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Introduction 

Interactive educational technologies, like intelligent tutoring systems, provide an excellent 

platform on which to perform research on metacognition. Such systems provide fine-grained 

tracking and assessment of students’ cognitive and metacognitive behaviors.  They also facilitate 

the implementation of tightly controlled experiments within the context of real classrooms.  This 

chapter covers recent research on the impact of different types of metacognitive support in 

intelligent tutoring systems on both the learning of domain content and desired metacognitive 

behaviors. We describe results from four lines of controlled experimentation, mostly performed 

in the context of real classrooms, in vivo.  Our results show clear benefits of metacognitive 

supports for domain content learning.  We also demonstrate innovative methods for assessing 

real-time metacognitive behaviors as students are engaging in learning activities.  Finally, we 

present some partial success in attempts to produce lasting improvements in metacognitive 

behaviors themselves and discuss why metacognitive behaviors may be resistant to change.     

Following Brown (1983), we define metacognition as thinking about cognition (memory, 

perception, reasoning, etc.) itself, that is, reasoning about one’s own thinking.  Within this 

chapter, we follow Schoenfeld et al.’s (1987) framing of “metacognitive learning strategies” as 



specific kinds/uses of metacognition that aid learning, including planning, checking, monitoring, 

selecting, revising, and evaluating. These strategies are important components of models of self-

regulated learning in the classroom, such as the model put forward by Pintrich (2004). Students’ 

self-reported use of such strategies has been shown to correlate positively with academic 

outcomes (Pintrich & de Groot, 1990),  

Researchers have long been interested in finding ways to help students acquire more 

complete and adaptive metacognitive skill in order to achieve better learning outcomes across 

academic topic areas and even across disciplines. In an influential volume entitled How People 

Learn (Bransford, Brown, & Cocking, 2000), one of three broad recommendations is to focus on 

improving students’ metacognitive skills. A number of instructional programs focused on 

improving metacognition have been shown to be successful in actual classrooms.  Some notable 

examples are programs that have focused on reciprocal teaching of reading skills (Palincsar & 

Brown, 1984; Rosenshine & Meister, 1994), on self-assessment of application of a scientific 

inquiry cycle (White & Frederiksen, 1998), and  on strategies for self-regulation of mathematical 

reasoning (Mevarech & Kramarski, 2003). Classroom programs with a metacognitive focus have 

also been created for students with learning disabilities, although their effectiveness has not 

always been established in controlled experiments (Butler, 1998; Guthrie, Wigfield, & 

vonSecker, 2000).  

In recent years, there has been increasing research on deploying metacognitive support 

within computer-based learning environments, particularly within intelligent tutoring systems 

(Azevedo & Cromley, 2004a; Arroyo et al., 2007; Biswas, Leelawong, Schwartz, Vye, & CTG, 

2005). The research presented in this chapter focuses on novel ways of supporting metacognition 

in real educational settings. This is done using computer-based tutoring of specific metacognitive 



skills, as contrasted to a comprehensive program of metacognitive instruction. In discussing 

various mechanisms to engage students in utilizing appropriate metacognitive strategies, we 

distinguish between static and adaptive metacognitive support (cf., Azevedo, Cromley, & 

Seibert, 2004b).  By static support for metacognition we mean prompts or scaffolds that are 

present throughout instructional activities and do not vary between students. Unlike Azevedo et 

al’s (2004b) notion of “fixed” support, our notion of static support may also involve feedback to 

the student as to whether they are successfully following the prompt.  A classic example of static 

metacognitive support are prompts to students to “self-explain” (Chi, Bassok, Lewis, Reimann, 

& Glaser, 1994), which may occur in a text, a computer interface, or may be consistently 

delivered by a human tutor. If delivered by a computer or human tutor, these prompts may be 

followed by feedback to the student as to whether or not they successfully executed the prompt. 

Even when combined with feedback of this nature, we consider them to be static support, 

because the decision whether and when to prompt is not situation-specific, and not specific to 

any aspect of student metacognition.  Adaptive support for metacognition on the other hand 

involves an active instructional agent, such as a teacher, human or computer tutor, that 

implements instructional strategies that adapt to individual students’ metacognitive behavior, for 

example, by fading prompts for metacognitive behaviors (i.e., gradually reducing the frequency 

of these prompts), or by providing feedback on meta-cognitive errors. This definition of adaptive 

metacognitive support is more specific than Azevedo et al’s (2004b) in that it specifically 

requires adaptation to student metacognition, not just to any aspect of student behavior, It thus 

requires that the system assesses aspects of student metacognition.  

This chapter reviews four examples of our work on computer-based tutoring systems that 

provide either static or dynamic support for metacognition: 



1. static support for self-explanation (Aleven & Koedinger, 2002) 

2. adaptive support for error self-correction (Mathan & Koedinger, 2005) 

3. adaptive ways of reducing “gaming the system” (Baker et al., 2006) 

4. adaptive tutoring of help-seeking skills (Roll, McLaren, Aleven, & Koedinger, 2007a) 

In evaluating the effect of these forms of metacognitive support, we have focused our efforts 

on assessing improvements in “robust learning”.  Robust learning produces a high level of 

conceptual understanding and/or procedural fluency so that students perform well not only on 

immediate post-tests with items highly similar to training but also on tests of transfer, long-term 

retention, and preparation for future learning (see 

learnlab.org/research/wiki/index.php/Robust_learning).  As shown in Figure 1, we have defined 

four goals for robust learning of metacognitive skills, each of which builds on the previous one. 

The first goal is for students to improve their metacognitive behavior within the learning 

environment while they receive metacognitive support. Ideally, this improvement will lead to 

better learning gains in the domain targeted by the supported environment, which is the second 

goal of metacognitive tutoring. The third goal is for students to internalize the metacognitive 

practices and thus to demonstrate better metacognitive behavior in subsequent instruction using a 

similar interface. Our fourth goal is that the metacognitive support will make students better at 

future domain-level learning (faster and more complete), based on the metacognitive practices 

they internalized.  

 



 

Figure 1. Goals of metacognitive tutoring.  Toward the bottom are less ambitious and more proximal 

goals that support the more ambitious, ultimate goals above. 

As our research has evolved, we have come to the view that an ideal experiment investigating 

the effect of metacognitive support will measure all four levels of learning.  However, so far we 

have focused mainly on the first two goals; only in our most recent experiments on tutoring help 

seeking have we addressed the third goal. The fourth goal remains for future work. In the first 

and second lines of research, focused on the metacognitive strategy of self-explanation (Chi et 

al., 1989) and error self-correction (Nathan, Kintsch, & Young, 1992), we assessed the effect of 

the metacognitive support on domain learning but not on students’ metacognitive activities.  In 

the third and fourth lines of research, focused on discouraging gaming the system and 

encouraging better independent help seeking, we not only assessed changes in domain learning, 

due to the metacognitive support, but also in the use of appropriate and inappropriate 

metacognitive strategies while the intervention is in place. In the experiment on tutoring help 

seeking, we also evaluated whether students’ help-seeking behavior had improved following the 

intervention. 

The reported research emphasizes controlled in vivo experimentation (Koedinger & Corbett, 

2006; learnlab.org/research/wiki/index.php/In_vivo_experiment), that is, experiments or quasi-

experiments that strive to maximize both internal validity and ecological validity. With respect to 
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ecological validity, in vivo experiments use actual educational content and are run for realistic 

durations (hours rather than minutes of instruction) in the context of real courses and school 

settings. With respect to internal validity, in vivo experiments include a control condition and a 

treatment that involves a manipulation that targets a single causal principle (i.e., not full program 

variations as in typical randomized field trials) and whenever possible there is random 

assignment of students (or course sections) to condition. The “ecological” control condition used 

represents existing practice at the school setting.   

1. Tutoring Self-Explanation 

Our first line of research illustrating intelligent tutor support for metacognition focuses on the 

effect of supporting self-explanation. Of interest is a simple recurring metacognitive choice: 

After producing or being given a problem-solving step, students can either go on to the next step, 

or they can decide to self-explain the step they just completed, as a check of their understanding. 

Self-explanation has been studied extensively in the cognitive sciences, with one notable 

example being Chi et al. (1989), which reported an association between this metacognitive skill 

and learning. Static prompts for self-explanation have been shown in a number of lab studies to 

have a positive effect on student learning (Chi et al., 1994; Renkl et al., 1998; Siegler, 2002). 

Within the realm of intelligent tutoring systems, Conati and VanLehn (2000, 2001) implemented 

dynamic prompts for self-explanations, which were presented based on the system’s assessment 

of the student’s domain knowledge and the student’s understanding of the example that they 

were explaining. They found that these prompts, combined with feedback on self-explanations, 

were superior to a self-explanation control condition that used static prompts, although this 

control condition differed in a number of other ways as well. These researchers did not 

investigate, however, whether self-explanation support improved learning over a non-self-



explanation control condition, nor did they investigate whether students had become better self-

explainers after the self-explanation support was removed. Our studies addressed the first 

limitation, whereas addressing the second remains for future work.  

 In two studies, we explored the effect of static support for self-explanation in an intelligent 

tutor that supports guided problem-solving practice. For each solved problem step, the tutor 

solicited simple self-explanations (namely, the name of the domain principle being applied, 

typically the name of a geometry theorem), and provided feedback on the correctness of these 

self-explanations. It did not, however, adapt to students’ level of domain knowledge, or 

metacognition, and thus this type of support does not qualify as adaptive support.   

Educational Problem: Too much Shallow Reasoning 

 

Figure 2: Shallow reasoning in geometry 

 

Our research into self-explanation started with a practical and widespread educational 

problem: students often develop shallow reasoning strategies as they learn in a new domain or 

attempt to learn a new cognitive skill. In the high-school geometry course that we were 



developing at the time, we observed that students often appear to draw on shallow strategies such 

as that illustrated in Figure 2. In this example, the student erroneously infers that two angles that 

look the same (namely, Angle 1 on the right and the un-numbered angle on the left) must have 

the same measures. We also found that the students were better at solving geometry problems 

than they were at justifying their reasoning steps by pointing out which theorems they were using 

(Aleven, Koedinger, Sinclair, & Snyder, 1998). This finding may be a manifestation of shallow 

reasoning, although other explanations are possible.  

It is important to note that superficial strategies occur in many domains and with many forms 

of instruction. In physics problem solving, for example, there are many common misconceptions, 

such as confusing mass and weight, or the direction of velocity and acceleration (Ploetzner & 

VanLehn, 1997). Novices often classify physics problems by superficial features that are not 

typically related to the solution method (Chi, Feltovich, & Glaser, 1981). In mathematics, 

students may learn procedures without ever grasping the underlying principles (Byrnes & Wasik, 

1991; Fuson, 1990; Hiebert & Wearne, 1996). In the domain of writing, students often exhibit a 

“knowledge telling” strategy in which they simply list everything they know about a subject 

rather than constructing a well-organized argument (Scardamalia & Bereiter, 1985). 

Studies to Evaluate Self-Explanation Support 

We conducted two experiments to test the hypothesis that simple self-explanation support, 

requiring that students connect their answers to the underlying problem-solving principles, would 

help students to learn in a more robust manner. We investigated this hypothesis in the context of 

the Geometry Cognitive Tutor. We summarize the second of two experiments (Aleven & 

Koedinger, 2002).   



The Geometry Cognitive Tutor is a form of intelligent tutoring software. It was developed in 

our lab and is being used in hundreds of schools across the United States. This software (as well 

as the Cognitive Tutors used in the studies reported in subsequent sections of this chapter) is 

based on the ACT-R theory of cognition and learning (Anderson & Lebière, 1998) as well as on 

a set of principles for the design of Cognitive Tutors (Koedinger & Corbett, 2006). The 

Cognitive Tutor software supports students as they acquire complex cognitive skill. It selects 

problems for students on an individual basis, and provides step-by-step guidance as students 

solve problems. The tutor’s guidance consists of contextual hints (given at the student’s request) 

about what to do next, feedback on correctness, and just-in-time messages that provide help with 

common errors. Cognitive Tutors have been shown to significantly increase high-school 

students’ math achievement, compared to more typical classroom instruction (see the summary 

in Koedinger & Aleven, 2007).  

 

 

Figure 3. In the Experimental Condition, students explained their steps “by reference.” Otherwise, the 

tutor versions used in both conditions were the same. 



 

The standard Geometry Cognitive Tutor served as the ecological control condition in the 

experiment, meaning that it represents standard practice in the field. We shall refer to it as the 

Problem Solving Condition. For the treatment condition (Explanation Condition) we created a 

version of this tutor that was enhanced to support self-explanation but was otherwise the same 

(see Figure 3). For each problem-solving step, the tutor prompted the student to provide a reason, 

namely, the name of the theorem being used. The students could type the name of the reason if 

they remembered it, or they could select it from the tutor’s on-line Glossary of geometry 

knowledge, a resource with information about the approximately 25 different theorems being 

targeted in the given tutor unit.  For each theorem, there was a complete statement expressing the 

theorem and a simple example of how the theorem could be used in solving problems. Students 

could double-click on Glossary items in order to select them as the explanation for the current 

step. The tutor provided correctness feedback on the explanations, and if the student requested a 

hint, provided hints related to the correct explanation. The software required that a student get 

the explanations right before moving on to the next problem.  

All students took a pre-test and post-test, with three kinds of test items. First, “Answer” items 

were designed to assess whether students could solve geometry problems of the same type that 

they encountered as they were working with the tutor. Second, “Reason” items were designed to 

assess whether students could explain their reasoning in the same manner they did when working 

with the tutor. The Answer and Reason items followed the same format as the corresponding 

steps in the tutor problems. (We note that the students in the Problem Solving condition did not 

practice explaining their reasoning as they worked with the tutor. For them, therefore, these post-

test items were a form of transfer.) Third, “Not Enough Info” items tested whether students could 



recognize situations where there was insufficient information to infer the measure of a given 

quantity. These items were designed to expose shallow knowledge, because shallow strategies 

such as “if angles look the same, they are the same” will often lead to wrong answers on these 

items. These items provide a measure of transfer, because the students in neither condition had 

encountered these types of items during their work with the tutor. 

 

 

Figure 4. Pre- and post-test results for students in the second study, on each of the three types of test items. 

Multiple forms were used to counterbalance for test difficulty. 

 

We found that students who had explained their steps during their work with the tutor 

showed greater gains with respect to Not Enough Info items and with Reason items than the 

students who solved problems without explaining their steps (see Figure 4). The performance on 

the Answer items did not differ between the two conditions, despite the fact that the students in 

the Explanation Condition had encountered only half as many of them during training as their 

counterparts in the Problem Solving Condition. (The students in the Explanation Condition spent 

a significant portion of their time explaining steps. Because we controlled for time-on-task, these 

students completed fewer problems as they worked with the tutor.) 



Thus, the students who had explained their steps learned in a more robust manner, compared 

to students in an ecological control condition.  They did better on two types of items that hinge 

on deeper understanding, namely, Reason items and Not Enough Info items. The Reason items 

tap conceptual knowledge, and the Not Enough Info are transfer items designed to expose 

shallow knowledge. A further analysis suggested that students in the Explanation Condition 

acquired less shallow procedural knowledge and more flexible conceptual/declarative knowledge 

(Aleven & Koedinger, 2002). 

Discussion of the Self-Explanation Support Studies 

The experiment shows that supporting meta-cognition during instruction can improve robust 

learning of domain knowledge. We found that simple self-explanation prompting, with feedback 

on self-explanations, leads to robust learning. A limitation of the current study, addressed in 

some of the studies discussed below, is that we assessed domain (geometry) learning, not 

metacognitive improvement. We did not assess, for example, whether students were more likely 

to spontaneously self-explain at appropriate junctions during subsequent learning experiences. 

Nonetheless, the finding that even simple self-explanation support can be effective in intelligent 

tutoring software is of practical and theoretical interest, especially given that it shows 

improvement over a control condition that itself has been shown to improve upon typical 

classroom instruction (Koedinger & Aleven, 2007). Other researchers have since replicated the 

effectiveness of static menu-based support for self-explanation, combined with feedback on 

students’ self-explanations (Atkinson, Renkl, & Merrill, 2003; Corbett, McLaughLin, 

Scarpinatto, & Hadley, 2000; Corbett, Wagner, & Raspat, 2003).  

Studies with interfaces that support free-form entry of self-explanations (i.e., students type in 

explanations) suggest that feedback on self-explanations may be an important factor. Aleven and 



colleagues created two versions of the Geometry Cognitive Tutor that requested free-form 

explanations from students, one that did not provide any feedback (Aleven & Koedinger, 2000b), 

and one that provided feedback through a natural language dialogue module (Aleven, Ogan, 

Popescu, Torrey, & Koedinger, 2004). In two studies, they compared these tutor versions against 

menu-based self-explanation (i.e., against the experimental condition in the experiment described 

above). They found that prompts for free-form explanation without feedback are ineffective. 

Students largely ignore them and provide very few good explanations (Aleven & Koedinger, 

2000b). With feedback, however, free-form explanations help students learn to state better 

explanations, with no detrimental effect on problem-solving skill or transfer, even though self-

explanations take time away from solving problems per se (Aleven et al., 2004). In addition, 

Corbett and colleagues in a study with a Cognitive Tutor for Algebra II found that free-form 

explanations with feedback led to slightly (but reliably) better transfer (Corbett, Wagner, 

Lesgold, Ulrich, & Stevens, 2006).   

Researchers have begun to experiment with simple adaptive forms of self-explanation 

support, but it is too early to tell what works and what does not. The adaptive support in Conati 

and VanLehn’s (2000) system was effective but the study conducted did not isolate the effect of 

the adaptive nature of the support.  Hausmann and Chi (2002) reported that computer-based 

prompts are as effective as human prompts when students type self-explanations into a computer 

interface without feedback. The prompts were yoked across the conditions, so the study suggests 

that adaptive prompts may not be necessary, at least when students do not receive feedback on 

their self-explanations. A study by Weerasinghe and Mitrovic (2005) reported that self-

explanation prompts selected based on students’ domain knowledge improve domain-level 

learning. Conati, Muldner, and Carenini (2006) point the way toward truly adaptive support.  



They developed a system that decides when to present prompts for self-explanation, and what 

type of self-explanation to prompt for, by trying to predict how much a given student will benefit 

from each type of self-explanation. In summary, a number of researchers are actively 

investigating whether adaptive self-explanation support can help students learn more robustly at 

the domain level and become better future learners. 

2. Tutoring Error Self-Correction 

Our second line of research illustrating intelligent tutor support for metacognition focuses on the 

effect of supporting students in error self-correction.   This research program grew out of a 

reframing of the debate over feedback timing.  Some researchers have demonstrated and argued 

for benefits of delayed feedback over immediate feedback in instruction and training (Schmidt & 

Bjork, 1992).  An intuition behind this argument is that delayed feedback leaves room for the 

student to engage in self-detection and correction of their own errors.  Other research (Corbett & 

Anderson, 2001) has shown benefits of immediate feedback, particularly in enhancing the 

efficiency of learning while maintaining learning outcomes.  Mathan and Koedinger (2005) 

reframed this feedback debate by suggesting that perhaps the more relevant difference should be 

in the nature of the “model of desired performance” or the instructional objectives.  One may 

want to produce error-free efficient expertise or, alternatively, one may want to produce flexible 

problem solvers (also called “intelligent novices” – Bruer, 1993) who may make some initial 

errors but who, unlike novices, eventually detect and correct these errors.  In the context of an 

intelligent tutoring system, the immediate feedback given relative to an intelligent novice model 

of desired performance will actually be similar to delayed feedback given relative to an expert 

model of desired performance, as both will wait to give feedback on errors.   However, there is 

one key difference.  Namely, unlike delayed feedback, tutoring with the goal of producing 



intelligent novices involves providing assessment/monitoring, feedback, and hints at the 

metacognitive level that guide, as needed, the process of error detection and correction. That is, 

this kind of tutoring constitutes an adaptive form of metacognitive support, as defined above. 

Error self-correction requires students to reflect on their performance, on the outcomes of 

that performance, how those outcomes are different from desired outcomes, and, most 

importantly, on the rationale or reasoning for the initial performance attempt and how that 

reasoning might be modified in order to revise the performance and achieve the desired outcome.  

Other researchers have also focused on the metacognitive processes of monitoring one’s 

performance and progress, to check for errors or evaluate level of understanding (Flavell, 1979; 

Palinscar & Brown, 1984; Pintrich, 2004; Schoenfeld, 1983; White & Frederiksen, 1998).  This 

project focused particularly on supporting reflective reasoning after an error has been identified.  

During such reflection learners think about their thinking – about why they decided to do 

something and about what might be wrong (and thus can be fixed) in that reasoning process. This 

study illustrates this process in the context of Excel spreadsheet programming and in particular 

the use of relative and absolute references (explained in Figure 5). 

 



 

Figure 5. Two different attempts at the task of writing a formula to multiply a fixed hourly wage (in 

cell B2) by different hours worked (in cells A3, A4 and A5) to produce the amounts earned (cells B3, 

B4, and B5).  Panel (a) shows the entry of an incorrect formula in cell B3 and what the resulting 

formulas look like after the original is copied into cells B4 and B5. When a formula in Excel is copied 

and then pasted in new cells, the cell references are updated “relative” to the original position.  This 

produces the wrong result as seen in panel (b). However, if a “$” is placed in front of a column letter or 

row number (panel c), the reference is “absolute” and will stay the same when copied (when a 

reference to B$2 is copied from B3 to B4, it does not change to B$3, but remains B$2).  The result 

shown in panel (d) is now correct. 

 

Notice in Figure 5a and 5b how when the formula is copied in cell B4, the formula produces 

$6000 rather than the desired result of $300.  Excel performs “relative referencing” such that, for 

instance, if a referenced cell is above the formula cell in the original formula (as B2 is in the 

formula in B3), then it will remain above it in the copied cell (the reference will become B3 



when the formula is copied into cell B4).  In contrast, in Figure 5c, a correction to the formula is 

made employing “absolute referencing” by adding “$” in front of the 2 in B2.  Thus, the correct 

result is achieved as shown in 5d.   How might a learner go about reasoning reflectively about 

the error shown in 5b? 

 

 

 

 



Figure 6.  At the point of initial error (a), the Expert tutor provides hints as shown in (b).  In the 

Intelligent Novice tutor, however, it is at the later point after copying and pasting the formula (c) that 

the Intelligent Novice hints are given (d).  Note the different character of the hint messages (b) and (d).  

The Intelligent Novice hints (d) help students understand the reasoning behind a correct formula by 

analyzing what went wrong with incorrect formula entry. 

Experiments on Tutoring Self-Correction  

Figure 6 illustrates the difference both in timing and content of the feedback and hints 

between the Expert (EX) tutor condition (see panels a and b) and the Intelligent Novice (IN) 

tutor condition (see panels c and d). The experiment performed, while not run in the context of a 

real course, had a number of features of in vivo experimentation including ecological validity 

factors: real content, appropriate students (temporary employment workers whose skills could be 

enhanced through participation), realistic duration (nearly 3 hours of instruction), and internal 

validity factors (single principle variation and random assignment).  In addition to using a post-

test immediately following instruction and using items isomorphic to the training, robust learning 

measures were also used including measures of long-term retention (one week later) and of 

conceptual and procedural transfer.  The results demonstrated benefits for the Intelligent Novice 

tutor condition on all measures (Mathan & Koedinger, 2005).  For instance, Intelligent Novice 

(IN) students performed significantly (and statistically reliably) better (at 74% correct) on the 

delayed transfer test than students in the Expert (EX) condition (at 60% correct). IN students 

were also significantly better (88% vs. 79%) on an immediate test involving Excel formula 

programming items that were isomorphic to those used in the instruction. Learning curve 

analysis of log data showed that the effect of the treatment made a difference quite early in the 

instruction (Martin, Koedinger, Mitrovic, & Mathan, 2005). This result suggests that error 



correction support was more relevant to students’ initial declarative understanding than later 

refinement through practice.   

Discussion of Tutoring Error Self-Correction 

The early differences in favor of the IN condition (nominally delayed feedback) are inconsistent 

with predictions of Bjork’s (1994) “desirable difficulties” notion that suggests a trade-off 

whereby delayed feedback should hurt immediate performance (relative to immediate feedback), 

but enhance long-term learning. This inconsistency may be attributed to the fact that the 

Intelligent Novice intervention is not simply delaying feedback but providing direct assistance 

for error correction reasoning when needed.  There may also be differences between Bjork’s 

prior results and ours because of the simpler, motor-skill oriented domains in that work in 

contrast to the more complex and semantically-rich domain addressed here. The effectiveness of 

the intervention presented here appears to be in how it helps students reason to a better 

understanding of the required inferences and not in improving a general student ability to self-

detect and fix errors.  Metacognitive support from the tutor helps students to reason about their 

errors.  By reasoning about correct procedures in contrast to incorrect ones, students appear to 

develop a better conceptual understanding of those procedures.  We suspect that if students had 

simply been given delayed feedback, without the support for reasoning about error correction (as 

illustrated in Figure 6d), we would not see the positive outcomes we did.  We do note that 

detecting and making sense of errors in this task domain appears relatively easy for students 

(even if learning the procedures is not).  Intelligent Novice error correction feedback may not 

work as well in other domains where error detection or error understanding is more difficult. 

 The Intelligent Novice feedback approach has interesting similarities with support for 

self-explanation in that it directs students toward the deep relevant features of the domain and 



away from the shallow irrelevant features (see learnlab.org/research/wiki/index.php/Features). 

Students are supported to think about what aspects of the formula may change in unwanted ways 

if an absolute reference ($) is not used. Such a deeper encoding leads to better transfer than a 

surface or shallow encoding, for instance, thinking in terms of row and column movements and 

whether to put the $ before the letter or the number.  Helping students make the contrast between 

incorrect and correct performance seems to support deep encoding.  It is similar to variations on 

self-explanation in which students are given an incorrect performance example (ideally a 

common or likely one) and asked to explain why it is wrong (Grosse & Renkl, in press; Siegler 

2002). 

3. Tutoring to Reduce Gaming the System  

Tutoring metacognition does not only require guiding students to learn to choose appropriate 

learning and performance strategies.  It also requires guiding students to learn to not choose 

inappropriate learning and performance strategies. Consider a student using learning software, 

who does not know how to correctly solve the current problem step or task. This student might 

adopt the appropriate metacognitive strategy of seeking help from the software, the teacher, or 

another student, and then self-explaining that help. However, the student may instead choose a 

less appropriate strategy: “gaming the system.”  

We define gaming the system as “attempting to succeed in an interactive learning 

environment by exploiting properties of the system rather than by learning the material” (Baker 

et al, 2006). Gaming behaviors have been observed in a variety of types of learning 

environments, from intelligent tutors (Schofield, 1995), to educational games (Magnussen & 

Misfeldt, 2004) to online course discussion forums (Cheng & Vassileva, 2005). Gaming 

behaviors have been found to be associated with significantly poorer learning in intelligent tutors 



(Baker, Corbett, Koedinger, & Wagner, 2004). Additionally, there is some evidence that gaming 

the system on steps that the student does not know (termed “harmful gaming”) is associated with 

poorer learning outcomes than gaming the system on steps the student already knows (termed 

“non-harmful gaming”) (Baker, Corbett, Roll, & Koedinger, 2008). Within intelligent tutoring 

systems, gaming the system generally consists of the following behaviors: 

1. quickly and repeatedly asking for help until the tutor gives the student the correct 

answer  (Wood & Wood, 1999), and 

2. inputting answers quickly and systematically. For instance, systematically guessing 

numbers in order (1,2,3,4…) or clicking every checkbox within a set of multiple-

choice answers, until the tutor identifies a correct answer and allows the student to 

advance.   

In this section, we discuss a pedagogical agent, Scooter the Tutor, designed to reduce gaming 

and increase gaming students’ learning (Baker et al, 2006). Scooter the Tutor was built around a 

machine-learned detector of gaming behavior, which was shown to accurately determine how 

much each student games the system and on which problem steps the student games (Baker et 

al., 2008). This detector was able to distinguish between the two types of gaming behavior 

mentioned earlier, harmful and non-harmful gaming, enabling Scooter to focus solely on 

responding to harmful gaming, the behavior associated with poorer learning. This detector has 

also been shown to effectively transfer between different tutor lessons with little reduction in 

effectiveness (Baker et al., 2008). 

Scooter was designed to both reduce the incentive to game, and to help students learn the 

material that they were avoiding by gaming, while affecting non-gaming students as minimally 

as possible. Scooter was built using graphics from the Microsoft Office Assistant, but with 



modifications to enable Scooter to display a wider range of emotion. During the student’s usage 

of the tutoring system, Scooter responds to gaming behavior in two ways: via emotional 

expressions and supplementary exercises.  

When the student is not gaming, Scooter looks happy and occasionally gives the student 

positive messages (see the top-left of Figure 7). Scooter’s behavior changes when the student is 

detected to be gaming harmfully. If the detector assesses that the student has been gaming 

harmfully, but the student has not yet obtained the answer, Scooter displays increasing levels of 

displeasure (culminating in the expression shown on the bottom-left of Figure 7), to signal to the 

student that he or she should now stop gaming, and try to get the answer in a more appropriate 

fashion.  

If the student obtains a correct answer through gaming, Scooter gives the student a set of 

supplementary exercises designed to give the student another chance to cover the material that 

the student bypassed by gaming this step, shown in figure 7. Within supplementary exercises, the 

student is asked to answer a question. This question may require understanding one of the 

concepts required to answer the step the student gamed through, or may require understanding 

the role the gamed-through step plays in the overall problem-solving process. If the student tries 

to game a supplementary exercise, Scooter displays anger. 

 

 



 

Figure 7. Scooter the Tutor – looking happy when the student has not been gaming harmfully  (top-

left), giving a supplementary exercise to a gaming student (right), and looking angry when the student 

is believed to have been gaming heavily, or attempted to game Scooter during a supplementary 

exercise (bottom-left). 

 

Study on Effects of Tutoring Students not to Game the System  
 
We studied Scooter’s effectiveness in an in vivo experiment in the context of a year-long 

Cognitive Tutor curriculum for middle school mathematics (Koedinger & Corbett, 2006), within 

5 classes at 2 schools in the Pittsburgh suburbs. The study was conducted in the spring semester, 

after students had already used the Cognitive Tutor for several months. Each student used a tutor 

lesson on scatterplots. The control condition and experimental condition occurred during 

different weeks – students not using the scatterplot tutor used a different tutor lesson on another 

subject. 51 students participated in the experimental condition for the scatterplot lesson (12 were 

absent for either the pre-test or post-test, and thus their data will not be included in analyses 

relevant to learning gains); 51 students participated in the control condition for the scatterplot 

lesson (17 were absent for either the pre-test or post-test). 

Before using the tutor, all students first viewed instruction on domain concepts, delivered via 

a PowerPoint presentation with voiceover and simple animations. In the experimental condition, 



a brief description of Scooter, and how he would respond to gaming, was incorporated into the 

instruction. Then students completed a pre-test, used the tutor lesson for 80 minutes across 

multiple class periods, and completed a post-test. Test items were counter-balanced across the 

pre-test and post-test. Log files were used to distill measures of Scooter’s interactions with each 

student, including the frequency with which Scooter got angry, and the frequency with which 

Scooter gave a student supplementary exercises.  

Observational data was collected to determine each student’s frequency of gaming, using 

quantitative field observations (systematic observations of student behavior by field observers – 

cf. Baker, Corbett, Koedinger, & Wagner, 2004), in order to analyze Scooter’s effects on gaming 

frequency. Another potential measure of how much each student gamed, the gaming detector, 

was not used because of risk of bias in using the same metric both to drive interventions and as a 

measure of the intervention’s effectiveness.  

 

Results of Intervention on Metacognitive Behavior and Learning 
 

The Scooter intervention was associated with a sizeable, though only marginally significant, 

reduction in the frequency of observed gaming. 33% of students were seen gaming in the control 

condition (using quantitative field observations), while 18% of students were seen gaming in the 

experimental condition. However, although fewer students gamed, those students who did game 

did not appear to game less (14% in the experimental condition, 17% in the control condition).  

In terms of domain learning, there was not an overall between-condition effect. However, 

only a minority of students received a substantial number of supplemental exercise interventions 

from Scooter (because only a minority of students gamed the system, as in previous studies of 

gaming). There is some evidence that the intervention may have had an effect on these specific 



students. In particular, the supplemental exercises appeared to be associated with significantly 

better domain learning. The third of students (out of the overall sample) that received the most 

supplementary exercises had significantly better learning than the other two thirds of the 

students, as shown in Figure 8. Students who received the most supplementary exercises started 

out behind the rest of the class, but caught up by the post-test (see Figure 9 Left). By contrast, in 

both the control condition (see Figure 9 Right) and in prior studies with the same tutor, frequent 

harmful gaming is associated with starting out lower than the rest of the class, and falling further 

behind by the post-test, rather than catching up.  

The emotional expressions, on the other hand, were not associated with better or worse 

learning. Students who received more expressions of anger did not have a larger average learning 

gain than other students.  

There was no evidence that students reduced their degree of gaming after receiving either 

type of intervention (according to the quantitative field observations). Hence, the observed 

reduction in gaming may have been from Scooter’s simple presence. Students who chose to 

game knowing that Scooter was there did not appear to reduce their gaming. 

Given the connection between receiving the supplementary exercises and learning, it is 

surprising that there was not an overall learning effect for Scooter. One potential explanation is 

that students who ceased gaming chose other ineffective learning strategies instead. The lack of 

connection between reduced gaming and improved learning may indicate that gaming is not 

directly causally related with learning. The apparent benefits of supplementary exercises may be 

from the “variable encoding” (Paas & Van Merrienboer, 1994) that students experienced in the 

different kinds of presentation of the target knowledge in the original tutor and the 

supplementary exercises.  



 

Figure 8. The learning gains associated with receiving different levels of supplemental exercises from 

scooter 

 

Figure 9. Left: The pre-test and post-test scores associated with receiving different levels of 

supplemental exercises from scooter (top third versus other two thirds). Right: The pre-test and post-

test scores associated with different levels of harmful gaming in the control condition (top half of 

harmful gaming versus other students) 

 

Recently, there have been two other systems designed to reduce gaming and improve gaming 

students’ learning. Walonoski and Heffernan (2006) displayed sophisticated visualizations about 

gaming behavior to both students and teachers, on the student’s screen. Arroyo et al.’s (2007) 

ProgressTips gave detailed meta-cognitive messages to gaming students about appropriate meta-

cognitive behavior between problems.  Walonoski and Heffernan’s gaming visualizations, like 



Scooter, reduced gaming. Gaming was even reduced in future units where gaming visualizations 

were not given, showing some durability of the result. However, Walonoski and Heffernan did 

not measure domain learning.  Arroyo et al.’s ProgressTips did not reduce gaming – instead, they 

caused students to shift gaming behavior (personal communication, Ivon Arroyo), as in Murray 

and VanLehn (2005).  Domain learning, however, was improved by ProgressTips. ProgressTips 

also improved students’ attitudes towards the tutor and learning domain, a positive effect not 

obtained with Scooter, who was generally disliked by students who received his interventions 

(Baker, 2005). One possible explanation is that ProgressTips disrupted students’ learning 

experiences less than Scooter, who interrupted student behavior as soon as a student completed a 

step through gaming.  

In general, the results of studies on these three systems to respond to gaming suggest that 

interventions given for differences in students’ meta-cognitive behaviors can reduce the 

incidence of inappropriate behaviors and improve learning, whether they are given at the time of 

behavior or shortly afterwards. 

4. Tutoring Help Seeking 

The ability to seek help adaptively is a key metacognitive skill that figures prominently in 

theories of self-regulated learning (Newman, 1994), specifically as an important resource 

management strategy (Pintrich, 1999). Research on help seeking in social settings (e.g., 

classrooms) shows that adaptive help-seeking behavior can be an effective route to independent 

mastery of skills (Karabenick & Newman, 2006). Intelligent tutoring systems are an interesting 

context to investigate help seeking since they typically have sophisticated on-demand help 

facilities and they offer an opportunity for very detailed analysis of the usage patterns of these 

facilities. As part of the step-by-step guidance that these systems offer, students can typically 



request multiple levels of tailored help on what to do next at any point during their problem-

solving activities. This form of help is thought to be beneficial for learning (e.g. Wood & Wood, 

1999). As mentioned, the particular system that we worked with, the Geometry Cognitive Tutor, 

also provides an on-line Glossary of geometry knowledge that lets students browse descriptions 

and examples of the geometry theorems that they are learning.  

Upon closer scrutiny, however, the assumption that students’ learning benefits from using 

these facilities turns out to be problematic. We found that students often do not use help facilities 

effectively (Aleven & Koedinger, 2000a; Aleven, Stahl, Schworm, Fischer, & Wallace, 2003). 

This finding mirrors findings by researchers who study help seeking in social settings (Arbreton, 

1998; Newman 2002.) With surprising frequency, students abuse the tutor’s help, focusing on 

help levels that essentially give away the next step, all but ignoring the help levels that provide 

explanations of why the answer is the way it is.  

This behavior appears to generally be maladaptive, metacognitively, and has been shown to 

be associated with poorer learning (Aleven, McLaren, Roll & Koedinger, 2006; Baker, Corbett, 

Koedinger, & Wagner, 2004; Baker, Corbett, Roll & Koedinger, 2008). However, it appears that 

for a small number of students the rapid clicking through hints represents a way of efficiently 

turning a problem step into an example step. The student may then self-explain the step, in the 

best case reconstructing the tutor’s explanations. Providing support for this explanation, a recent 

data mining study examining tutor logs found that spending large amounts of time on a bottom-

out hint is positively correlated with learning (Shih, Koedinger, & Scheines, 2008). 

Another form of maladaptive help-seeking behavior seen in our research is when students 

resist using help even when they clearly seem to need it, such as after multiple errors on a step. 

For example, Aleven and Koedinger (2000a) found that after several consecutive errors on a step 



with no hints, students were more likely to try again rather than ask for a hint. In addition, the 

students used the tutor’s glossary very rarely. On the other hand, when requesting a hint, students 

asked to see the bottom-out hint on 82% of their hint episodes. To summarize, students either ask 

for ‘instant’ help or no help at all, but tend to avoid more complex help seeking episodes. 

Studies to Evaluate Tutoring of Help Seeking 

Given the high frequency of maladaptive help seeking, we embarked on research to test the 

hypothesis that a Cognitive Tutor agent that provides guidance with respect to students’ help-

seeking behavior can help students to both learn better at the domain level and become better 

help seekers. In other words, this fourth project focuses on improving one aspect of students’ 

meta-cognitive abilities, their ways of seeking help, and thereby their current and future learning. 

In this sense, this project is more ambitious than the other three projects described above: the 

goal is not just to “channel” students into a particular meta-cognitive behavior with the tutor, but 

to help students internalize a meta-cognitive behavior that transfers to future tutor use and even 

to other learning environments. Furthermore, the help-seeking project avoids using any domain-

specific assumptions or concepts, and thus maintains a metacognitive character, making it 

possible to apply the underlying model of help seeking to different domains without much 

adaptation. That is, this project offers externally regulating tutoring with the goal of helping 

students internalize the productive strategies and better self-regulate their learning in the 

supported environment and beyond.  In doing so, it targets all four goals as described in Figure 1. 

As a first step, we developed a model that aims to capture both effective and ineffective help-

seeking behavior (Aleven et al., 2006). In contrast to the previous project (Scooter), in which a 

model was built using machine learning, the model was built by hand, and implemented as a set 

of production rules. Lacking the guidance of a detailed normative theory of help seeking, we 



made extensive use of student-tutor log data and theoretical cognitive task analysis to design the 

model. For example, the initial version of our model prescribed that students should always take 

their time before attempting a step. When mining log data of student-tutor interactions, we 

noticed that fast actions by students on steps on which they are skilled correlate with large 

learning gains, a finding clearly at odds with our initial model. We therefore updated the model 

to allow fast attempts (including incorrect ones) on steps where a student is skilled, subject to 

limitations such as number of overall errors on this step. The model, (as summarized in flow-

chart format in Figure 10), stipulates that students should work deliberately, spending adequate 

time reading problem statements and hints, and that they should use help in one of three cases: 

when steps are not familiar to them; when they do not have a clear sense of what to do; and when 

they have made an error (as indicated by the tutor’s domain-level feedback) that they do not 

know how to fix. The choice of what source of help to use, the tutor’s on-demand hints or the 

glossary, should be driven by the student’s self-assessed level of relevant knowledge. The less 

familiar a step is, the more contextualized the help requested should be. (We view the glossary as 

decontextual help and the hints as highly contextual help.) 



 

Figure 10. Schematic view of the Help Seeking Model 

Essentially, this model is a detailed normative theory of help seeking with an intelligent 

tutoring system. It specifies in a detailed, moment-by-moment manner what a student should do 

in any given situation. Notably, the model does not limit the student to a single learning 

trajectory. Rather, it allows for a wide variety of reasonable actions at each point, while 

excluding actions that were clearly shown to be ineffective in our modeling and data mining 

activities. 

Data from our studies suggest that the help-seeking behavior captured by the model is 

associated with higher learning gains. In several analyses we have conducted, students who 

demonstrated poorer help-seeking behavior (i.e., students whose help-seeking behavior 

conformed to the model) were found to have poorer pre-post learning gains, though the result 

was not entirely stable across data sets (Roll et al., 2005).  



There is evidence that the model captures help-seeking behavior that is independent of the 

specific content or group of students. The model correlates well across different cohorts of 

students and tutors within the Cognitive Tutor family (Roll et al., 2005). We found that students 

tend to make the same types of help-seeking errors between Cognitive Tutors – the correlation 

between students’ frequency of different types of help-seeking errors in an angles unit (in 

geometry) and a scatterplot unit (in data analysis) was 0.89.   

Next, we created the “Help Tutor” agent, a Cognitive Tutor at the meta-cognitive level. 

Driven by the help-seeking model, it provides context-sensitive feedback on students’ help-

seeking behavior, as they work with a Cognitive Tutor. Student behavior that, in a given context, 

matches the normative predictions of the metacognitive model specific to that context, is deemed 

metacognitively correct. Student behavior that matches any of the many metacognitive “bug 

rules” in the model (which capture what is believed to be inappropriate help-seeking behavior) 

were deemed metacognitively incorrect. The Help Tutor displays a feedback message in 

response to such errors, as shown in Figure 11, “Perhaps you should ask for a hint, as this step 

might be a bit difficult for you,” or “It may not seem like a big deal, but hurrying through these 

steps may lead to later errors. Try to slow down.” Perhaps somewhat unfortunately, in retrospect, 

while the Help Tutor pointed out help-seeking behavior that was not likely to be productive, it 

never praised students for being good help seekers. 



 

Figure 11. Example of a help seeking error message. 

We integrated this metacognitive tutor agent into the Geometry Cognitive Tutor, so that 

students received guidance both with respect to geometry and with respect to their help-seeking 

behavior. The cognitive and metacognitive agents were not always in agreement; for example, an 

answer may constitute an error at the domain level, but attempting the step was still a 

metacognitively-appropriate action; likewise, a student may obtain a correct answer by guessing, 

metacognitively-inappropriate behavior. A prioritizing algorithm was implemented to choose the 

more informative feedback in cases where both cognitive and metacognitive feedback was 

appropriate.  



We conducted two classroom experiments to evaluate the effects of the kind of 

metacognitive feedback generated by the Help Tutor (Roll et al., 2007a). The first study 

compared the traditional Geometry Cognitive Tutor to a version that included the Help Tutor, 

integrated with the Cognitive Tutor as described above. In the second study the Help Tutor was 

the main component of a broader metacognitive instructional package that also included 

declarative classroom instruction on help-seeking principles and short self-assessment activities 

supported by automated tutors. The classroom instruction included short video segments 

illustrating how to use the tutor’s help facilities effectively. In the self-assessment activities, the 

students were asked to rate their ability to apply a new geometry theorem prior to solving their 

first problem involving that theorem, and then were asked to reflect on the correctness of their 

prediction (Roll et al., 2007a). In both experiments, the students in the control condition worked 

with the standard Geometry Cognitive Tutor. In both experiments, we tested the hypotheses that 

the respective metacognitive instruction (the Help Tutor in the first experiment, and the 

metacognitive instructional package in the second experiment) would lead to more desirable 

help-seeking behavior, both during practice with the tutor (goal 1 in Figure 1) and in a paper-

and-pencil transfer environment after tutor usage (goal 3 in Figure 1), and that it would lead to 

better domain-level learning (goal 2 in Figure 1).  

The studies showed mixed results. The evidence seemed to confirm the first hypothesis, that 

help-seeking behavior in the tutor would be improved: there was evidence that students sought 

help more appropriately under the Help Tutor’s tutelage, as measured by the percentage of 

actions that conformed to the help-seeking model. However, the improvement was seen with 

respect to only a subset of help-seeking action types. There was no difference between the 

conditions in terms of help-seeking choices made on the first action on a new problem step 



before any Help Tutor feedback was seen. This finding may suggest that the improvement in 

students’ metacognitive behavior was mainly the result of complying with the Help Tutor 

messages rather than  of students’ internalizing the metacognitive support and making proactive 

choices.   

With respect to the second hypothesis, we found no lasting effect on students’ help-seeking 

procedural knowledge, as measured by post-test scores on items with embedded hints, compared 

to performance on items with no embedded hints. We did, however, find that students who used 

the Help Tutor had a better declarative understanding of help-seeking principles, as measured by 

the quality of their answers to hypothetical help-seeking scenarios.  

The evidence did not support the third hypothesis, that the metacognitive instruction would 

lead to better domain-level learning. Although students in both conditions improved significantly 

form pre- to post-test in both studies with respect to their geometry knowledge and skill, we did 

not find any differences between the conditions. 

Discussion of Studies of Tutoring Help Seeking 

In sum, only one of the three hypotheses was confirmed, namely, that the Help Tutor would lead 

to more productive help-seeking behavior. However, these studies have several limitations. For 

one, we did not measure help-seeking behavior in the subsequent unit within the same tutoring 

environment. That is, we did not address the fourth of the goals of metacognitive tutoring, 

depicted in Figure 1. While the improved help-seeking behavior did not transfer to the paper-

and-pencil environment, it may have transferred to the subsequent unit within the Geometry 

Cognitive Tutor, which uses similar interface elements, problem types, learning goals, and 

requires similar learning strategies (as in Walonoski & Heffernan, 2006). 



Interpretation of the results should take into account the context of the metacognitive 

instruction. Our studies focused on a specific type of learning environment, one that supports 

step-by-step problem solving with immediate feedback and hints available on demand. Such 

environments may encourage certain types of metacognitive behaviors and discourage others. 

For example, in the Cognitive Tutors we used, domain-level knowledge tracing (i.e., the 

Bayesian method by which the tutor tracks the student’s detailed knowledge growth over time – 

Corbett & Anderson, 1995) uses only information from students’ first action on each problem 

step. Therefore, students may be tempted to always enter the step before requesting help, even if 

they are essentially guessing, because they will receive full credit for a correct answer, and if 

their answer is wrong they will not be penalized more than if they had requested a hint. These 

factors may promote an interaction style on the part of students that is specific to the particular 

learning software. It may be that in other environments, in which the advantages of productive 

help-seeking strategies are more apparent to students, help-seeking instruction will be more 

readily internalized by students.  

Students’ attitudes towards the Help Tutor may also help explain their behavior. Based on 

several interviews we conducted, and based on informal feedback, it appears that students did not 

like the system’s commenting on their help-seeking behavior, even though they often agreed 

with the feedback. (A similar pattern was also observed with Scooter the Tutor, described 

above.) Even though students believed that the Help Tutor’s suggestions were probably correct, 

they did not see its advice as valuable, and thus they may have merely complied with it, rather 

than internalizing the advice. It could be said that the students applied their existing help-seeking 

strategies to the Help Tutor itself. They were used to ignoring intermediate hints, and thus tended 



to ignore the Help Tutor. (This explanation is consistent with the lack of metacognitive 

improvement on first attempts before any Help Tutor feedback.) 

The results of our experiment strongly suggest that many students, in spite of being aware of 

appropriate help-seeking strategies, choose not to apply those strategies. The students appeared 

to know the difference between ideal and faulty help-seeking behavior: they reported agreeing 

with the Help Tutor comments, and, compared with the control group students, demonstrated 

better conceptual understanding of help seeking following usage of the Help Tutor and receiving 

the declarative help-seeking instruction. But their actual help-seeking behavior, on the post-test, 

was no better than the control condition students’ help-seeking behavior. It did not reflect their 

superior declarative knowledge of help-seeking. Apparently, students did not want to apply this 

knowledge. Hence, in order to create a learning environment that effectively promotes help 

seeking, we need to better understand the motivational and affective factors that shape students’ 

help-seeking behavior and their desire to be (or become) effective help seekers and effective 

learners. 

Relations between Gaming and Affect, Motivation, and Attitudes 

Why do students choose to engage in inappropriate learning behaviors or strategies? In 

particular, why do students choose to game the system, which is clearly an ineffective learning 

strategy? Answering this question may help in the development of future interventions that 

address gaming, in a more effective fashion than work up to this point has.   

This broad question led us to investigate the relationship between gaming the system and 

several potential factors that could influence the choice to game, including affect, motivation, 

attitudes, and differences between tutor lessons. In this section, we briefly summarize six studies 

that we have conducted, in collaboration with our colleagues. These studies are reported in full 



detail in (Baker, 2007; Baker, Walonoski, Heffernan, Roll, Corbett, & Koedinger, 2008; Rodrigo 

et al, 2007, 2008). In these studies, we correlated the frequency of gaming the system (measured 

either by behavioral observation or the gaming detector) and data from questionnaires and affect 

observations, with junior high school and high school students in the USA and Philippines.   Five 

of six studies were conducted using intelligent tutoring systems – the sixth study involved an 

educational game.  

One of the most common hypotheses for why students game (e.g. Martinez-Miron, du 

Boulay, & Luckin, 2004; Baker, Corbett, Koedinger, & Wagner, 2004) is that students game 

because they have performance goals rather than learning goals. Two studies investigated this 

hypothesis – both found no such relationship, a surprising result especially given the finding by 

Pintrich (1999) that performance goals (termed extrinsic goals in this work) are associated with 

self-reports of not using self-regulated learning strategies. Items that indicated that the student 

had relatively low desire to persist in educational tasks were weakly associated with gaming, 

with r2 under 0.05. 

Another popular hypothesis among teacher (Baker et al., 2008) is that gaming the system is 

associated with anxiety – however, two studies found no relationship between gaming and 

anxiety.  

Negative attitudes towards computers, the learning software, and mathematics, were each 

found to be correlated with gaming in one to three of the studies. These effects were statistically 

significant, but were fairly weak, with r2 under 0.05.  

The affective states of boredom and confusion were associated with the future choice to 

game. In two studies, a student’s affect and behavior were repeatedly observed. In both studies, 

there was evidence that a bored student was more likely (about twice as likely) to begin gaming 



in the next three minutes, particularly among students who were frequently bored. There was a 

trend towards more gaming after confusion within one study, and a trend in the opposite 

direction in the other study. Gaming the system’s future probability was not significantly 

increased by other affective states, including frustration, delight, surprise, and the flow state. 

Hence, there were some fairly solid relationships between momentary affect and gaming, but 

only weak relationships between relatively stable attitudinal/motivational constructs and gaming. 

This finding led us to study, using data mining, how predictive are these semi-stable student 

attributes.  The detector of harmful gaming was applied to each student’s behavior in each tutor 

unit in an entire year of middle school-level tutor data, and the amount of variance in the student 

terms predicted as a class was used as a proxy, and an upper bound, for the total amount of 

variance that could be predicted by the sum of all student attributes that remain stable over a 

year. The result indicated that differences between lessons were much better predictors of how 

much a student would game (r2 = 0.55) than differences between students (r2 = 0.16).  

Overall, then, these results suggest that several factors contribute to a student’s decision to 

game the system. Semi-stable student characteristics, in particular attitudes towards the domain, 

play a small role in the choice to game the system. A larger role appears to be played by affect, 

with a student’s momentary experience of boredom or confusion leading students in many cases 

to game the system shortly afterwards. This suggests that affective learning companions (Kort, 

Reilly, & Picard, 2001) that respond effectively to these affective states may in some cases be 

able to prevent gaming the system from occurring – it remains for future work to determine 

which affective responses might be effective in this regard.  Another important factor is 

differences between tutor lessons – studying in greater depth how the differences between 



lessons increase or decrease gaming, and whether this effect is mediated by affect, may also help 

us to develop tutor lessons that students do not choose to game.  

General Discussion and Conclusion 

Within this chapter, we have discussed our research group’s work to build tutorial support for 

metacognition, giving examples of interventions in the following four areas: 

1. Self-explanation 

2. Error self-correction 

3. Reduction of gaming the system 

4. Help-seeking skills 

While we explored these metacognitive abilities within the context of intelligent tutoring 

systems, the results of the experiments may be relevant to other forms of instructional support for 

metacognition. The two first systems have achieved reliable domain-level effects on robust 

learning measures. The last two projects, on the other hand, had more modest or unstable effects 

on learning. In this discussion, we raise several hypotheses to explain the differences found 

between the outcomes of the given support and highlight key achievements and challenges.  

Analysis of the Interventions 

The four interventions differ along a number of dimensions, most notably in terms of how 

adaptive their metacognitive support is.  As mentioned earlier, static support does not change 

depending on the students’ behavior or knowledge; instead, it occurs during certain fixed stages 

in the learning task, regardless of student metacognition.  In contrast, adaptive metacognitive 

support assesses aspects of students’ metacognitive behavior and adapts the software’s behavior 

or response, based on its assessment of the student’s metacognitive behavior. Systems that offer 

adaptive support for metacognition typically allow students the freedom to commit 



metacognitive errors, and respond to these errors when they recognize them. Such systems may 

of course also respond when students engage in metacognitive behaviors deemed to be desirable 

or effective. 

Under this definition, the approach to tutoring self-explanations discussed above is a form of 

static metacognitive support. In this intervention, the key metacognitive decision, namely, 

when/whether to self-explain one’s problem-solving steps, is performed by the system not by the 

student, and consequently the system cannot assess students’ metacognitive decisions. The 

system does assess the correctness of students’ self-explanations, but once the decision to self-

explain is made, the self-explanations themselves may well be viewed as domain-level behavior. 

Nevertheless, this tutor should still be viewed as supporting metacognition.  Because it scaffolds 

students in engaging in positive metacognitive behavior, there is an opportunity for students to 

internalize this behavior and, perhaps more importantly, benefit from it at the domain level.  

By contrast, the other three systems are adaptive to students’ metacognitive behaviors. All 

three of them assess aspects of students’ metacognitive behavior and respond according to their 

respective metacognitive assessment of the student, although they differ substantially in the 

range and type of metacognitive behaviors to which they respond. The Error Correction tutor 

recognizes a single desirable metacognitive behavior or lack thereof, namely, whether students 

correct their own (domain-level) errors as soon as the negative consequences of those errors are 

apparent. Further, this error correction recognition was only implemented for a limited (though 

carefully chosen) subset of the domain skills, namely formula writing errors. Scooter 

distinguishes a single broad undesirable metacognitive category, namely, harmful gaming. This 

category encompasses a range of more specific behaviors, such as guessing answers or help 

abuse, but Scooter does not “diagnose” them separately. It assesses metacognition at a more 



aggregate level than the other two systems. The Help Tutor, on the other hand, assesses students’ 

help-seeking behavior (and also how deliberately students work with the Cognitive Tutor) in a 

highly fine-grained manner. It recognizes several different specific metacognitive errors, unlike 

the other three systems.  

The systems differ further with respect to the content of the feedback they provide on 

students’ metacognitive behaviors. In any given system, the content of the feedback may relate 

primarily to the domain level, it may be primarily metacognitive, or it may involve both. As a 

further distinction, the feedback may comprise correctness information only, meaning that it 

indicates only whether the student engages in metacognitive behaviors deemed to be productive 

or not (without explaining why), or it may comprise more elaborate messages, for example, 

messages relating the student’s behavior to specific principles of metacognition (e.g., help-

seeking principles) or problem-solving principles at the domain level.  

The intervention designed to tutor self-explanations provides feedback on the correctness of 

students’ self-explanations. As mentioned, we consider this to be domain-level feedback. The 

intervention designed to tutor error correction reacts to metacognitive errors (namely, students’ 

not fixing a domain-level error when the consequence of that error is apparent) mainly in a 

domain-related way. It helps the student to generate correct behavior through a domain-specific 

discussion of what went wrong. It does not give students meta-cognitive level instruction, for 

instance, by suggesting a general strategy for checking for errors like attempting the problem 

again with a different strategy.  Likewise, Scooter’s main reaction to gaming the system is to 

assign remedial problems that address domain-level topics that the student is struggling with, 

according to its student model. These remedial problems constitute a form of domain-related 

feedback. Scooter also provides correctness feedback at the metacognitive level, both through 



brief messages and the animated animal cartoon character’s emotional expressions. Of the four 

systems, the Help Tutor is the only one whose feedback is entirely metacognitive in content. It 

provides specific metacognitive error feedback messages, relating students’ behavior to desired 

help-seeking principles. 

Thus, the four interventions exhibit significant variability in their design. They provide case 

studies exploring different points in a design space for metacognitive support, defined by the 

dimensions discussed above, such as  (a) whether the support for metacognition is static or 

adaptive, (b) the range and type of metacognitive behaviors that they respond to, (c) the level of 

detail at which they analyze students’ metacognitive behaviors, (d) whether the feedback they 

provide in response to students’ metacognitive behaviors is domain-related or metacognitive in 

nature, and (e) whether it is correctness feedback only or whether it is elaborate and explanatory. 

We expect that further dimensions in this design space for metacognitive support will be 

identified as researchers continue to develop and evaluate methods for automated tutoring of 

metacognition. 

Although we cannot be said to have systematically explored the space defined by these 

dimensions, and it is therefore not possible to draw definitive conclusions about the effectiveness 

of any individual dimension or design feature, it is nonetheless interesting to ask to what 

hypotheses we can “extract” about the kinds of design features that may be effective in 

metacognitive tutors. We emphasize, however that the purpose of the discussion is to generate 

hypotheses, rather than to formulate definitive lessons learned.    

The reader may recall the four levels of goals with respect to metacognitive tutoring, namely, 

to improve students’ metacognitive behaviors, and their domain-level learning, both during the 

intervention and afterwards. Table 1 summarizes the results of our experiments with respect to 



the four goals. Three of the four studies show improved domain learning as a result of 

metacognitive support; two yield evidence that such support can improve metacognitive behavior 

during the intervention (see Table 1). 

Table 1:  Relating the four studies to four goals of metacognitive support given in Figure 1. 

 During Intervention After Intervention 

 Improved 

Metacognitive 

Behavior 

Improved 

Domain 

Learning 

Improved 

Metacognitive 

Behavior 

Improved 

Domain 

Learning 

 

 

Static 

Cannot tell 

without online 

assessment of 

metacognitive 

behavior 

Tutoring self-

explanations 

leads to 

improvement 

Did not assess Did not assess 

 

 

Adaptive 

Scooter and the 

Help Tutor led 

to improved 

metacognitive 

behavior 

Tutoring error 

correction and 

Scooter led to 

improvement; 

Help Tutor did 

not 

Help Tutor did 

not improve 

metacognitive 

behavior in a 

transfer 

environment 

Did not 

assess, but 

unlikely given 

lack of 

metacognitive 

improvement 

 

One might wonder whether metacognitive support that adapts to students’ metacognitive 

behavior (i.e., what we have termed adaptive support), is more effective than static 

metacognitive support. Given that in our experience, adaptive metacognitive support is much 

more difficult to implement in computer tutors than static support, one might wonder whether it 

provides a good return on investment. The pattern of results obtained does not provide support 

for the hypothesis that adaptive support leads to better domain level learning than static support.  

The Self-Explanation Tutor, a form of static metacognitive support, improved students’ domain-

level learning, whereas the Help Tutor, with its detailed assessment of students’ metacognition 

and highly specific metacognitive feedback, did not. However, we reiterate that in our 

experiments the systems differ in multiple ways, not just whether the support is static or 



adaptive, and that therefore it is hard to draw a firm conclusion. An ideal experiment would 

contrast this dimension, static versus adaptive support, for a single metacognitive skill, like self-

explanation, in the same domain(s), like geometry. 

We note further that our experiments do not at all rule out that adaptive metacognitive 

support may be better for long-term retention of students’ metacognitive abilities (the third of the 

four goals in Figure 1). Our experiments are largely silent on this issue. We tested long-term 

improvement only with respect to help seeking, and did not find a significant improvement in 

students’ help-seeking behavior (although we did find an improvement in their declarative 

knowledge of help seeking). It may well be, then, that across a broader range of metacognitive 

skills, adaptive metacognitive support will, upon further research, turn out to be desirable to 

better help students exhibit metacognitive behavior in the long-term. 

The pattern of results depicted in Table 1 seems to suggest another surprising trend: in the 

four systems we tested, the narrower the scope of metacognitive behaviors that the tutor targets 

(either through static or adaptive support), the stronger the effect on domain learning. Again, we 

note that our experiments were not designed to test this pattern in a rigorous manner; the systems 

differ along many dimensions in addition to this one. We found that the Self Explanation and 

Error Correction tutors, which each target a single metacognitive skill, were most clearly 

effective at the domain level. The Help Tutor on the other hand, which targets a wide range of 

metacognitive skills, with many detailed error categories corresponding to a comprehensive set 

of principles of help seeking, essentially did not have an effect on domain learning. Scooter falls 

somewhere in between these two “extremes,” both in terms of the range of the metacognitve 

behaviors that it targets and its beneficial effect on domain-level learning. It may seem 

counterintuitive that targeting a single significant metacognitive skill might be more beneficial 



(to domain learning) than providing feedback on a wide range of metacognitive behaviors. 

Perhaps students have difficulty telling the forest from the trees when receiving a wide range of 

metacognitive feedback. Alternatively, systems that target a broad set of metacognitive skills 

may violate a key principle of both cognitive and metacognitive tutoring, that is, to communicate 

the goal structure underlying the problem solving (Roll, Aleven, McLaren & Koedinger, 2007b). 

The patterns of results shown in Table 1 further suggests that metacognitive support may be 

more effective when the students perceive the metacognitive steps that they are asked to perform 

as being a natural part of the task at hand and not as extra work. In the Self-Explanation and 

Error Correction tutors (which as mentioned were most clearly successful at the domain level), 

the targeted metacognitive behaviors were essential to successful completion of the task 

presented to the student. Students could not finish the Geometry problems assigned to them 

without successfully explaining their steps, and could not complete the Excel training without 

successfully correcting their errors. This tight integration with the task makes students engage in 

the target metacognitive skill as a matter of course, and was shown to achieve the most 

improvement in learning. 

This tight integration was not the case for Scooter and the Help Tutor, which were less 

successful at improving domain level learning. Unlike the previous two examples, in the cases of 

Scooter and the Help Tutor, students’ metacognitive errors did not prevent them from completing 

the task at hand. On the contrary, one might even argue that the given tasks could be solved more 

easily by gaming the system or abusing its help facilities – that is, desired metacognitive 

behavior may be viewed as being at odds with fast completion of the tasks as given (even if it is 

hypothesized to improve long-term learning). In particular, some students complained that 

Scooter prevented them from completing the problems.  



Thus, with the caveat that there were multiple differences between the systems that might 

help explain the pattern of results in Table 1, in the systems that were more successful at the 

domain level, the metacognitive behaviors appeared to be a regular (natural?) part of task 

performance and so may have been perceived by students as being beneficial for the problem-

solving process. 

The Role of Affect in Metacognitive Choices  

Another possible explanation for the differences in domain learning observed between 

studies is the extent to which the meta-cognitive process has connections with students’ affect.  It 

may be that the more connected the metacognitive process is to affective issues (e.g., gaming the 

system, and the gaming-related errors in help-seeking may be more strongly related to affective 

issues than self-explanation or error correction), the less chance that an approach centered on 

scaffolding, monitoring, and tutoring will work.  A source of suggestive evidence comes from 

the studies of gaming and affect that identified associations between negative affect and high 

levels of gaming (e.g., bored students are more likely to begin gaming). To confirm this 

hypothesis we will need corresponding evidence that self-explanation and error correction are 

not associated with negative affect.  However, the association between gaming and affect already 

suggests that it may be valuable to either scaffold students’ affect, in order to enable them to 

learn key metacognitive skills, or to assist students in developing affective self-regulation 

strategies that support better metacognition.   

Tutoring and Assessing Metacognition During Learning 

Beyond the direct effects on domain learning, the projects discussed in this chapter 

demonstrate the potential of intelligent tutoring systems to support the exercise of metacognitive 

skills. Through a rigorous process of design and evaluation, using existing knowledge on 



domain-level tutoring, we created interventions that support students’ metacognition within 

intelligent tutoring systems.   

We have made some progress toward the goal of testing whether metacognitive support leads 

to measurable improvements in students’ metacognition. The three adaptive systems presented in 

this paper each depended on the development of sophisticated models that automatically monitor 

and assess differences in students’ metacognitive behaviors, as they used the tutoring software. 

The Help Tutor used a rational production-rule model, as did the Error Correction tutor (although 

it was much simpler in its metacognitive components).  Scooter used a statistical model 

developed through machine learning. These models have been one of the key innovations 

underpinning our work, enabling us to study students’ metacognition more effectively by 

applying the models to existing data (e.g., to study how gaming varies across tutor lessons) as 

well as enabling automated interventions. An important future step will be to use these detectors 

to assess student metacognitive behavior after the intervention has been removed and the 

experimenters have returned to the laboratory. By assessing students’ future metacognition, we 

will be in a position to test the hypothesis that adaptive metacognitive support will lead to better 

learning – and to find out how durable any effects are. 

While much work is still to be done, we would like to emphasize two main lessons learned 

with respect to evaluation and assessment of metacognition: 

a. Evaluation of interventions: Using the in vivo experimentation paradigm, we tested 

these interventions in ecologically valid classroom environments. In vivo 

experimentation is especially important in evaluating metacognitive instruction, which 

is tightly related to aspects of motivation, goal orientation, socio-cultural factors, etc. A 

metacognitive intervention that is effective in the laboratory may not be effective in 



more ecologically valid settings. Furthermore, evaluating the systems in students’ 

‘natural habitat’ allows for collecting fine-grained data of students’ metacognitive 

behaviors in the classroom.  

b. Automated assessment of metacognitive behavior: Each of the four systems used 

automated assessment of students’ actions at the domain level. Furthermore, three of 

the systems used models of students’ metacognitive behavior in order to detect 

metacognitive errors, independently from domain errors in the cases of the Help Tutor 

and Scooter. Each of these models/detectors has been shown to be able to transfer, to at 

least some degree, across domain contents and student cohorts. This automation creates 

the potential that formative metacognitive assessment can be embedded within a wide 

variety of learning environments; a step that, when combined with appropriate 

instruction, may have the potential to achieve wide-spread improvements to student 

metacognition, with lasting effects on learning.  

To summarize, the projects described above demonstrate advancements and possibilities in 

using intelligent tutoring systems to support, teach, and assess metacognition. At the same time, 

they suggest important links between affect and metacognition.  
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