors [cf. 3]. Each data set consisted of an entire year’s use of an 

intelligent tutor in schools in the suburbs of a city in the Northeastern USA; we are not 

aware of any overlap in the student population between data sets. Within each data set, 

actions which were not labeled with skills (information needed to apply Bayesian 

Knowledge Tracing) were excluded. However, all other actions on all other skills 

(including actions eliminated from the Contextual and Contextual-Trunc training sets) are 

included. The magnitude of the data sets is shown in Table 1. 

6 Results 

Bayesian Knowledge-Tracing models make predictions about student knowledge (i.e. the 

probability a student knows a skill at a given time). These predictions can be validated by 

comparing them to future performance in two ways. The first is to compare actions at 

time N to the models’ predictions of the probability that actions at time N will be correct 

– P(Ln)*P(~S)+ P(~Ln)*P(G). This method accurately represents exactly what each 

model predicts; however, this method biases in favor of the Contextual Guess and Slip 

models, since those models use information associated with the answer being predicted to 

estimate the probability of guessing and slipping. Therefore, we instead compare actions 

at time N to the models’ predictions of the probability that the student knew the skill at 

time N, before the student answered. This method under-estimates goodness of fit for all 

models (since it does not include the probability of guessing and slipping when 

answering), but is preferable because it does not favor any model.  

We use A' (the probability that the model can distinguish a correct response from an 

incorrect response) as the measure of goodness-of-fit. A model with an A' of 0.5 

performs at chance, and a model with an A' of 1.0 performs perfectly. To assess the 

statistical significance of the differences between models, we compute A' for each student 

in each model, compute the standard error of the A' estimates [12], use a Z test to find the 

difference between models within each student [11], use Stouffer’s Z [15] to aggregate 

across students, and finally compute the (two-tailed) statistical significance of the Z score 

obtained. This method does not collapse across any data (i.e. it is not overly conservative) 

but accounts for the non-independence of actions within a single student. 

Within the Middle School data set, the Dirichlet Priors approach achieves an average A', 

across students, of 0.641. The Contextual approach achieves an average A' of 0.749. The 

Contextual-Trunc approach achieves an average A' of 0.758. The Dirichlet Priors 

approach is statistically significantly poorer than the other two approaches, Z=59.56, 

Table 2. The A' of each model within each tutor, across students. The Contextual-Trunc model is in 

boldface where it is statistically significantly better than the Dirichlet Priors model, and in italics 

where it is statistically significantly better than the Contextual model.  

 Dirichlet Priors Contextual Contextual-Trunc 

Middle School 0.641 0.749 0.758 

Algebra 0.694 0.632 0.707 

Geometry 0.638 0.666 0.669 



 

 

 

p<0.0001, Z=64.17, p<0.0001. The Contextual-Trunc approach is statistically 

significantly better than the Contextual approach, Z=4.59, p<0.0001. 

Within the Algebra data set, the Dirichlet Priors approach achieves an average A' of 

0.694. The Contextual approach achieves an average A' of 0.632. The Contextual-Trunc 

approach achieves an average A' of 0.707. The Contextual-Trunc approach is statistically 

significantly better than the Dirichlet Priors approach, Z=2.89, p<0.01. However, the 

Contextual approach is statistically significantly worse than the Dirichlet Priors approach, 

Z= -27.76, p<0.0001. The Contextual-Trunc approach is statistically significantly better 

than the Contextual Approach, Z= 30.65, p<0.0001. 

Within the Geometry data set, the Dirichlet Priors approach achieves an average A' of 

0.638. The Contextual approach achieves an average A' of 0.666. The Contextual-Trunc 

approach achieves an average A' of 0.669. The Contextual-Trunc approach is statistically 

significantly better than the Dirichlet Priors approach, Z=2.52, p=0.01; the difference 

between the Dirichlet Priors approach and the Contextual approach is (at best) marginally 

significant, Z=1.60, p=0.11. The difference between the Contextual and Contextual-

Trunc approaches is not significant, Z=0.92, p=0.35. 

The full pattern of results is shown in Table 2. As can be seen, the Contextual-Trunc 

model consistently performed better than the Dirichlet Priors model. The Contextual 

model, by contrast, performed almost as well as the Contextual-Trunc model in two 

cases, but was far worse than the other models in the Algebra data set. The primary 

difference appears to have been that the Algebra Contextual model predicted massively 

more slips than the other two models did. Whereas the average value of P(S) (across 

skills) in the Algebra Dirichlet Priors model was 0.19, and the average value of P(S) 

(across actions) in the Algebra Contextual-Trunc model was 0.38, the average value of 

P(S) (across actions) in the Algebra Contextual model was 0.67. Values of the slip 

parameter above 0.5 are degenerate, as discussed earlier; these values cause the model to 

very quickly infer that a student has mastered a skill, even when the student displays poor 

performance. By truncating the data set used to train the contextual model of slipping, the 

Contextual-Trunc model avoids this degenerate performance and is significantly more 

successful at predicting student performance.  

7 Conclusions 

In this paper, we have presented an improvement to the Contextual Guess and Slip model 

proposed in [2]. Earlier models of student knowledge [cf. 7,9] estimated a single 

probability of guessing and slipping for each skill, and used that estimate for all actions. 

By contrast, the model presented here (and the model in [2]) contextually estimate the 

probability that a student obtained a correct answer by guessing, or an incorrect answer 

by slipping. The Contextual models also use fewer parameters to estimate student 

knowledge than previous models. 

In earlier work [2], contextual models of guess and slip were trained using every action 

involving non-degenerate skills. In this paper, we adjusted the training set, removing 



 

 

actions where the probability that the student already knows the skill is below 0.1 or 

above 0.9. Truncating the training set in this fashion avoids training on cases where 

probabilities of guess or slip are close to 0 or 1 due to prior probabilities rather than the 

information contained in successive actions. 

We show that using a truncated training set leads to models which are statistically 

significantly better at predicting future student performance than the Dirichlet Priors 

approach to parameter selection. A non-truncated training set is also better than Dirichlet 

Priors in two cases, but in a third case (the Algebra data set) performs significantly 

worse, due to assigning degenerate values for the slip parameter. This shows that it is 

valuable to test new student modeling methods on data sets from different learning 

software (increasingly available in publicly accessible databases such as the PSLC 

DataShop), since the non-truncated data set would have been perfectly adequate in the 

Geometry and Middle School data sets.  

Further investigation of how to optimally truncate training sets is probably warranted. 

The choice of 0.1 and 0.9 as cut-offs in this data set is based on data but ultimately 

arbitrary, and while the solution is effective, a more principled method for selecting cut-

offs may lead to better performance. Studying whether truncation of training sets is useful 

to other classification problems in educational data is another area for future work; input 

probabilities very close to 0 or 1 are likely to bias the output of any Bayesian method.  

At this point, contextual estimation of guess and slip has proven to be better at predicting 

future performance than earlier methods for student knowledge modeling, for three 

different learning systems. In the long term, more sensitive and accurate estimation of 

student knowledge has the potential to improve the effectiveness of learning software. 

Additionally, as accurate knowledge modeling is a key component of models of complex 

student behavior used in data mining analyses [cf. 4, 10], better knowledge modeling is 

likely to be useful to the broader advancement of the field of educational data mining.  
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