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1 Introduction

Consideration of effects motivated Paul Levy’s formulation (Levy, 2003) of his call-by-push-value (cbpv)
formalism, which distinguishes values from computations. According to his memorable formulation,
“values are, computations do.” Cbpv can be understood in terms of the polarities of type constructors,
with the negative being characterized by their eliminatory forms, and the positive being characterized
by their introductory forms. In cbpv the two forms of type are linked by operations that include values
among the expressions, and that include suspended computations as values. The lax formulation of
effects used in PFPL may be interpreted into the more refined cbpv formalism by regarding the lax
modality as a composite of these operations. The cbpv formalism may be enriched by generalizing val-
ues to valuables, expressions that are tantamount to values in that their effect-free evaluation is assured.
This permits adding Cartesian product and total function value types in a natural way.

A more far-reaching generalization, called the enriched effect calculus (eec), introduces a restricted
linear substructural context within computations. The one variable in the linear context, if present,
stands for a computation, not a value, which is useful when extending the type structure of computa-
tions to permit sums and copowers of computation types. Linearity ensures that such computations
are never “dropped on the floor” because to do so would be to disregard their effects. It is natural to
consider that a computation with a single free computation variable corresponds to an initial segment
of a control stack that is waiting for the named computation to finish before it itself can be activated.

2 Call-by-Push-Value Language

Types are classified into two categories, values and computations, defined by the following grammar:1

Positive 𝐴 ∶∶= ⊤ ∣ 𝐴1 ⊗𝐴2 ∣ 𝐴1 + 𝐴2 ∣ U(𝑋)
Negative 𝑋 ∶∶= 𝑋1 × 𝑋2 ∣ 𝐴1 ⇀ 𝑋2 ∣ F(𝐴)

The value type U(𝑋) classifies suspended computations, or suspensions, of computation type 𝑋, and the
computation type F(𝐴) classifies free computations of value type 𝐴. The (Cartesian) product of compu-
tation types is again a computation type; it is distinct from the (tensor) product of value types, itself a
value type. The function (or power) type maps arguments of a value type to results of a computation
type, reflecting the “by-value” aspect of cbpv.

*Copyright © Robert Harper. All Rights Reserved
1Levy writes 𝐴 for value types, and 𝐴 for computation types.
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What is similar to the lax framework is that variables range over values, rather than computations.
Indeed Levy emphasizes that this requirement is the key to the aforementioned reconciliation of by-
name and by-value calculi, which differ in this regard. In the presence of effects (even something as
simple as an undefined expression such as division by zero) it is essential that variables range only
over well-defined values, and not over ill-defined, or effectful, computations for the simple reason that
variables are given meaning by substitution.

The syntax of values and computations is given by the following grammar:

Values 𝑉 ∶∶= 𝑥 ∣ ⋆ ∣ 𝑉1 ⊗𝑉2 ∣ 1 ⋅ 𝑉1 ∣ 2 ⋅ 𝑉2 ∣ susp(𝐶)
Computations 𝐶 ∶∶= ret(𝑉) ∣ bnd(𝐶1 ; 𝑥.𝐶2) ∣ ⟨𝐶1, 𝐶2⟩ ∣ 𝐶 ⋅ 1 ∣ 𝐶 ⋅ 2 ∣

𝜆(𝑥.𝐶) ∣ ap(𝐶;𝑉) ∣ force(𝑉) ∣ check 𝑉 {𝐶 } ∣
split𝑉 {𝑥1, 𝑥2.𝐶 } ∣ case 𝑉 {𝑥.𝐶1 ∣ 𝑥.𝐶2 }

In this setup values are exactly the introductory forms for value types, extended with variables that
range over these. Computations are, on other hand, the introductory forms and eliminatory forms for
computation types, and the eliminatory forms for value types. Levy includes a special form of binding
for values in a computation, which may be defined by

letv(𝑉;𝑥.𝐶) ≝ bnd(ret(𝑉) ; 𝑥.𝐶).

Compared to the lax formulation a surprising feature of the cbpv setup is that pairs and 𝜆’s are com-
putations, as are their projections and application (to a value). In particular, neither ⟨𝐶1, 𝐶2⟩ nor 𝜆(𝑥.𝐶)
are values, though they may be turned into values by “thunking.” Thus, active computations of these
types are only ever projected or applied, obtaining further computations, but if pair or function is to be
used passively as an argument or component of a value, then it must be explicitly turned into a value
first. In this regard cbpv is more refined than the lax type system, all of whose types are characterized
by the values that inhabit them.

The statics of cbpv is specified by the following two forms of judgment whose definitions are given
in Figures 1 and 2:

• Value typing: Γ ⊢ 𝑉 ∶ 𝐴

• Computation typing: Γ ⊢ 𝐶 ∶ 𝑋

These two judgments are distinguished by the classifier being a value or computation type, in contrast
to the lax setup in which both values and computations are classified by the same types.

These constructs may be equipped with a dynamics, on closed values and closed computations, that
by-and-large mimics the dyamics given to the lax formalism in Harper (2016). Unlike the lax formal-
ism the (closed) values are given syntactically, and transition is defined for computations in much the
usual way bymatching eliminatory to introductory forms. Equational lawsmay also be formulated that
express 𝛽- and, perhaps, 𝜂 laws for each of the constructs. There are, however, some additional laws
that arise in this setting; a selection of the more unusual srules is given in Figure 3. Bear in mind that
functions and pairs are computations that can only be applied and projected, respectively, so that it
makes no difference whether the letf occurs outside or inside the abstraction and pairing.

Exercise 1. Extend the cbpv language with nullary sum and nullary product types, that is the empty and
unit types, including typing and equational laws.
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Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 Γ ⊢ ⋆ ∶ ⊤

Γ ⊢ 𝑉1 ∶ 𝐴1 Γ ⊢ 𝑉2 ∶ 𝐴2

Γ ⊢ 𝑉1 ⊗𝑉2 ∶ 𝐴1 ⊗𝐴2

Γ ⊢ 𝑉1 ∶ 𝐴1

Γ ⊢ 1 ⋅ 𝑉1 ∶ 𝐴1 + 𝐴2

Γ ⊢ 𝑉2 ∶ 𝐴2

Γ ⊢ 2 ⋅ 𝑉1 ∶ 𝐴1 + 𝐴2

Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ susp(𝐶) ∶ U(𝑋)

Figure 1: Statics of CBPV (Values)

Γ ⊢ 𝑉 ∶ U(𝑋)

Γ ⊢ force(𝑉) ∶ 𝑋

Γ ⊢ 𝑉 ∶ 𝐴

Γ ⊢ ret(𝑉) ∶ F(𝐴)

Γ ⊢ 𝐶1 ∶ F(𝐴1) Γ, 𝑥 ∶ 𝐴1 ⊢ 𝐶2 ∶ 𝑋2
Γ ⊢ bnd(𝐶1 ; 𝑥.𝐶2) ∶ 𝑋2

Γ ⊢ 𝐶1 ∶ 𝑋1 Γ ⊢ 𝐶2 ∶ 𝑋2
Γ ⊢ ⟨𝐶1, 𝐶2⟩ ∶ 𝑋1 × 𝑋2

Γ ⊢ 𝐶 ∶ 𝑋1 × 𝑋2
Γ ⊢ 𝐶 ⋅ 1 ∶ 𝑋1

Γ ⊢ 𝐶 ∶ 𝑋1 × 𝑋2
Γ ⊢ 𝐶 ⋅ 2 ∶ 𝑋2

Γ, 𝑥 ∶ 𝐴1 ⊢ 𝐶2 ∶ 𝑋2
Γ ⊢ 𝜆(𝑥.𝐶2) ∶ 𝐴1 ⇀ 𝑋2

Γ ⊢ 𝐶1 ∶ 𝐴2 ⇀ 𝑋 Γ ⊢ 𝑉2 ∶ 𝐴2

Γ ⊢ ap(𝐶1;𝑉2) ∶ 𝑋

Γ ⊢ 𝑉 ∶ ⊤ Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ check 𝑉 {𝐶 } ∶ 𝑋

Γ ⊢ 𝑉 ∶ 𝐴1 ⊗𝐴2 Γ, 𝑥1 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝐶 ∶ 𝑋

Γ ⊢ split𝑉 {𝑥1, 𝑥2.𝐶 } ∶ 𝑋

Γ ⊢ 𝑉 ∶ 𝐴1 + 𝐴2 Γ, 𝑥 ∶ 𝐴1 ⊢ 𝐶1 ∶ 𝑋 Γ, 𝑥 ∶ 𝐴2 ⊢ 𝐶2 ∶ 𝑋

Γ ⊢ case 𝑉 {𝑥.𝐶2 ∣ 𝑥.𝐶2 } ∶ 𝑋

Figure 2: Statics of CBPV (Computations)
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Exercise 2. Extend the cbpv language with a total function value type, including typing and equational
laws.

Exercise 3. Complete the equational laws given in Figure 3 by filling in missing 𝛽- and 𝜂 principles where
appropriate. In particular give the appropriate equations for the function computation types and the sum
value type.

Exercise 4. Extend the cbpv language with the value type nat of natural numbers, and the computation
type conat of co-natural numbers. The numerals will be values of type nat, and the recursor will be of
computation type. Dually, the state type of the generator will be a value type, but the generator itself will be
a computation, aswill the predecessor operation on it. Generalize to lists and streams, and then to inductive
and coinductive types given by a suitable class of (monotone) type operators.

Exercise 5. Extend the cbpv language with a “print” command that, given a string, forms a command to
emit that string to the “standard output”. Similarly, extend it with a “read” command that, when executed,
yields a string obtained from the “standard input.” What equations govern these primitives?

The cbpv formalism separates values and computations by their types, so that certain types are those
of values, and certain other types are those of computations. It is possible, and sometimes useful, to
break this strict association by allowing limited forms of computations as tantamount to values, called
generalized values, or valuable expressions (of value type). For example, it is sensible to permit 2 + 2
to be valuable, if not a value, but 2 ÷ 𝑥 cannot be so considered, because of undefinedness. This, then,
suggests formulation of total function types, 𝐴1 → 𝐴2, as positive types, allowing their applications to
values as valuable forms of expression. Similarly, one could permit a projective form of product of value
types being again a value type, with projection as a valueable expression.

Exercise 6. Give a precise formulation of these ideas by extending the language of values to permit valuable
expressions, those that are tantamount to values using an evaluation relation, and, in conjunctionwith this,
formulate the total function and (projective) product of value types as value types.

3 Interpreting Lax into CBPV

The cbpv framework ismore refined than the lax framework in that the latter is interpretable within the
former according to the following general plan. First, as with the lax formulation, variables range only
over values, but unlike the lax formulation, their typesmust be of a restricted class of value types, which
does not include products or functions. But products and functions are permitted as arguments to other
functions in the lax language. This discrepancy is reconciled using explicit “thunks” in a way that is
unfamiliar in the lax setting. In particular, 𝜆’s must be suspended before they can be used as values,
and similarly for tuples, including the null tuple! Second, it is necessary to account for the lax modality
in the cbpv setting as a composite of the F and U modalities, the first classifying “free” computations,
the second turning them into suspensions.

Figure 4 defines for each type 𝐴 of the lax language two type translations into the cbpv language:

1. The value interpretation, written ||𝐴||, which is a value type;

2. The computation interpretation, written |𝐴|, which is defined to be F(||𝐴||), a computation type.
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thunk-𝛽
Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ force(susp(𝐶)) ≡ 𝐶 ∶ 𝑋

thunk-𝜂
Γ ⊢ 𝑉 ∶ U(𝑋)

Γ ⊢ susp(force(𝑉)) ≡ 𝑉 ∶ U(𝑋)

free-𝛽
Γ ⊢ 𝑉 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶 ∶ 𝑌

Γ ⊢ bnd(ret(𝑉) ; 𝑥.𝐶) ≡ [𝑉∕𝑥]𝐶 ∶ 𝑌

free-𝜂
Γ ⊢ 𝐶 ∶ F(𝐴)

Γ ⊢ 𝐶 ≡ bnd(𝐶 ; 𝑥. ret(𝑥)) ∶ F(𝐴)

check-𝛽
Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ check ⋆ {𝐶 } ≡ 𝐶 ∶ 𝑋

check-𝜂
Γ ⊢ 𝑉 ∶ ⊤ Γ ⊢ 𝐶 ∶ 𝑋

Γ ⊢ 𝐶 ≡ check 𝑉 {𝐶 } ∶ 𝑋

split-𝛽
Γ ⊢ 𝑉1 ∶ 𝐴1 Γ ⊢ 𝑉2 ∶ 𝐴2 Γ, 𝑥1 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝐶 ∶ 𝑋

Γ ⊢ split𝑉1 ⊗𝑉2 {𝑥1, 𝑥2.𝐶 } ≡ [𝑉1, 𝑉2∕𝑥1, 𝑥2]𝐶 ∶ 𝑋

split-𝜂
Γ ⊢ 𝑉 ∶ 𝐴1 ⊗𝐴2 Γ, 𝑥 ∶ 𝐴1 ⊗𝐴2 ⊢ 𝐶 ∶ 𝑋

Γ ⊢ [𝑉∕𝑥]𝐶 ≡ split𝑉 {𝑥1, 𝑥2.[𝑥1 ⊗ 𝑥2∕𝑥]𝐶 } ∶ 𝑋

letf-letf
Γ ⊢ 𝐶1 ∶ F(𝐴1) Γ, 𝑥 ∶ 𝑋1 ⊢ 𝐶2 ∶ F(𝐴2) Γ, 𝑦 ∶ 𝑋2 ⊢ 𝐶3 ∶ 𝑋3
Γ ⊢ bnd(𝐶1 ; 𝑥. bnd(𝐶2 ; 𝑦.𝐶3)) ≡ bnd(bnd(𝐶1 ; 𝑥.𝐶2) ; 𝑦.𝐶3) ∶ 𝑋3

letf-fun
Γ ⊢ 𝐶 ∶ F(𝐴) Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵1 ⊢ 𝐶2 ∶ 𝑌2

Γ ⊢ bnd(𝐶 ; 𝑥. 𝜆(𝑦.𝐶2)) ≡ 𝜆(𝑦. bnd(𝐶 ; 𝑥.𝐶2)) ∶ 𝐵1 ⇀ 𝑌2

letf-pair
Γ ⊢ 𝐶 ∶ F(𝐴) Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶1 ∶ 𝑌1 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐶2 ∶ 𝑌2

Γ ⊢ bnd(𝐶 ; 𝑥.⟨𝐶1, 𝐶2⟩) ≡ ⟨bnd(𝐶 ; 𝑥.𝐶1), bnd(𝐶 ; 𝑥.𝐶2)⟩ ∶ 𝑌1 × 𝑌2

Figure 3: Equational Laws (Selected)
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|| unit || ≝ ⊤
||𝐴1 × 𝐴2|| ≝ ||𝐴1||⊗ ||𝐴2||

|| void || ≝ 0
||𝐴1 + 𝐴2|| ≝ ||𝐴1|| + ||𝐴2||
||𝐴1 → 𝐴2|| ≝ ||𝐴1||→ ||𝐴2||
|| comp(𝐴)|| ≝ U(|𝐴|)

|𝐴| ≝ F(||𝐴||)

Figure 4: Interpretation of Lax Types

The value interpretation is extended to contexts variable-by-variable, writing ||Γ|| for the context in
𝑥 ∶ 𝐴 is translated to 𝑥 ∶ ||𝐴||. This formulation expresses that variables range only over elements of
value types.

These translations of types are used to define corresponding translations of terms and expressions
from the lax language into the cbpv language:

1. If Γ ⊢lax 𝑀 ∶ 𝐴, then ||Γ|| ⊢cbpv ||𝑀|| ∶ ||𝐴||.

2. If Γ ⊢lax 𝐸 ∻ 𝐴, then ||Γ|| ⊢cbpv |𝐸| ∶ |𝐴|.

Exercise 7. Define the translation from lax logic into call-by-push-value using the type translation given
in Figure 4 as a guide. Your translation should define the following judgments:

1. Γ ⊢ 𝑀 ∶ 𝐴 ⇝ ||𝑀|| such that ||Γ|| ⊢cbpv ||𝑀|| ∶ ||𝐴||.

2. Γ ⊢ 𝐸 ∻ 𝐴 ⇝ |𝐸| such that ||Γ|| ⊢cbpv |𝐸| ∶ |𝐴|.

These are examples of type-directed translations of the kind that are used in type-based compilers.

Exercise 8. Extend Exercise 7 to account for the unit and empty types, the types of natural and conatural
numbers. More generally, consider a lax account of a class of inductive and coinductive types, and how to
render it within a cbpv setting.

Exercise 9. Is there a more refined interpretation of lax into cbpv that avoids unnecessary coercion of
computations into values? How might the translation be refined to permit this? Alternatively, what laws
would be required to “optimize” the given interpretation to avoid unnecessary computations?

The correctness of the translation suggested by Exercise 7 can be proved using correspondences in-
dexed by types of the lax language relating (closed) lax expressions of the given lax type to their trans-
lations into cbpv expressions of the translated type as given in Figure 4.

1. For each type 𝐴 of the lax formalism, a relation𝑀 ≈ 𝑉 ∈ 𝐴 between closed terms𝑀 ∶ 𝐴 of the
lax language and closed valuable terms 𝑉 ∶ ||𝐴|| of the cbpv language.

2. For each type 𝐴 of the lax formalism, a relation 𝐸 ∼ 𝐶 ∈ 𝐴 between closed expressions 𝐸 ∻ 𝐴 of
the lax formalism and closed computations 𝐶 ∶ |𝐴| of the cbpv language.
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var

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 ⇝ 𝑥

lam
Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑀2 ∶ 𝐴2 ⇝ ||𝑀2||

Γ ⊢ 𝜆(𝑥.𝑀2) ∶ 𝐴1 → 𝐴2 ⇝ 𝜆(𝑥.||𝑀2||) ∶ ||𝐴1||→ ||𝐴2||

app
Γ ⊢ 𝑀 ∶ 𝐴1 → 𝐴2 ⇝ ||𝑀|| Γ ⊢ 𝑀1 ∶ 𝐴1 ⇝ ||𝑀1||

Γ ⊢ ap(𝑀;𝑀1) ∶ 𝐴2 ⇝ ap(||𝑀||;||𝑀1||)

comp
Γ ⊢ 𝐸 ∻ 𝐴 ⇝ |𝐸|

Γ ⊢ comp(𝐸) ∶ comp(𝐴)⇝ susp(|𝐸|)

ret
Γ ⊢ 𝑀 ∶ 𝐴 ⇝ ||𝑀||

Γ ⊢ ret(𝑀) ∻ 𝐴 ⇝ ret(||𝑀||)

bnd
Γ ⊢ 𝑀 ∶ comp(𝐴)⇝ ||𝑀|| Γ, 𝑥 ∶ 𝐴 ⊢ 𝐸 ∻ 𝐵 ⇝ |𝐸|

Γ ⊢ bnd(𝑀;𝑥.𝐸) ∻ 𝐵 ⇝ bnd(force(||𝑀||);𝑥.|𝐸|)

Figure 5: Translation of Lax into CBPV (Selected Rules)

These relations are defined such that, at answer type, the correspondence between computations is
exact—both yield yes or no when executed.

The closed correspondences are extended to open expressions as usual:

1. Γ≫𝑀 ≈ 𝑉 ∈ 𝐴 iff for all 𝛾 ≈ 𝛿 ∈ Γ, �̂�(𝑀) ≈ �̂�(𝑉) ∈ 𝐴.

2. Γ≫ 𝐸 ∼ 𝐶 ∈ 𝐴 iff for all 𝛾 ≈ 𝛿 ∈ Γ, �̂�(𝐸) ∼ �̂�(𝐶) ∈ 𝐴.

The correspondence between substitutions on each side, 𝛾 ≈ 𝛿 ∈ Γ, is defined variable-wise by requir-
ing that 𝛾(𝑥) ≈ 𝛿(𝑥) ∈ 𝐴 for each Γ ⊢ 𝑥 ∶ 𝐴.

Illustrative cases of the definition of the correspondences are as follows:

𝑀 ≈ 𝑉 ∈ comp(𝐴) iff 𝑀 ⇓ comp(𝐸), 𝑉 ⇓ susp(𝐶), and 𝐸 ∼ 𝐶 ∈ 𝐴

𝐸 ∼ 𝐶 ∈ 𝐴 iff 𝐸 ↦,→
∗

ret(𝑉), 𝐶 ↦,→
∗

ret(𝑊), 𝑉 ≈𝑊 ∈ 𝐴

Exercise 10 (Correspondence). Complete the definition of𝑀 ≈ 𝑉 ∈ 𝐴 by induction on the structure of
𝐴 as illustrated in one case above.

Theorem 1 (Translation Correctness). 1. If Γ ⊢ 𝑀 ∶ 𝐴 ⇝ ||𝑀||, then Γ≫𝑀 ≈ ||𝑀|| ∈ 𝐴.

2. If Γ ⊢ 𝐸 ∻ 𝐴 ⇝ |𝐸|, then Γ≫ 𝐸 ∼ |𝐸| ∈ 𝐴.

Exercise 11 (Translation Correctness). Prove Theorem 1 using the relations defined in Exercise 10. Con-
clude that a complete computation of answer type in the lax formalism translates to a complete computa-
tion of answer type in the cbpv formalism that yields the same answer.

4 Enriched Effect Calculus

It is possible to take these ideas a significant step further by permitting constructs with more subtle
patterns of dependency using a restricted form of linearity in typing. The main idea is to add a linear
context to typing that is either empty, or which declares the type of a single computation variable, 𝑢,
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representing the result type of any computation towhich it is bound. Intuitively, when the linear context
is not empty, the declaration of the computation variable 𝑢 represents a computation that will already
have been completed before the computation under consideration is executed.

As an example consider the computational sum type, 𝑋1 + 𝑋2, of two computation types, 𝑋1 and
𝑋2, as a computation type. The introductory form is as expected, with the linear context governing
the labelled computation. The elimination form acts on a computation as principle argument, as usual,
thereby using up the ambient linear context, freeing it up for usewithin the type branches. And, indeed,
the branches introduce a computation variable, 𝑢, standing for the labelled computation in each case;
linearity ensures that this computation must be executed within each branch via reference to 𝑢. The
computation passed to each branch is activated on the (mandatory) use of the variable in the linear
context corresponding to that branch. Similarly, the computational co-power type, 𝐴1 ⋉ 𝑋2 of a value
type and a computation type, classifies pairs of a value (or, more generally, valuable) expression of type
𝐴1, and a pending computation of type 𝑋2. The elimination form passes the ambient linear context to
the principal argument, and uses a hybrid form of pattern matching with one value variable and one
computation variable for use within a computation. Finally, the linear entailment may be internalized
as a linear function type, itself a value type, between two computation types.

The other computation types of the cbpv formalism are axiomatized as in linear logic. Note, how-
ever, that the suspension type is limited to “closed” computations, those without a free computation
variable, in keeping with the unrestricted nature of values. The free computation type behaves much as
in cbpv, with an introductory form given in the empty linear context, and the binding form propagating
it appropriately.

The typing rules for the eec computations are given in Figure 6. These rules excerpt those defining
the following two judgments:

1. Valuable expressions: Γ ⊢ 𝑉 ∶ 𝐴.

2. Computations: Γ;Λ ⊢ 𝐶 ∶ 𝑌.

In the computation judgment Λ is either empty, or declares a single computation variable, 𝑢, of some
computation type 𝑋.

Exercise 12. Formulate the statics, dynamics, and equational theory of the linear arrow value type be-
tween two computation types.

Exercise 13. Formulate the statics for the unit and empty computation types, unitand void, and the partial
computation type, 𝐴⇀ 𝑋, in the eec setting.

Exercise 14. Define an appropriate dynamics for eec (including the extensions in Exercise 13) that respects
the treatment of ordinary variables as values and linear variables as computations, and is consistent with
the informal descriptions given above. State and verify (for illustrative cases) appropriate safety properties
for this formulation.

Exercise 15. Define an equational theory for eec along the lines given for cbpv, leaving specific effects for
separate consideration. The equations should be consistent with the dynamics given in Exercise 14. How
might one formulate a precise statement of soundness for such equations?

Exercise 16 (For Thought). Consider the implications of permitting a general linear context with any
number of variable declarations. What constructs must restrict this context in some manner? What new
constructs might be appropriate in such a setting?
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comp-var

Γ;𝑢 ∶ 𝑋 ⊢ 𝑢 ∶ 𝑋

thunk-I
Γ; 𝜀 ⊢ 𝐶 ∶ 𝑋

Γ ⊢ susp(𝐶) ∶ U(𝑋)

thunk-E
Γ ⊢ 𝑉 ∶ U(𝑋)

Γ; 𝜀 ⊢ force(𝑉) ∶ 𝑋

free-I
Γ ⊢ 𝑉 ∶ 𝐴

Γ; 𝜀 ⊢ ret(𝑉) ∶ F(𝐴)

free-E
Γ;Λ ⊢ 𝐶 ∶ F(𝐴) Γ, 𝑥 ∶ 𝐴; 𝜀 ⊢ 𝐷 ∶ 𝑌

Γ;Λ ⊢ bnd(𝐶 ; 𝑥.𝐷) ∶ 𝑌

prod-I
Γ;Λ ⊢ 𝐶1 ∶ 𝑋1 Γ;Λ ⊢ 𝐶2 ∶ 𝑋2

Γ;Λ ⊢ ⟨𝐶1, 𝐶2⟩ ∶ 𝑋1 × 𝑋2

prod-E-𝑖
Γ;Λ ⊢ 𝐶 ∶ 𝑋1 × 𝑋2
Γ;Λ ⊢ 𝐶 ⋅ 𝑖 ∶ 𝑋𝑖

copow-I
Γ ⊢ 𝑉 ∶ 𝐴 Γ;Λ ⊢ 𝐶 ∶ 𝑋

Γ;Λ ⊢ 𝑉 ⋉ 𝐶 ∶ 𝐴⋉ 𝑋

copow-E
Γ;Λ ⊢ 𝐶 ∶ 𝐴⋉ 𝑋 Γ, 𝑥 ∶ 𝐴;𝑢 ∶ 𝑋 ⊢ 𝐷 ∶ 𝑌

Γ;Λ ⊢ cosplit𝐶 {𝑥, 𝑢.𝐷 } ∶ 𝑌

sum-I-𝑖
Γ;Λ ⊢ 𝐶 ∶ 𝑋𝑖

Γ;Λ ⊢ 𝑖 ⋅ 𝐶 ∶ 𝑋1 + 𝑋2

sum-E
Γ;Λ ⊢ 𝐶 ∶ 𝑋1 + 𝑋2 Γ;𝑢1 ∶ 𝑋1 ⊢ 𝐶1 ∶ 𝑌 Γ;𝑢2 ∶ 𝑋2 ⊢ 𝐶2 ∶ 𝑌

Γ;Λ ⊢ case 𝐶 {𝑢1.𝐶1 ∣ 𝑢2.𝐶2 } ∶ 𝑌

Figure 6: Enriched Effect Calculus: Statics
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