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Abstract

Ordered sequences of data, specified with a join operation
to combine sequences, serve as a foundation for the imple-
mentation of parallel functional algorithms. This abstract
data type can be elegantly and efficiently implemented using
balanced binary trees, where a join operation is provided to
combine two trees and rebalance as necessary. In this work,
we present a verified implementation and cost analysis of
joinable red-black trees in calf, a dependent type theory for
cost analysis. We implement red-black trees and auxiliary in-
termediate data structures in such a way that all correctness
invariants are intrinsically maintained. Then, we describe
and verify precise cost bounds on the operations, making use
of the red-black tree invariants. Finally, we implement stan-
dard algorithms on sequences using the simple join-based
signature and bound their cost in the case that red-black
trees are used as the underlying implementation. All proofs
are formally mechanized using the embedding of calf in the
Agda theorem prover.

1 Introduction

Ordered sequences of data are essential to the efficient im-
plementation of parallel functional algorithms [Acar and
Blelloch 2019]. One common presentation of the signature
for ordered sequences containing elements of type 𝛼 is given
in Fig. 1. This signature provides an abstract type seq𝛼 along
with three operations:

1. A constructor, empty, that represents the empty se-
quence containing no data of type 𝛼 .

2. A constructor, join, that appends two sequences with
an element of type 𝛼 in between.

3. A destructor, rec𝜌 , that recurs over a sequence to
produce an element of type 𝜌 . An empty sequence
is mapped to the argument of type 𝜌 ; a sequence
join(𝑠1, 𝑎, 𝑠2) is destructed using the argument of type

seq𝛼 → 𝜌 → 𝛼 → seq𝛼 → 𝜌 → 𝜌,

plugging 𝑠1 and 𝑠2 in for the sequence arguments, 𝑎
in for the 𝛼 argument, and the recursive calls in for
the 𝜌 arguments.

These three operations give rise to implementations of all
algorithms on ordered sequences of data; some examples are
shown in Fig. 2.
Many implementations of this signature are possible, us-

ing data structures such as lists and trees. When trees are
used, the data in the sequence is taken to be the in-order

type seq𝛼
empty : seq𝛼
join : seq𝛼 → 𝛼 → seq𝛼 → seq𝛼
rec𝜌 : 𝜌 → (seq𝛼 → 𝜌 → 𝛼 → seq𝛼 → 𝜌 → 𝜌) →
seq𝛼 → 𝜌

Figure 1. Signature for ordered sequences containing ele-
ments of type 𝛼 .

Sum : seqnat → nat
Sum = recnat 0 (𝜆 _ 𝑛1 𝑛 _ 𝑛2. 𝑛1 + 𝑛 + 𝑛2)
Map : (𝛼 → 𝛽) → seq𝛼 → seq𝛽
Map 𝑓 = recseq𝛽 empty (𝜆 _ 𝑠1 𝑎 _ 𝑠2. join 𝑠1 (𝑓 𝑎) 𝑠2)
Reverse : seq𝛼 → seq𝛼
Reverse = recseq𝛼 empty (𝜆 _ 𝑠1 𝑎 _ 𝑠2 . join 𝑠2 𝑎 𝑠1)

Figure 2. Sample implementations of auxiliary functions on
sequences, in terms of empty, join, and rec𝜌 .

traversal of the tree. For parallel efficiency, balanced trees
are a sensible choice [Blelloch and Greiner 1995]: if the re-
cursor rec𝜌 performs both recursive calls in parallel, it is
worthwhile to rebalance during a join in preparation for an
efficient use of rec𝜌 later. As studied by Blelloch et al. [2016,
2022] and Sun [2019], when sequences are implemented as
balanced binary trees, implementations of common auxiliary
functions on sequences have efficient sequential and parallel
cost. For example, sequences may be used as an implementa-
tion of finite sets when the stored data is sorted. Then, using
empty, join, and rec𝜌 , bulk set operations such as union
and intersection can be implemented with polylogarithmic
span.

1.1 Red-black trees

Here, we consider the red-black tree (RBT) data structure
[Guibas and Sedgewick 1978; Okasaki 1999], a flavor of bi-
nary search tree with an elegant functional description and
cost analysis. For our purposes, a binary tree is inductive
data structure where each inhabitant is either a leaf node
carrying no data or a node carrying a key and two other bi-
nary tree children. A red-black tree is a binary tree satisfying
the following invariants:

1. every node is colored either red or black ;
2. every leaf is considered black ;
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Figure 3. Sample red-black tree with black height of 1.
Leaves are depicted as black squares, and nodes are depicted
as red or black circles annotated with a key.

3. both children of a red -colored node must be colored
black ;

4. the number of black nodes on any path from the root
to a leaf (excluding the leaf), called the black height
of the tree, is the same.

Following Blelloch et al. [2016, 2022], we do not require that
the root of a red-black tree be colored black. In Fig. 3, we
show a sample red-black tree with black height of 1.
Traditionally, red-black trees have been used as binary

search trees, storing data in sorted order. Then, the primitive
operations are insertion, lookup, and deletion, all of which
have similar implementations. However, as discussed by Blel-
loch et al. [2016, 2022], this causes algorithms implemented
using red-black trees to have poor parallel efficiency, since
operations must be performed one-at-a-time. Instead, op. cit.,
a join operation for red-black trees is given, combining two
trees with a middle key and rebalancing as necessary to meet
the red-black invariants and preserve the in-order traversal
ordering. In Fig. 4, we show two sample red-black trees 𝑡1
and 𝑡2 which, when joined with 𝑥5 in the middle, produce
the tree 𝑡 .
It is well-known that red-black trees intrinsically satisfy-

ing the above invariants can be defined inductively [Licata
2013; Wang et al. 2017; Weirich 2014]:

1. A black-colored RBT with black height 0, a leaf, may
always be formed.

2. Let 𝑡1 and 𝑡2 are black-colored RBTs with black height
𝑛, and let 𝑎 be a key. Then, a red-colored RBT with
black height 𝑛 may be formed.

3. Let 𝑡1 and 𝑡2 be RBTs with black height 𝑛, and let 𝑎 be
a key. Then, a black-colored RBT with black height
𝑛 + 1 may be formed.

We will use this presentation of red-black trees in our defini-
tions and analysis.

1.2 Mechanized cost analysis in calf

The cost-aware logical framework (calf) [Niu et al. 2022]
is a dependent type theory for verifying the sequential and
parallel cost and correctness of algorithms. calf is based
on the call-by-push-value paradigm [Levy 2003], separating

𝑡1 𝑎 𝑡2

𝑥1

𝑥0 𝑥3

𝑥2 𝑥4

𝑥5 𝑥6

𝑥7

𝑡 = join(𝑡1, 𝑎, 𝑡2)

𝑥3

𝑥1

𝑥0 𝑥2

𝑥5

𝑥4 𝑥6

𝑥7

Figure 4. Two red-black trees 𝑡1 and 𝑡2 along with the tree 𝑡
produced when they are joined with 𝑎 = 𝑥5 in the middle.

seq𝛼 : tp+
empty : U(seq𝛼 )
join : U(seq𝛼 → 𝛼 → seq𝛼 → F(seq𝛼 ))
rec𝜌 : U(
U(𝜌)
→ U(seq𝛼 → U(𝜌) → 𝛼 → seq𝛼 → U(𝜌) → 𝜌)
→ seq𝛼 → 𝜌

)

Figure 5. Signature for ordered sequences containing ele-
ments of value type 𝛼 : tp+, for computation types 𝜌 : tp⊖ .

computations (which may have an associated cost) from val-
ues. Computation types are elements of the universe tp⊖ ,
whereas value types are elements of the universe tp+. Func-
tion types are computation types, where the input type is
a value type and the output type is a computation type. In
this setting, the signature for ordered sequences from Fig. 1
is augmented to include U(−) and F(−) type constructors,
explicitly moving between value and computation types; this
change is rendered in Fig. 5.

In calf, the programmer includes cost annotations within
algorithms, denoting an abstract notion of cost to later ana-
lyze. In this work, we use the usual sequential-and-parallel
cost model [Niu et al. 2022, §6], where a cost is a pair of the
sequential work and the parallel span as natural numbers.
To annotate a program with 𝑐 (sequential and parallel) cost,
we write step 𝑐 .
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Originally, Niu et al. [2022] studied the implementation
of sequential and parallel algorithms on concrete data struc-
tures in calf. In subsequent work, Grodin and Harper [2023]
consider the analysis of sequential-use data structures in this
setting. Here, we begin to investigate the implementation
and analysis of parallel data structures in calf.

1.3 Contribution

In this work, we present an implementation of sequences
using joinable red-black trees in calf. The correctness of
our implementation is intrinsically verified, and we perform
a separate precise cost analysis in terms of the number of
recursive calls. Following Blelloch et al. [2016, 2022], we
implement a variety of sequence functions generically in
the given primitives, and we analyze the cost of a simple
function in the case the underlying implementation of the
sequence type is the red-black tree data structure.
Our implementation and proofs are fully mechanized in

Agda [Norell 2009], in which calf is embedded [Niu et al.
2022]. We implement the mechanization of sequences and
red-black trees in Examples/Sequence.agda and the corre-
sponding Examples/Sequence directory.

1.4 Related work

Join-based balanced binary trees have been studied exten-
sively by Blelloch et al. [2016, 2022], and the joinable frame-
work is unified by Sun [2019].

The correctness of red-black trees with their traditional
sequential operations, such as single-element insertion, have
been intrinsically (and extrinsically) verified in a variety
of verification environments, including Agda [Licata 2013;
Weirich 2014], Coq [Appel 2011, 2023], and Isabelle [Nipkow
2023]. However, these systems do not come equipped with a
notion of cost, preventing the verification of the efficiency
of these algorithms:

Coq does not have a formal time–cost model
for its execution, so we cannot verify [the] log-
arithmic running time [of insertion and lookup
on red-black trees] in Coq. [Appel 2023]

In another direction, the cost analysis of sequential opera-
tions on red-black trees has been verified in a resource-aware
type theory [Wang et al. 2017]. However, this work does not
verify the correctness of the data structure.

In this work, we verify both the correctness and cost of
joinable red-black trees using an abstract cost model in calf;
further explanation of and examples in the calf framework
are presented in the original work of Niu et al. [2022].

2 Intrinsically-correct definitions

In this section, we describe a binary tree data type that struc-
turally guarantees that the red-black invariants hold. Then,
we describe how it would be used to implement the sequence

data irbt𝛼 : color→ nat→ list(𝛼) → tp+ where
leaf : irbt𝛼 black zero []
red : (irbt𝛼 black 𝑛 𝑙1) (𝑎 : 𝛼) (irbt𝛼 black 𝑛 𝑙2)
→ irbt𝛼 red 𝑛 (𝑙1 ++ [𝑎] ++ 𝑙2)

black : (irbt𝛼 𝑦1 𝑛 𝑙1) (𝑎 : 𝛼) (irbt𝛼 𝑦2 𝑛 𝑙2)
→ irbt𝛼 black suc(𝑛) (𝑙1 ++ [𝑎] ++ 𝑙2)

rbt𝛼 : tp+
rbt𝛼 =

∑
𝑦:color

∑
𝑛:nat

∑
𝑙 :list(𝛼 ) irbt𝛼 𝑦 𝑛 𝑙

Figure 6. Definition of indexed red-black trees as an indexed
inductive type.

signature of Fig. 5; of particular interest is the implemen-
tation of the join algorithm. Since our definitions will be
well-typed, they will be intrinsically correct. We work in
calf, an extension of call-by-push-value, in which we distin-
guish value types in universe tp+ from computation types
in universe tp⊖ .
First, we define red-black trees as an indexed inductive

type, as described in Section 1.1, guaranteeing that the red-
black invariants are maintained; this definition of irbt𝛼 is
given in Fig. 6. We include an index storing the in-order
traversal of the tree that we will to use to guarantee that well-
typed definitions implement the desired behavior, specified
in terms of lists. Additionally, we define the type rbt𝛼 as the
total space of the type family irbt𝛼 , storing an arbitrary color,
black-height, and in-order traversal along with an indexed
red-black tree with those parameters.
Given these definitions, the goal is to implement the se-

quence signature of Fig. 5. We choose seq𝛼 = rbt𝛼 , define
empty = ret( leaf ), and naturally implement rec𝜌 via the
induction principle for rbt𝛼 . It remains, then, to define a
computation

join : rbt𝛼 → 𝛼 → rbt𝛼 → F(rbt𝛼 ),

which we consider in the remainder of this section.

2.1 The join algorithm

The algorithm itself will follow Blelloch et al. [2016], al-
though we must ensure that the intrinsic structural proper-
ties are valid.1 We recall its definition in Algorithm 1, adapt-
ing to our notation; it is defined in terms of auxiliary func-
tions JoinRight (and the symmetric JoinLeft, which we
henceforth elide), which we will consider in the next section.
Informally, the algorithm proceeds as follows:

1. If both trees have equal height, simply construct a
new node without rebalancing (Fig. 7). If possible, a
red node is preferable.

1We omit a case listed by Blelloch et al. [2022] that our verification shows
is impossible to reach.
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Algorithm 1 Join algorithm for red-black trees [Blelloch
et al. 2022]. Since the color and black-height outputs may be
inferred, we leave them implicit for readability.
Input:

𝑡1 : irbt𝛼 𝑦1 𝑛1 𝑙1
𝑎 : 𝛼
𝑡2 : irbt𝛼 𝑦2 𝑛2 𝑙2

Output:

join(𝑡1, 𝑎, 𝑡2) : F(
∑

𝑦:color
∑

𝑛:nat irbt𝛼 𝑦 𝑛 (𝑙1 ++ [𝑎] ++ 𝑙2))

switch Compare(𝑛1, 𝑛2) do
case 𝑛1 > 𝑛2

𝑡 ′ ← JoinRight(𝑡1, 𝑎, 𝑡2)
switch 𝑡 ′ do
case meets the invariants

return 𝑡 ′

case has a red-red violation on the right
red (𝑡 ′1, 𝑎′, 𝑡 ′2) ← 𝑡 ′

return black (𝑡 ′1, 𝑎′, 𝑡 ′2)
case 𝑛1 < 𝑛2
· · · ⊲ symmetric, in terms of JoinLeft

case 𝑛1 = 𝑛2
if 𝑦1 = black and 𝑦2 = black then

return red (𝑡1, 𝑎, 𝑡2)
else

return black (𝑡1, 𝑎, 𝑡2)
end if

2. Otherwise, without loss of generality, assume 𝑡1 has a
larger black height than 𝑡2. Then, use the JoinRight
auxiliary function to place 𝑡2 on the right spine of 𝑡1,
rebalancing as necessary. The process may cause a
single red-red violation at the root of the result tree. In
that case, recolor the root to black (Fig. 8); otherwise,
return the valid tree.

This algorithm performs no recursive calls aside from those
within JoinRight, so no cost annotations are required by
our cost model. It remains, then, to define the type and im-
plementation of JoinRight.

2.2 The JoinRight auxiliary algorithm

As discussed previously, the JoinRight algorithm has a re-
laxed specification: rather than guaranteeing a valid red-
black tree, it allows a single red-red violation between the
root of the result and its right child to propagate upwards.
We allow this violation only in the case that the first tree
had a red root to begin with.

In order to represent this condition, we define an
auxiliary data structure, an almost-right red-black tree,
abbreviated arrbt, in Fig. 9; our terminology is inspired by
the “almost tree” of Weirich [2014]. A well-formed red-black
tree always counts as an almost-right red-black tree; a

𝑡1 𝑎 𝑡2

𝑥2

𝑥1

𝑥0

𝑥4

𝑥3 𝑥5

𝑥6 𝑥8

𝑥7 𝑥9

𝑡 = join(𝑡1, 𝑎, 𝑡2)
𝑥6

𝑥2

𝑥1

𝑥0

𝑥4

𝑥3 𝑥5

𝑥8

𝑥7 𝑥9

Figure 7. Join of two trees with equal black heights.

red -colored almost-right red-black tree may also be a
violation, with a black -colored left child, key data, and
another red -colored right child. Notably, a red-red
violation for an almost-right red-black tree can only happen
on the right spine, and only when the first tree originally
had a red root. We thereby define arrbt to be indexed by
another color parameter called leftColor, representing the
color of the left tree from which it was created. Therefore,
when a violation happens, the leftColor must be red .
Given this definition, we wish to define a computation

JoinRight :
(irbt𝛼 𝑦1 𝑛1 𝑙1) (𝑎 : 𝛼) (irbt𝛼 𝑦2 𝑛2 𝑙2) →
𝑛1 > 𝑛2 →
F(arrbt𝛼 𝑦1 𝑛1 (𝑙1 ++ [𝑎] ++ 𝑙2)).

Observe that the black height and left color of the result must
match the first tree. Also, notice that given such a definition
of JoinRight, the join implementation of Algorithm 1 is
well-typed and therefore correct.

Lemma 2.1. For all well-typed 𝑡1, 𝑎, and 𝑡2, it is the case that

Join(𝑡1, 𝑎, 𝑡2) is a valid red-black tree.

Proof. Weassume awell-typed implementation of JoinRight,
which is provided in Algorithm 2 and proved correct in
Lemma 2.2.
If 𝑛1 > 𝑛2, the call JoinRight(𝑡1, 𝑎, 𝑡2) is made, returning

an almost-right red-black tree. If this tree is valid, this tree is
returned, as desired. Otherwise, if it has a red-red violation
between the root and its right child, then the root is changed
to black, causing all the red-black invariants to be satisfied.

If 𝑛1 < 𝑛2, then a symmetric argument can be made.
4
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𝑡1 𝑎 𝑡2

𝑥2

𝑥1

𝑥0

𝑥4

𝑥3 𝑥5

𝑥6 𝑥7

𝑡 = JoinRight(𝑡1, 𝑎, 𝑡2)
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𝑥6

𝑥4

𝑥3 𝑥5

𝑥7

Figure 8. Recoloring the root of a result tree from JoinRight
due to a red-red violation on the right, indicated by a dashed
line.

data arrbt𝛼 : color→ nat→ list(𝛼) → tp+ where
valid : (leftColor : color) (irbt𝛼 𝑦 𝑛 𝑙)
→ arrbt𝛼 leftColor 𝑛 𝑙

violation : (irbt𝛼 black 𝑛 𝑙1) (𝑎 : 𝛼) (irbt𝛼 red 𝑛 𝑙2)
→ arrbt𝛼 red 𝑛 (𝑙1 ++ [𝑎] ++ 𝑙2)

Figure 9.Definition of almost-right red-black trees, allowing
for a red-red violation on the right when the color parameter
(the color of the left tree from which it was created) is red ,
as an indexed inductive type.

If 𝑛1 = 𝑛2, then the two trees may be joined by a red node
if both are black or a black node otherwise. In either case, it
forms a valid red-black tree. □

Now, it remains to give the JoinRight algorithm to fulfill
this specification. Here, we diverge slightly from Blelloch
et al. [2016, 2022] for ease of verification. The algorithm
presented op. cit. allows for a triple-red violation on the

right spine, albeit only in the base case. Moreover, as noted
by Sun [2019, §3.2.2], the triple-red issue must be resolved
one recursive call after the base case. Therefore, we trade
the more concise code and more complex specification for
slightly more verbose code with a simpler specification. We
give our definition of JoinRight in Algorithm 2.
We claim that JoinRight is a well-typed program with

exhaustive casework, by the definitions of irbt𝛼 and arrbt𝛼 .
Although our Agda mechanization verifies this fact, we in-
clude an informal proof below.

Lemma 2.2. For all appropriate inputs 𝑡1, 𝑎, and 𝑡2, the call

JoinRight(𝑡1, 𝑎, 𝑡2) returns an almost-right red-black tree with

black height 𝑛1. In other words:

1. If 𝑡1 is colored black , then JoinRight(𝑡1, 𝑎, 𝑡2) is a
valid red-black tree with the same black height as 𝑡1.

2. If 𝑡1 is colored red , then JoinRight(𝑡1, 𝑎, 𝑡2) is an almost-

right red-black tree (valid or with a red-red violation)

with the same black height as 𝑡1.

Proof. We prove both items simultaneously by induction on
𝑡1, following the structure of the code.

I. If 𝑡1 is colored red , we must prove Item 2, and its chil-
dren 𝑡1,1 and 𝑡1,2 must both be colored black . More-
over, 𝑛1 = 𝑛1,1 = 𝑛1,2 > 𝑛2. By induction, the result
of the recursive call to JoinRight(𝑡12, 𝑎, 𝑡2), 𝑡 ′, gives a
valid red-black tree with black height 𝑛1,2. We always
return a red node whose left child is the black sub-
tree 𝑡1,1 and whose right child is 𝑡 ′, which could be
either red or black. Depending on the color of 𝑡 ′, we
will either get a valid red tree or a red-red violation
on the right spine, both of which are allowed as the
result for Item 2.

II. If 𝑡1 is colored black , we must prove Item 1. If 𝑛1 =
𝑛2+1 and 𝑡2 is colored red , then𝑛1 = 𝑛2,1+1 = 𝑛2,2+1.
Therefore, the returned tree is valid with black height
𝑛1.

III. This case is similar to the previous case, but 𝑡2 is col-
ored black . If 𝑡1,2 is colored red , then 𝑛1,1 = 𝑛1,2 =

𝑛2,1 = 𝑛2,2 = 𝑛2. Therefore, the returned tree is valid
with black height 𝑛1.

IV. This case is similar to the previous case, but 𝑡1,2 is
colored black . Thus, 𝑛1,1 = 𝑛1,2 = 𝑛1,2,1 = 𝑛1,2,2 = 𝑛2,
so the returned tree is valid with black height 𝑛1.

V. If 𝑡1 is colored black , we must prove Item 1. Suppose
𝑛1 > 𝑛2 + 1. Then, 𝑛1,1 + 1 = 𝑛1,2 + 1 = 𝑛1 > 𝑛2.
Regardless of the color of 𝑡1,2, the inductive hypothesis
applies. If the result 𝑟 is a valid red-black tree 𝑡 ′, then
𝑡1,1 and 𝑎1 can be combined at a black node to create
a valid red-black tree with black height 𝑛1.

VI. This case is similar to the previous case, but the result
𝑟 indicates a red-red violation between the root and its
right child. Then, a left-rotation is performed to give

5
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Algorithm 2 JoinRight algorithm for red-black trees, based
on Blelloch et al. [2022]. Cases are exhaustive, by the defi-
nitions of irbt𝛼 and arrbt𝛼 , with the outer induction on 𝑡1.
Cost annotations are highlighted .

Input:

𝑡1 : irbt𝛼 𝑦1 𝑛1 𝑙1
𝑎 : 𝛼
𝑡2 : irbt𝛼 𝑦2 𝑛2 𝑙2
𝑛1 > 𝑛2

Output:

JoinRight(𝑡1, 𝑎, 𝑡2) : F(arrbt𝛼 𝑦1 𝑛1 (𝑙1 ++ [𝑎] ++ 𝑙2))

switch 𝑡1 do

case 𝑡1 = red (𝑡1,1, 𝑎1, 𝑡1,2) ⊲ Case I.
step 1
valid(𝑡 ′) ← JoinRight(𝑡1,2, 𝑎, 𝑡2)
switch 𝑦′, the color of 𝑡 ′ do
case 𝑦′ = red

return violation(𝑡1,1, 𝑎1, 𝑡 ′)
case 𝑦′ = black

return valid( red (𝑡1,1, 𝑎1, 𝑡 ′))
case 𝑡1 = black (𝑡1,1, 𝑎1, 𝑡1,2)

switch compare 𝑛1 and 𝑛2 do
case 𝑛1 = 𝑛2 + 1

switch 𝑡2 do

case 𝑡2 = red (𝑡2,1, 𝑎2, 𝑡2,2) ⊲ Case II.
return valid( red (𝑡1, 𝑎, black (𝑡2,1, 𝑎2, 𝑡2,2)))

case 𝑡2 = black (𝑡2,1, 𝑎2, 𝑡2,2)
switch 𝑡1,2 do

case 𝑡1,2 = red (𝑡1,2,1, 𝑎1,2, 𝑡1,2,2) ⊲ Case III.
𝑥1 ← black (𝑡1,1, 𝑎1, 𝑡1,2,1)
𝑥2 ← black (𝑡1,2,2, 𝑎, 𝑡2)
return valid( red (𝑥1, 𝑎1,2, 𝑥2))

case 𝑡1,2 = black (𝑡1,2,1, 𝑎1,2, 𝑡1,2,2) ⊲ Case IV.
𝑥2 ← red (𝑡1,2, 𝑎, 𝑡2)
return valid( black (𝑡1,1, 𝑎1, 𝑥2))

case 𝑛1 > 𝑛2 + 1
step 1
𝑟 ← JoinRight(𝑡1,2, 𝑎, 𝑡2)
switch 𝑟 do

case 𝑟 = valid(𝑡 ′)
return valid( black (𝑡1,1, 𝑎1, 𝑡 ′)) ⊲ Case V.

case 𝑟 = violation(𝑡 ′1, 𝑎′, red (𝑡 ′2,1, 𝑎′2, 𝑡 ′2,2))
𝑥1 ← black (𝑡1,1, 𝑎1, 𝑡 ′1)
𝑥2 ← black (𝑡 ′2,1, 𝑎′2, 𝑡 ′2,2)
return valid( red (𝑥1, 𝑎′, 𝑥2)) ⊲ Case VI.

back a valid red -colored red-black tree with black
height 𝑛1.

In every case, the in-order traversal of the tree is clearly
preserved, by inspection of the left-to-right order of the
subtrees and keys. □

Thus, we have described the join algorithm on red-black
trees and intrinsically verified its correctness. Based on the
correctness of JoinRight, we also get a straightforward
bound on the black height of the tree produced by join,
matching the result of Blelloch et al. [2016, 2022].

Theorem 2.3. Let 𝑡1 and 𝑡2 be red-black trees with black

heights 𝑛1 and 𝑛2, respectively. Then, the black height of the

red-black tree returned by join(𝑡1, 𝑎, 𝑡2) is either max(𝑛1, 𝑛2)
or 1 +max(𝑛1, 𝑛2).

Theorem 2.3 does not affect the cost analysis of join, but
it does impact cost analysis for algorithms that use join;
therefore, it is also mechanized in the implementation.
For the purpose of correctness analysis, the cost annota-

tions did not play a role. In the next section, we will state and
prove cost bounds on the join and JoinRight algorithms.

3 Cost analysis

To analyze the cost of algorithms in calf, we attempt to
bound the number of calls to step . In the subsequent devel-
opment, we will count informally; in our mechanization, we
use the definition isBounded (𝐴; 𝑒; 𝑐) and associated lemmas
from the calf standard library [Niu et al. 2022]. From this
section onward, we annotate all mechanized results with
their name as defined in the Agda implementation using the
typewriter font, e.g. joinRight/is-bounded.

3.1 Cost of JoinRight

If a red-black tree has black height 𝑛, it has true height
bounded by at most 2𝑛 + 1: on top of every black node,
an additional red node may (optionally) be placed without
affecting the black height. Similar, then, to how an almost-
right red-black tree weakens the invariants in the case of
a red root, so too must the cost analysis weaken the cost
bound given a red root.

Theorem 3.1 (joinRight/is-bounded). Let 𝑡1, 𝑎, and 𝑡2 be

valid inputs to JoinRight. Then, the cost of JoinRight(𝑡1, 𝑎, 𝑡2)
is bounded by 1 + 2(𝑛1 − 𝑛2).
Proof. We prove a strengthened claim:

1. If 𝑡1 is colored red , the cost of JoinRight(𝑡1, 𝑎, 𝑡2) is
bounded by 1 + 2(𝑛1 − 𝑛2).

2. If 𝑡1 is colored black , the cost of JoinRight(𝑡1, 𝑎, 𝑡2)
is bounded by 2(𝑛1 − 𝑛2).

The desired result follows immediately in both cases. Follow-
ing the structure of the JoinRight in Algorithm 2, we go by
induction on 𝑡1.

I. Since 𝑡1 is colored red , 𝑡1,2 is black with 𝑛1 = 𝑛1,2,
and we must prove Item 1. This case incurs 1 cost in
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addition to the cost of the recursive call. The cost of
the recursive call is bounded by 2(𝑛1,2 − 𝑛2) = 2(𝑛1 −
𝑛2). Therefore, the cost of the entire computation is
bounded by 1 + 2(𝑛1 − 𝑛2), as desired.

II. This case incurs zero cost.
III. This case incurs zero cost.
IV. This case incurs zero cost.
V. Since 𝑡1 is colored black , 𝑛1 = 𝑛1,2 + 1, and we must

prove Item 2. This case incurs 1 cost in addition
to the cost of the recursive call. The color of 𝑡1,2 is
unknown, but in either case the cost of the recursive
call is bounded by 1+2(𝑛1,2−𝑛2). Therefore, the cost of
the entire computation is bounded by 2+2(𝑛1,2−𝑛2) =
2((𝑛1,2 + 1) − 𝑛2) = 2(𝑛1 − 𝑛2), as desired.

VI. This case is the same as the previous case.
In all cases, the desired result holds. □

3.2 Cost of join

Using Theorem 3.1, we may now reason about the cost of
the full join implementation of Algorithm 1. For notational
convenience, we write

𝑥1 = max(𝑥1, 𝑥2)
𝑥2 = min(𝑥1, 𝑥2)

since join behaves symmetrically depending on which tree
is larger.

Theorem 3.2 (join/is-bounded). For all 𝑡1, 𝑎, and 𝑡2, the
cost of Join(𝑡1, 𝑎, 𝑡2) is bounded by 1 + 2(𝑛1 − 𝑛2).

Proof. If 𝑡1 and 𝑡2 have the same black height, no cost is
incurred, so the bound is trivially met. Otherwise, the result
follows immediately from Theorem 3.1. □

This validates the claim by Blelloch et al. [2022, §4.2] that
the cost of join on red-black tree is in O (|ℎ(𝑡1) − ℎ(𝑡2) |),
where ℎ(𝑡) is the height of tree 𝑡 .

Since black height is a property only understood in the
implementation, rather than the abstract sequence interface,
we wish to publicly characterize the cost of join in terms of
the lengths of the involved sequences. To accomplish this,
we bound the black height of a red-black tree in terms of the
overall size of the tree, which we write |𝑡 | for a tree 𝑡 .

Lemma 3.3 (nodes/upper-bound). For any red-black tree 𝑡

with black height 𝑛, we have

𝑛 ≤
⌈
log2 (1 + |𝑡 |)

⌉
.

Lemma 3.4 (nodes/lower-bound). For any red-black tree 𝑡

with black height 𝑛, we have⌊ ⌈
log2 (1 + |𝑡 |)

⌉
− 1

2

⌋
≤ 𝑛.

Using these lemmas, wemay give a user-facing description
of the cost of join.

Algorithm 3 Recursive Sum algorithm for sequences.
Pattern-matching syntax for empty and join is syntactic
sugar for recF(nat) .
Input:

𝑠 : seqnat
Output:

Sum(𝑠) : F(nat)

switch 𝑠 do

case empty
return 0

case join(𝑠1, 𝑎, 𝑠2)
step 1
(𝑥1, 𝑥2) ← Sum(𝑠1) ∥ Sum(𝑠2)
return 𝑥1 + 𝑎 + 𝑥2

Theorem 3.5 (join/is-bounded/nodes). Let 𝑡1, 𝑎, and 𝑡2
be valid inputs to Join. Then, the cost of Join(𝑡1, 𝑎, 𝑡2) is bounded
by

1 + 2
©«
⌈
log2 (1 + |𝑡1 |)

⌉
−

⌈
log2 (1 + |𝑡2 |)

⌉
− 1

2


ª®®¬ .

This matches the expected cost bound,

O
(⌈
log2

(
|𝑡1 |/|𝑡2 |

)⌉)
.

4 Case study: algorithms on sequences

An essential part of the work of Blelloch et al. [2016, 2022]
and Sun [2019] is showing how an implementation of the
sequence signature gives rise to efficient implementations
of other common algorithms on sequences when sequences
are implemented as balanced trees. Here, we consider the
implementation and cost analysis of some such algorithms.
We implement each algorithm generically in terms of the
sequence interface given in Fig. 5. However, for the purpose
of cost analysis, we break abstraction, inlining the sequence
definitions. Additionally, for readability, we replace uses of
rec𝜌 with a more familiar pattern matching notation.

4.1 Sequence sum

One simple algorithm on a sequence of natural numbers is
a parallel sum, adding up the elements in linear work and
logarithmic span with respect to the length of the sequence
when counting recursive calls. We give an implementation

Sum : seqnat → F(nat)
in Algorithm 3, adapting the definition from Fig. 2 to the
call-by-push-value setting and adding cost instrumentation
and parallelism. It goes by recursion using recF(nat) . In the
base case, 0 is returned. In the inductive case, it recursively
sums both subsequences in parallel and then returns the sum
of the results and the middle datum.
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When the implementation of sequences is specialized to
red-black trees, we achieve the desired cost bound.

Theorem 4.1 (sum/bounded). For all red-black trees 𝑡 , the

cost of Sum(𝑡) is bounded by
• |𝑡 | work (sequential cost) and
• 1 + 2

⌈
log2 (1 + |𝑡 |)

⌉
span (idealized parallel cost).

Proof. The sequential bound is immediate by induction. The
parallel bound is shown using the black height, showing a
bound of 1 + 2𝑛 (and a strengthened bound of 2𝑛 in case the
tree is black) by induction. Then, Lemma 3.3 translates the
bound from black height to the size of the tree. □

Thismatches the result of Blelloch et al. [2016, 2022]: linear
work and logarithmic span.

4.2 Finite set functions

Blelloch et al. [2016, 2022] consider implementations of stan-
dard functions on finite sets using balanced trees. Here, we
briefly show how such implementations could be provided
in terms of the basic sequence signature of Fig. 5.

In order to implement a finite set as a sequence, we assume
the element type 𝛼 is equipped with a total order. Then,
standard functions on finite sets may be implemented using
the recursor on sequences. In Fig. 10, we provide generic
implementations of some examples:

1. The Split function splits a sorted sequence at a desig-
nated value, providing the elements of the sequence
less than and greater than the value and, if it exists,
the equivalent value.

2. The Insert function inserts a new value into the cor-
rect position in a sorted sequence, simply splitting
the sequence at the desired value and joining the two
sides around the new value.

3. The Union function takes the union of two sorted
sequences, combining their elements to make a new
sorted sequence.

Blelloch et al. study the efficiency of these and other simi-
lar algorithms is studied, showing that implementations in
terms of empty, join, and rec𝜌 have comparable efficiency
to bespoke definitions. We include the implementations of
these algorithms in our mechanization, but we leave their
cost and correctness verification to future work.

5 Conclusion

In the work, we presented an implementation of the join al-
gorithm on red-black trees Blelloch et al. [2016, 2022] whose
correctness is intrinsically verified due to structural invari-
ants within the type definition. Our implementation was
given in calf, instrumented with cost annotations to count
the number of recursive calls performed; using the tech-
niques developed by Niu et al. [2022], we gave a formally
verified precise cost bound proof for the join algorithm.

Split : seq𝛼 → 𝛼 → F(seq𝛼 × option(𝛼) × seq𝛼 )
Split 𝑠 𝑎 =

recF(seq𝛼×option(𝛼 )×seq𝛼 )
ret(empty, none, empty)
(𝜆 𝑠1 𝑟1 𝑎′ 𝑠2 𝑟2.
compare 𝑎 𝑎′ of
= : ret(𝑠1, some(𝑎), 𝑠2)
< : (𝑠1,1, 𝑎?, 𝑠1,2) ← 𝑟1;

𝑠′ ← join(𝑠1,2, 𝑎′, 𝑠2);
ret(𝑠1,1, 𝑎?, 𝑠′)

> : (𝑠2,1, 𝑎?, 𝑠2,2) ← 𝑟2;
𝑠′ ← join(𝑠1, 𝑎′, 𝑠2,1);
ret(𝑠′, 𝑎?, 𝑠2,2))

𝑠

Insert : seq𝛼 → 𝛼 → F(seq𝛼 )
Insert 𝑠 𝑎 = (𝑠1, 𝑎?, 𝑠2) ← Split 𝑠 𝑎; join(𝑠1, 𝑎, 𝑠2)
Union : seq𝛼 → seq𝛼 → F(seq𝛼 )
Union =

recseq𝛼→F(seq𝛼 )
(𝜆𝑠. 𝑠)
(𝜆 _ 𝑓1 𝑎 _ 𝑓2. 𝜆𝑠2.

(𝑠2,1, 𝑎?, 𝑠2,2) ← Split 𝑠2 𝑎;
(𝑢1, 𝑢2) ← 𝑓1 𝑠2,1 ∥ 𝑓2 𝑠2,2;
join(𝑢1, 𝑎′, 𝑢2))

Figure 10. Sample implementations of functions on se-
quences that use empty, join, and rec𝜌 .

As noted by Blelloch et al. [2016, 2022], balanced trees
are an appealing choice for the implementation of persistent
sequences. Since the join-based presentation of sequences
provides an induction principle over the underlying balanced
trees, where call-by-push-value suspends the results of re-
cursive calls, we were able to implement standard functional
algorithms on sequences and, following Blelloch et al., prove
their efficient sequential and parallel cost bounds.

5.1 Future work

In this work, we begin to study parallel-ready data structures.
This suggests a myriad of directions for future work.

Full sequence library. Anatural next step following from
this work would be the verification of correctness conditions
and cost bounds on other algorithms included in persistent
sequence libraries.

Finite sets and dictionaries. Another common use case
of balanced trees, as explored in depth by Blelloch et al. [2016,
2022], is the implementation of finite sets and dictionaries by
imposing and maintaining a total order on the data stored in
the tree. In Section 4.2, we briefly discuss the implementation
of finite sets using sorted sequences; as future work, we hope
to extend this development to a full-scale finite set library
with cost and correctness verification.
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Amortized complexity. Although we study the binary
join operation on red-black trees in this work, more com-
mon historically is the single-element insertion operation.
Once the desired location for the new element is found, in-
sertion into the tree along with any necessary rebalancing
has asymptotically constant amortized cost [Tarjan 1983].
We expect this result could be verified similarly to other
amortized analyses in calf [Grodin and Harper 2023].

Various balancing schemes. Blelloch et al. [2016, 2022]
study a variety of tree balancing schemes, including AVL
trees, weight-balanced trees, and treaps. All of these bal-
ancing schemes match the sequence signature, as well; we
hope to implement and verify these schemes in future work.
Unlike red-black trees, some of these schemes cannot be
implemented purely functionally, e.g. treaps. This suggests
an extension of calf that can better take effects into account.

Modular analysis of large-scale algorithms. Many func-
tional algorithms are implemented based on sequences, finite
sets, and dictionaries [Acar and Blelloch 2019]. However, in
this work, we were forced to reveal the implementation of
sequences as red-black trees in order to analyze the efficiency
of algorithms implemented generically, such as Sum. In gen-
eral, such analyses may even depend on particular hidden
invariants within an implementation type; thus, we antici-
pate that analysis of larger-scale algorithms in this fashion
would be intractable. Going forward, we hope to further de-
velop a theory of modularity for algorithm cost, allowing
algorithms implemented in terms of abstract data types to
be analyzed without fully revealing the implementation of
the abstraction.
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