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ABSTRACT

In speech recognition systems, information from multiple
sources such as different feature streams or acoustic models can
be combined in many different ways to yield better recognition
performance. It is theoretically expected that the best perfor-
mance is obtainable through the simultaneous use of all sources
of information, in a system capable of using these in paralldl.
Such systems, however, are extremely complex and difficult to
construct. In this paper we propose a simple aternative criterion
for combination which can factorize the complex recognizer into
several simple recognizers, each of which is based on a single
source of information. We use this criterion in simple experi-
ments which combine lattices from recognizers built with differ-
ent feature streams. Experimental results obtained on five
different corpora show that the proposed method is effective in
improving recognition performance.

1. INTRODUCTION

The performance of an automatic speech recognition (ASR) sys-
tem depends critically on the feature set that it uses. Even though
there currently exist several different kinds of features which
may generate good results under certain conditions (e.g. MFCC,
PLP), none of them work perfectly for al conditions. Instead,
they represent different subsets of information embedded in the
speech signal to different levels of accuracy. It stands to reason
that combining the information from these features properly
would result in better recognition accuracy than the result
obtained with any single feature set alone.

Generaly speaking, there are two ways of combining informa-
tion from different features together: We can either concatenate
different feature vectors to form a larger feature vector and per-
form recognition based on this combined feature, or perform rec-
ognition directly based on the individua features and combine
their outputs together. The latter method has several advantages.
It permits parallel processing in training and recognition, as well
asflexibility in adding new features and combining different sys-
tems of heterogeneous architectures without additional effort.
For instance, such an approach permits us combine the outputs of
a word-based HMM recognizer with a phone-based segmental
recognizer, with no integration of the core systems required.

Combination of the outputs of heterogeneous recognizers has
typically taken the form of combining their recognition hypothe-
ses (e.g. ROVER [1], hypothesis combination [2], and discrimi-
native model combination [3]). Although these methods

effectively improve recognition accuracy, they only combine the
single best hypotheses from the recognizers. We know that the
actual words in an utterance may not appear in the single-best
hypothesis, although they may appear with high score in the
search space of the recognizer. When the single best hypotheses
of severa recognizers are combined, the correct word may still
not be found in any of these hypotheses. Any combination
scheme based on single-best hypotheses would fail to hypothe-
size the correct words. On the other hand, it has been shown that
appropriate processing of multiple hypotheses from the search
space of even just a single recognizer can give us better perfor-
mance than just picking up the single-best hypothesis [4].

Motivated by the considerations above, we present in this paper
our recent work on combining recognition lattices from hetero-
geneous recognizers for improved overall recognition. Our
choice of lattices as the representation of the search spaces of
recognizers, rather than other multiple output formats such as N-
best lists, is based on the fact that lattices represent the search
space more accurately. Furthermore, combining lattices resultsin
amuch more expanded search space in the combined lattice, giv-
ing us a better chance of hypothesizing the correct words.

In the following section we present an alternate criterion for clas-
sification based on multiple information sources. In Sec. 3 we
discuss the combination of lattices from multiple recognizers. In
Sec. 4 we present our experimental results. Thisis followed by a
discussionin Sec. 5.

2.LATTICESAND COMBINATION CRITERIA

Ideally, when using multiple sources of information for recogni-
tion, one would construct a composite search space and find the
best hypothesisin that space using an appropriate objective crite-
rion that incorporates al the available information. When the
multiple sources of information are multiple features or acoustic
models (AM), for example, the idea way to combine them
would be to generate a lattice of possible hypotheses using all
features or models at al times, and to obtain the best path
through this lattice. This, however, implies that the recognizer
must be constructed in such amanner asto permit the use of mul-
tiple features or multiple acoustic modelsin parallel. Such recog-
nizers must, of necessity, be complex. Furthermore,
incorporation of additional sources of information could require
areconstruction of the recognizer.

With these considerations in mind, we propose an aternative
mechanism for combining heterogeneous sources of information
that does not require the construction of complex recognizers.



Instead, we combine the search spaces of the individual smple
recognizers to effectively approximate the ideal complex recog-
nizer. We do this by redefining the objective criterion used for
recognition in away that permits the factorization of the individ-
ual information sources in the complex recognizers into separate
simple recognizers. We now describe with a ssimple example the
modified objective criterion, which we refer to as the max-max
criterion. In the next section we describe the combination of rec-
ognizer search spaces and the effect of the max-max criterion on
obtaining hypotheses from these combined search spaces.

Consider asimple task where we must recognize a given signal as
one of aset of words, Wy, W,..., Wy . Weare given two sources of
information in the form of two different features of the signal, f;
and f, . The recognition task can be stated as estimating the word
W such that

W=Ww:is= max;{ 1ogP(fy, f,| W;) + logP(W,)} (2)

where  logP(fy, f2|vvj) is the combined acoustic evidence
derived from f; and f, . For the simple case where the two
sources of evidence are two different features, this term can be
computed by treating the two features as components of a single
extended feature and estimating the joint probability of the two
features. More generically, however, it is assumed that the two
sources of information are independent of each other. This results
in the following estimate for the combined acoustic evidence
from the information sources:

logP(f;, f2|Wj) = Elog(P(fk|Wj)) ()

In other words, the acoustic evidence for each word is the sum of
the acoustic evidences derived from each of the information
sources. The recognition problem getsrestated as:

W=W:i= maxjéogP(Wj) + Elog(P(fk|V\lj))§ 3

Recognition can only be performed using the complex recognizer
in Eq. (3), which considers al information sources jointly. We
refer to the recognizer in Eq. (3) as amax-add classifier, since the
acoustic evidence from all the information sources must be added
to obtain the combined evidence.

In most practical situations, however, the joint acoustic evidence
from multiple sources is dominated by the evidence from one, or a
small number of the sources, the composition of which may vary
from instance to instance. i.e.

IogP(fl,f2|V\/j)=max(logP(fl|W]-),IogP(f2|V\/j)) 4

In this paper we use this observation to recast the recognizer in
Eq. (1) as
W = W, i = maxj{logP(Wj) +max(|ogP(fl|V\lj), IogP(f2|VVj))}(5)

which can be generalized to

W=W,:is= maxj{maxk(logP(fk|Wj) + IogP(V\lj))} (6)

We refer to the recognizer in Eq. (6) as a max-max classifier. The
advantage with the max-max classifier isthat the max operationis

transitive. i.e.

maxj{maxk(logP(fk|V\lj)+IogP(Wj))} =
)
max, { max]-(logP(fk|VVj) + IogP(V\lj))}
We note that the term within the brackets on the right hand side of
Eq. (7) isin fact the log probability of the hypothesis of asimple
recognizer based only on the K" information source. In other
words, Eq. (7) represents the factorization of the max-max classi-
fier into two simple classifiers (in our two-feature example). A
max-max classifier can therefore be factored into several simple
recognizers, and the final hypothesis is merely the output of the
simple recognizer with highest log probability.

3. LATTICE COMBINATION

In more detailed speech recognition problems, the max-max clas-
sifier can be approximated by choosing the highest scoring
hypotheses among the various simple recognizers. Better gains
can be had, however, by applying the factorization piecewise to
every word considered during recognition. For this, however, the
search spaces of the various simple recognizers must be com-
bined. Lattices are a particularly convenient representation of
these search spaces, for such an exercise.

The lattice is a compact representation of all the highest scoring
hypotheses considered by the recognizer. It is a directed acyclic
graph in which nodes are associated with words and their starting
and ending frames, and the edges represent the possible transition
of wordsin the hypothesis. A single-best hypothesisis merely the
best path through the graph. Lattices from multiple recognizers
can be combined by merging them into larger graphs using vari-
ous rules. Conventional combination of multiple information
sources for recognition requires rescoring of the combined lattice
using al sources jointly. However, since the edges in the compo-
nent lattices are the best scoring local paths within the search
space of the individual recognizers, it can be assumed that rescor-
ing the combined lattice using only the native edge scores from
the component lattices is consistent with the max-max criterion.
This gives us the advantage of not having to recompute the acous-
tic scores associated with the edges. Finding the best hypothesis
in the combined | atti ce reduces to a graph search problem.

We now describe the merging of lattices from multiple recogniz-
ers. We begin by merging the utterance-begin and utterance-end
nodes of the component lattices to generate an initia large lattice.
We then merge edges and nodes, and add new edges using some
rules which we describe below. Note that these rules are specific
to arecognizer based on triphonetic sub-word units.

3.1 Merging edges

Acoustic scores are typically associated with edges in a lattice.
Edges from two or more lattices being combined are merged if
their outgoing nodes have the same word label, same beginning
and ending frame, and the ending nodes of these edges have the
same first phone. To merge these edges, we first merge their out-
going nodes together to a new node, and then update their acous-
tic scores. In following the max-max logic, the new score
associated with the merged edge is the maximum score for that
edge from the corresponding edges of the component lattices. Fig.
1 shows an example wherein edgesin two lattices are merged.
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Figure 1. Merging edges in two lattices. () is a simplified representa-
tion of two lattices. Edges in the two lattices are represented by solid and
dashed lines respectively. The number next to each node is the starting
frame of the word associated with the node. (b) Edges starting at the
word “LOCATIONS” are merged, with acoustic scores updated using the
max-max criterion.

3.2 Creating new edges without AM recomputation

In this step, we build a new edge from Node A to Node B so long
as there exists an edge from Node A to Node C whose word |abel
has the same first phone as the word label in Node B, and the dif-
ference in the beginning frame of Node B and Node C lies below
a chosen threshold (e.g. 30 or 40 ms). Since the edge from Ato C
tells us that Node A can end just before Node C, A can aso end
just before Node B so long as Node B and C have similar begin-
ning times. The acoustic score associated the new edge is
assigned as:

D
_ "A-B
WA”B_DA DV, ¢ ®)

where W, _ ; and D,  ; are the acoustic score and duration of
the edge from Node I to Node J. Since the acoustic score of an
edge is the product of the acoustic likelihoods of each frame in
Eq. (8), the longer the duration of an edge, the less its acoustic
score. Fig. 2 shows an example of creating new edges without
AM recomputation:

3.3 Creating new edgeswith AM recomputation

Theoretically speaking, when we create new edges between dif-
ferent nodes from different lattices, the constraint of requiring the
same first phone for the incoming node of the existing edge (e.g.
“FOR” in Fig. 2) and the node into which we want to build a new
edge (e.g. “FROM”) is too strict. In fact, we should be able to
create new edges so long as the starting time of ending nodes of
existing edges is the same as the starting time of the node into
which we want to build a new edge. For example, if we replace
the node “FOR(100)” in Fig. 2 with “OF(100)", we should still be
able to build an edge from “LOCATIONS’ to “FROM” even
though the only existing edge from “LOCATIONS’ is to “OF",
since the starting time of “OF” is the same as the starting time of
“FROM” .

The reason we impose “same phone” constraintsis that if the first
phone of Nodes B and C are different, we have no way of assign-
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Figure 2. Creating new edges without AM recomputation. A new edge
is built from the node “LOCATIONS’ to the node “ FROM” and is rep-
resented by the dotted line. Since the words “FOR” and “ FROM” , begin
at the same frame, the score of the new edge is the same as the existing
one. Similarly, another edge is created from “ CAUTION” to “FOR”.

ing a score to the new edge A - B, since the acoustic models for
A-B and A-C aredifferent. Usually, in addition to lattices, we also
have acoustic models and feature vectors of the corresponding
underlying systems. In these situations, we can recompute the
acoustic score of any edge that we want to create directly, rather
than through Eqg. (8). Creating new edges must be done with some
caution. While new edges may compensate for those missing due
to deletions during decoding, some edges may aso be incorrect
due to spurious insertions during decoding. The latter, if domi-
nant, can degrade the accuracy of the combined systems.

With thisin consideration, in creating a new edge from Node A to
Node B we follow four steps: (a) Check whether there exists
another edge from Node A to Node C, and whether the difference
in the starting time of Node C and Node B lies within a threshold
(e.g. 30-40 ms). (b) If there does exist such an edge from A to C,
use the acoustic models and features of the system that generated
Node A to compute the AM score of Node A, using as right con-
text the first phone of Node B and using an ending time of one
frame before the starting time of Node B. (c) If the first phone of
Node C is in the same confusable phone set as the first phone of
Node B, we assign the AM score computed in Step (b) to the new
edge A - B.(d) If thefirst phone of Node B and Node C arein
different confusable phone sets, we multiply the AM score gener-
ated from Step (b) by aweight lessthan 1 and assign the weighted
AM scoretothenew edge A - B.

3.4 Score normalization

For the max-max classifier to be applicable, we need to consider
paralel systems whose acoustic scores are within numerically
comparable ranges. Thus acoustic score renormalization prior to
combination is generally important. To achieve this, in each of the
component recognizers, for each feature vector the scores of al
HMM states which congtitute the acoustic models are normalized
with respect to the highest scorefor that vector. The normalization
factor for any edge in alattice is the sum of the maximum state
scores for all the feature vectorsin the duration of that edge.



WER (%) Featl | Feat2 | ROV Hyp- Lat-
ER Comb | Comb
RM 115 12.0 111 8.4 8.0
TI+D 5dB 255 26.6 26.1 25.6 24.7
TI+D 10dB 125 13.0 13.7 11.9 11.3
SPINE 1 35.1 36.2 35.4 34.2 33.2
SPINE 2 17.5 16.6 17.8 15.9 15.0

Table 1. Recognition accuracy of three combination schemes on
five corpora. The lattice combination scheme uses edge merging
and building of new edges without AM recomputation.

4. EXPERIMENTAL RESULTS

We tested the performance of the lattice combination on five cor-
pora: the DARPA Resource Management (RM) corpus, the
Telefénica (TI+D) Cellular Telephone corpuswith artificially cor-
rupted traffic noise at SNRs of 5 and 10 dB, the Speech In Noisy
Environments 1 (SPINE1) corpus and the Speech In Noisy Envi-
ronments 2 (SPINE2) corpus. The RM corpus consists of clean
speech.The TI1+D and SPINE databases are telephone bandwidth
databases with added noise in Spanish and English, respectively.

All experiments were conducted using the CMU SPHINX-III
speech recognition system. For each corpus, two different features
were used to generate lattices. For the RM and TI+D 5 dB and
TI+D 10 dB corpora, standard MFCC and PLP features were
used. For the SPINE1 corpus, two versions of MFCCs with differ-
ent DCT implementations were used. For the SPINE2 corpus, we
first performed a Karhunen-Loeve transform to generate a 20-
dimensional feature vector from 40 dimensional log-spectral vec-
tors, and then performed linear discriminant analyses to generate
two different 13-dimensional feature vectors. Each of these fea
tures was designed to discriminate amongst two different sets of
subword-unit classes in each case. In al our experiments, lattice
combination was compared to combination of the best recognition
hypotheses using ROVER and conventional hypothesis combina-
tion. Lattices were combined using the steps described in this
paper. The Viterbi algorithm was used to obtain hypotheses from
the combined lattices. Table 1 shows word error rates (WERS)
obtained in the combination experiments, where edge-scores were
assigned without AM recomputation. Table 2 gives statistical sig-
nificance measurements for the results reported in Table 1, using
the matched-pair test [5].

For the RM, TI+D 5 dB and TI+D 10 dB corpora, we aso tested
the performance of building new edges with AM recomputation.
Table 3 shows the recognition accuracy of |attice combination and
statistical significance level (P) between the results of lattice com-
bination and hypothesis combination.

RM TI+D TI+D SPINE1 | SPINE2
5dB 10dB
0.3 0.05 0.18 0.12 0.04

Table 2. Statistical significance level of the difference in recog:
nition performances of hypothesis and lattice combination.

RM TI+D5dB | TI+D 100dB
WER (%) 78 243 111
P 0.16 0.03 0.08

Table 3. Recognition accuracies and statistical significance (P)
of the differences between hypothesis combination and lattice
combination with edge merging and building of new edges with
AM recomputation.

5. DISCUSSION AND CONCLUSIONS

Experimental results show that lattice combination improves the
recognition accuracy consistently in all tested corpora. The rela-
tive improvement of lattice combination over hypothesis combi-
nation [2] ranges from 3 to 6 percent without AM recomputation
and from 6 to 8 percent with AM recomputation. For the TI+D 5
dB corpus, lattice combination is the only combination scheme
that reduces the WER.

The intrinsic similarity of the feature sets plays an important role
in the combination. It can be seen from Tables 1 and 2 that the
greatest improvement in WER and the most significant difference
between hypothesis combination and lattice combination was
achieved on the SPINE 2 corpus, for which the feature sets had
been developed specifically to maximize the difference between
different sub-word classes. This is expected, since we have used
the max-max criterion which is designed to select the locally most
prominently scoring words in its composite best path through the
combined lattice. That at any given time one or the other feature
would enhance the likelihood of a word was specifically ensured
by the features which were designed specifically to complement
each other in enhancing subsets of acoustic units.
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