
Continuations, aka Contradictions, aka Contexts, aka staCks*

Robert Harper

Spring 2024

1 Introduction

Computational effects can be roughly classified into two kinds, control effects and storage effects. Control
effects concern deviations from the usual flow of control to effect transfers to other parts of a program.
Storage effects concern in-place alterations to data structures that characterize imperative program-
ming. Effects require that the order of execution be made precise, so that it is clear when and where a
transfer of control, or a mutation of storage, occurs. One might say, if you don’t know where you are,
you can’t know where you are going.

This note gives a lax formulation of control effects. The statics is structured similarly to the for-
mulation given in Harper (2022), distinguishing pure expressions from impure computations, with the
two levels being linked by the lax modality. The dynamics is given by a stack machine that makes the
execution state of a program explicit as a data structure that can be “reified” as a value of a type of con-
tinuations.1 Continuations are the “master” control effect in that capture precisely the execution state,
which may be later restored by a control transfer operation.

The main result of this note is a proof of termination for the extension of the typed 𝜆-calculus with
continuations. Seeing as how these provide a form of “goto” in a language, it might be supposed that
they can be used to implement loops—even infinite ones! However, this is not the case. The proof of
this fact makes use of an extension of Tait’s method to account for reified control. Curiously, as will
become apparent from the type system, coninuations provide a computational interpretation of clas-
sical logic, which is ordinarily conceived as Boolean (two-valued, true or false). But as Griffin discov-
ered (Griffin, 1989), they may also be understood as providing the computational meaning of classical
proofs—rendering them constructive after all.

*Copyright © Robert Harper. All Rights Reserved
1As the title suggests, there are many synonyms for the word “continuation,” some of which are called out there.

1



lax-I
Γ ⊢ 𝐸 ∻ 𝐴

Γ ⊢ comp(𝐸) ∶ comp(𝐴)

ret
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ ret(𝑀) ∻ 𝐴

lax-E
Γ ⊢ 𝑀 ∶ comp(𝐴) Γ, 𝑥 ∶ 𝐴 ⊢ 𝐸 ∻ 𝐵

Γ ⊢ bnd(𝑀;𝑥.𝐸) ∻ 𝐵

cont-E
Γ ⊢ 𝑀1 ∶ cont(𝐴2) Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ throw(𝑀1;𝑀2) ∻ 𝐵

cont-I
Γ, 𝑥 ∶ cont(𝐴) ⊢ 𝐸 ∻ 𝐴

Γ ⊢ letcc(𝑥.𝐸) ∻ 𝐴

emp

∙ ÷ ans

frame
𝑥 ∶ 𝐴 ⊢ 𝐸 ∻ 𝐵 𝐾 ÷ 𝐵

𝐾◦𝑥.𝐸 ÷ 𝐴

cont
𝐾 ÷ 𝐴

Γ ⊢ cont(𝐾) ∶ cont(𝐴)

Figure 1: Statics (Selected Rules)

2 Types for Continuations

The main ideas are well-illustrated for a language with product, (partial) function, continuation, and
modal types.

𝐴 ∶∶= ans ∣ unit ∣ 𝐴1 × 𝐴2 ∣ 𝐴1 → 𝐴2 ∣ cont(𝐴) ∣ comp(𝐴)
𝑀 ∶∶= 𝑥 ∣ yes ∣ no ∣ ⟨⟩ ∣ ⟨𝑀1,𝑀2⟩ ∣ 𝑀 ⋅ 1 ∣ 𝑀 ⋅ 2 ∣ 𝜆(𝑥.𝑀2) ∣ ap(𝑀1;𝑀2) ∣ cont(𝐾) ∣ comp(𝐸)
𝐸 ∶∶= ret(𝑀) ∣ bnd(𝑀;𝑥.𝐸) ∣ letcc(𝑥.𝐸) ∣ throw(𝑀1;𝑀2)
𝐾 ∶∶= ∙ ∣ 𝐾◦𝑥.𝐸

The last category is that of stacks, which take on a particularly simple form in this setting. The terms
are augmented with a value, cont(𝐾), representing a stack as a form of value.2

The statics defines these judgment forms:

1. Expression typing: Γ ⊢ 𝑀 ∶ 𝐴.

2. Computation typing: Γ ⊢ 𝐸 ∻ 𝐴.

3. Continuation typing: 𝐾 ÷ 𝐴.

Notice that well-formed continuations have no free variables. Selected rules of the statics defining these
judgments are given in Figure 1.

3 Dynamics of Continuations

Eager evaluation of terms, written𝑀 ⇓ 𝑉, where 𝑉 val, is defined as in Harper (2016), either in terms
of a structural operational semantics, or directly by rules.

2Traditionally these are called “first-class” continuations, or stacks, using long-obsolete terminology signalling their use.

2 September 28, 2024



cont-val

cont(𝐾) val

comp-val

comp(𝐸) val

ret
𝑀 ⇓ 𝑉

𝐾 ⊳ ret(𝑀) ↦,→ 𝐾 ⊲ 𝑉

bnd
𝑀 ⇓ comp(𝐸)

𝐾 ⊳ bnd(𝑀;𝑥.𝐸′) ↦,→ 𝐾◦𝑥.𝐸′ ⊳ 𝐸

throw
𝑀1 ⇓ cont(𝐾1)

𝐾 ⊳ throw(𝑀1;𝑀2) ↦,→ 𝐾1 ⊳ ret(𝑀2)

letcc

𝐾 ⊳ letcc(𝑥.𝐸) ↦,→ 𝐾 ⊳ [cont(𝐾)∕𝑥]𝐸

init

∙ ⊳ 𝐸 initial

final
𝑉 val

∙ ⊲ 𝑉 final

pop
𝑉 val

𝐾◦𝑥.𝐸 ⊲ 𝑉 ↦,→ 𝐾 ⊳ [𝑉∕𝑥]𝐸

Figure 2: Dynamics (Selected Rules)

Expression evaluation, 𝑀 ⇓ 𝑉, is defined for 𝑉 val to mean 𝑀 ↦,→
∗
𝑉 according to the usual

dynamics. The dynamics of computations, which may have control effects, is given in terms of a stack
machine with two forms of state:

1. Evaluate 𝐸 on stack 𝐾, written 𝐾 ⊳ 𝐸, and

2. Return value 𝑉 to stack 𝐾, written 𝐾 ⊲ 𝑉.

Selected rules of the stack dynamics is given in Figure 2. Plainly, bnd is the only source of sequencing;
it pushes its continuation onto the stack and evaluates the encapsulated computation. The dynamics
of throw is akin to that of ret, except that it passes control to the given continuation, passing the given
value. Finally, letcc reifies the stack as a value, which is passed by substitution to its body.

Exercise 1. Extend the statics and dynamics with nullary and binary sums. Pay careful attention to
extending, if necessary, the forms of stack.

4 Termination

Figure 3 defines the following Tait computability predicates:

1. On expressions: HT𝐴(𝑀), hereditary termination of𝑀 at type 𝐴.

2. On computations: 𝖧𝖳𝐴(𝐸), hereditary termination of 𝐸 at type 𝐴.

3 September 28, 2024



HTans(𝑀) iff 𝑀 ⇓ yes, or𝑀 ⇓ no
HTunit(𝑀) iff 𝑀 ⇓ ⟨⟩

HT𝐴1×𝐴2(𝑀) iff 𝑀 ⇓ ⟨𝑀1,𝑀2⟩ with HT𝐴1(𝑀1) and HT𝐴2(𝑀2)
HT𝐴1→𝐴2(𝑀) iff 𝑀 ⇓ 𝜆(𝑥.𝑀2) and if HT𝐴1(𝑀1) then HT𝐴2([𝑀1∕𝑥]𝑀2)

HTcont(𝐴)(𝑀) iff 𝑀 ⇓ cont(𝐾) and 𝖧𝖳𝐴(𝐾)
HTcomp(𝐴)(𝑀) iff 𝑀 ⇓ comp(𝐸) and 𝖧𝖳𝐴(𝐸)

𝖧𝖳𝐴(𝐸) iff 𝖧𝖳𝐴(𝐾) implies 𝐾 ⊳ 𝐸 ⇓

𝖧𝖳𝐴(𝐾) iff HT𝐴(𝑉) implies 𝐾 ⊲ 𝑉 ⇓

Figure 3: Hereditary Termination Predicates

3. On control stacks: 𝖧𝖳𝐴(𝐾), hereditary termination of 𝐾 at type 𝐴.

Computablity of terms is defined by induction on the stucture their type, making use of of the other two
predicates at subsidiary types. Computability of computations is defined in terms of stacks, namely that
when executed on a computable stack, the computation terminates. Computability of stacks is defined
to mean that, when passed a computable value of its type, the computation terminates.

Lemma 1 (Head Expansion for Expressions). If HT𝐴(𝑀) and𝑀′ ↦,→ 𝑀, then HT𝐴(𝑀′).

Lemma 2 (Termination for Expressions). If HT𝐴(𝑀), then𝑀 ⇓.

Define Γ ≫ 𝑀 ∈ 𝐴 to mean that if HTΓ(𝛾), then HT𝐴(�̂�(𝑀)), and similarly define Γ ≫ 𝐸 ∈ �̃� to
mean that if HTΓ(𝛾), then 𝖧𝖳𝐴(𝐸), and write 𝐾 ∈ 𝐴 to mean 𝖧𝖳𝐴(𝐾).

Theorem 3. Formally typable terms, expressions, and stacks are computable at their classifying type:

1. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ≫𝑀 ∈ 𝐴.

2. If Γ ⊢ 𝐸 ∻ 𝐴, then Γ≫ 𝐸 ∈ �̃�.

3. If 𝐾 ÷ 𝐴, then 𝐾 ∈ 𝐴.

Proof. By induction on typing. Here are some representative cases of the proof. Throughout the nota-
tion �̂� is short for �̂�(𝑀) when 𝛾 is clear from context.

Application: Γ ⊢ ap(𝑀;𝑀2) ∶ 𝐴 because Γ ⊢ 𝑀 ∶ 𝐴2 → 𝐴 and Γ ⊢ 𝑀2 ∻ 𝐴2. Suppose that HTΓ(𝛾);
the goal is to show that HT𝐴(ap(�̂�;𝑀2)). By inductive assumptions HT𝐴2→𝐴(�̂�) and HT𝐴2(𝑀2),
from which the result follows immediately.

Ret: Γ ⊢ ret(𝑀) ∻ 𝐴 because Γ ⊢ 𝑀 ∶ 𝐴. Fix HTΓ(𝛾), so that by induction HT𝐴(�̂�), and hence
by Lemma 2 �̂� ⇓ 𝑉 for some 𝑉. Suppose that 𝖧𝖳𝐴(𝐾); it suffices to show that 𝐾 ⊳ �̂� ⇓. But
𝐾 ⊳ �̂� ↦,→ 𝐾 ⊲ 𝑉, by definition of transition, and 𝐾 ⊲ 𝑉 ⇓ by assumption on 𝐾.

4 September 28, 2024



Bind: Γ ⊢ bnd(𝑀;𝑥.𝐸′) ∻ 𝐵 because Γ ⊢ 𝑀 ∶ comp(𝐴) and Γ, 𝑥 ∶ 𝐴 ⊢ 𝐸′ ∻ 𝐵. Fix HTΓ(𝛾),
and suppose that 𝖧𝖳𝐵(𝐾), with the goal to show that 𝐾 ⊳ bnd(�̂�;𝑥.𝐸′) ⇓. By the first in-
ductive hypothesis HTcomp(𝐴)(�̂�), so �̂� ⇓ comp(𝐸) for some 𝐸 ∻ 𝐴 such that 𝖧𝖳𝐴(𝐸). But
then 𝐾 ⊳ bnd(�̂�;𝑥.𝐸′) ↦,→ 𝐾◦𝑥.𝐸′ ⊳ 𝐸. By the second inductive hypothesis if HT𝐴(𝑉), then

𝖧𝖳𝐵([𝑉∕𝑥]𝐸′), and so 𝖧𝖳𝐴(𝐾◦𝑥.𝐸′), using also the assumption on 𝐾. But then 𝐾◦𝑥.𝐸′ ⊳ 𝐸 ⇓, as
desired.

Letcc: Γ ⊢ letcc(𝑥.𝐸) ∻ 𝐴 because Γ, 𝑥 ∶ cont(𝐴) ⊢ 𝐸 ∻ 𝐴. Suppose that HTΓ(𝛾), and 𝖧𝖳𝐴(𝐾), with
the goal to show that 𝐾 ⊳ letcc(𝑥.𝐸) ⇓. By the inductive hypothesis 𝖧𝖳𝐴([cont(𝐾)∕𝑥]𝐸), so that
𝐾 ⊳ letcc(𝑥.𝐸) ↦,→ 𝐾 ⊳ [cont(𝐾)∕𝑥]𝐸′ ⇓, as desired.

Throw: Γ ⊢ throw(𝑀1;𝑀2) ∻ 𝐵 because Γ ⊢ 𝑀1 ∶ cont(𝐴) and Γ ⊢ 𝑀2 ∶ 𝐴. Fix HTΓ(𝛾) and suppose
that 𝖧𝖳𝐵(𝐾), with the goal to show that 𝐾 ⊳ throw(𝑀1;𝑀2) ⇓. By the first inductive assumption
HTcont(𝐴)(𝑀1), so 𝑀1 ⇓ cont(𝐾′) with 𝖧𝖳𝐴(𝐾′). By the second inductive hypothesis HT𝐴(𝑀2).
But 𝐾 ⊳ throw(𝑀1;𝑀2) ↦,→ 𝐾′ ⊳ 𝑀2, which terminates, as desired.

Exercise 2. Do the cases of the proof of the fundamental theorem for pairing and first projection.

Corollary 4. If 𝐸 ∻ ans, then ∙ ⊳ 𝐸 ⇓.

Proof. The empty stack is computable, 𝖧𝖳ans(∙), so ∙ ⊳ 𝐸 ↦,→
∗
∙ ⊲ 𝑉.

5 Equational Laws

The equational laws governing continuations are given in Figure 4. Rule letcc-ret abandons a letcc
when the body is returning a value that is well-formed in the surrounding context. (If, say, 𝑀 were
a 𝜆-abstraction, it could contain references to 𝑘, and cannot therefore be moved out of the scope of
𝑘.) Rule letcc-throw states that when a throw reaches its target binding, it can be considered to
return the thrown value to the surrounding context, within the limitations expressed by Rule letcc-
ret. Rule letcc-fuse collapses two consecutive continuations into one, on the grounds that at run-
time they will be bound to the same stack. Rule bnd-throw specifies that if the first command in a
sequence is a throw, then the second is abandoned before it is executed. Consecutive uses of this rule
amount to the propagation of a continuation upward through the frames of the run-time stack.

Rule letcc-bnd characterizes the interaction between letcc and bnd in the case that the contin-
uation is only used within the body of the bnd: in that case, the declaration of the continuation may
be moved within the body of the bnd, it being the same continuation in any case, namely that of the
surrounding context. Rule bnd-letcc characterizes the interaction between letcc and bnd when the
continuationmay be used within the encapsulated computation: because the continuation is known to
be 𝑥.𝐸2, the effect of a throw to 𝑘1 is to pass the thrown value through the body and to the surrounding
context. (The indicated composition of a continuation with an abstractor is a standard construct whose
definition is given after the rule.) Notice that if 𝐸1 does not throw to 𝑘1, then its returned value is passed
to 𝐸2 and then to the surrounding context, exactly as is would be if that value were thrown to 𝑘1. For
this reason the replication of 𝐸2 appears to be unavoidable.3

3To be sure, the computation 𝐸′
1 could be wrapped with a throw to 𝑘1, but that, too, would involve replicating 𝐸2.

5 September 28, 2024



bnd-ret
Γ ⊢ 𝑀 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐸 ∻ 𝐵

Γ ⊢ bnd(comp(ret(𝑀));𝑥.𝐸) ≡ [𝑀∕𝑥]𝐸 ∻ 𝐵

ret-bnd
Γ ⊢ 𝐸 ∻ 𝐴

Γ ⊢ 𝐸 ≡ bnd(comp(𝐸);𝑥. ret(𝑥)) ∻ 𝐴

bnd-bnd
Γ ⊢ 𝑀1 ∶ comp(𝐴1) Γ, 𝑥1 ∶ 𝐴1 ⊢ 𝐸2 ∻ 𝐴2 Γ, 𝑥2 ∶ 𝐴2 ⊢ 𝐸3 ∻ 𝐴3

Γ ⊢ bnd(comp(bnd(𝑀1;𝑥1.𝐸2));𝑥2.𝐸3) ≡ bnd(𝑀1;𝑥1. bnd(comp(𝐸2);𝑥2.𝐸3)) ∻ 𝐴3

letcc-ret
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ letcc(𝑘. ret(𝑀)) ≡ ret(𝑀) ∻ 𝐴

letcc-throw
Γ, 𝑘 ∶ cont(𝐴) ⊢ 𝑀 ∶ 𝐴

Γ ⊢ letcc(𝑘. throw(𝑘;𝑀)) ≡ letcc(𝑘. ret(𝑀)) ∻ 𝐴

letcc-fuse
Γ, 𝑘1 ∶ cont(𝐴), 𝑘2 ∶ cont(𝐴) ⊢ 𝐸 ∻ 𝐴

Γ ⊢ letcc(𝑘1. letcc(𝑘2.𝐸)) ≡ letcc(𝑘.[𝑘, 𝑘∕𝑘1, 𝑘2]𝐸) ∻ 𝐴

bnd-throw
Γ, 𝑘2 ∶ cont(𝐴2) ⊢ 𝑀 ∶ 𝐴2 Γ, 𝑘2 ∶ cont(𝐴2), 𝑥1 ∶ 𝐴1 ⊢ 𝐸2 ∻ 𝐴2

Γ, 𝑘2 ∶ cont(𝐴2) ⊢ bnd(comp(throw(𝑘2;𝑀));𝑥1.𝐸2) ≡ throw(𝑘2;𝑀) ∻ 𝐴2

letcc-bnd
Γ ⊢ 𝑀1 ∶ comp(𝐴1) Γ, 𝑘2 ∶ cont(𝐴2), 𝑥1 ∶ 𝐴1 ⊢ 𝐸2 ∻ 𝐴2

Γ ⊢ letcc(𝑘2. bnd(𝑀1;𝑥1.𝐸2)) ≡ bnd(𝑀1;𝑥1. letcc(𝑘2.𝐸2)) ∻ 𝐴2

bnd-letcc
Γ, 𝑘1 ∶ cont(𝐴1) ⊢ 𝐸1 ∻ 𝐴1 Γ, 𝑥1 ∶ 𝐴1 ⊢ 𝐸2 ∻ 𝐴2

𝐸′1 ≝ bnd(comp(𝑘2◦𝑥1.𝐸2);𝑘1.𝐸1)
𝑘2◦𝑥1.𝐸2 ≝ letcc(𝑟. bnd(comp(letcc(𝑘1. throw(𝑟; 𝑘1)));𝑥1. bnd(comp(𝐸2);𝑥2. throw(𝑘2;𝑥2))))

Γ ⊢ bnd(comp(letcc(𝑘1.𝐸1));𝑥1.𝐸2) ≡ letcc(𝑘2. bnd(comp(𝐸′1);𝑥1.𝐸2)) ∻ 𝐴2

Figure 4: Selected Equational Laws

6 September 28, 2024



𝑀
.
= 𝑀′ ∈ unit iff 𝑀,𝑀′ ⇓ ⟨⟩

𝑀
.
= 𝑀′ ∈ ans iff 𝑀,𝑀′ ⇓ yes, or𝑀,𝑀′ ⇓ no

𝑀
.
= 𝑀′ ∈ 𝐴1 × 𝐴2 iff 𝑀 ⇓ ⟨𝑀1,𝑀2⟩, 𝑀′ ⇓ ⟨𝑀′

1,𝑀
′
2⟩, 𝑀1

.
= 𝑀′

1 ∈ 𝐴1 and𝑀2
.
= 𝑀′

2 ∈ 𝐴2

𝑀
.
= 𝑀′ ∈ 𝐴1 → 𝐴2 iff 𝑀 ⇓ 𝜆(𝑥.𝑀2), 𝑀′ ⇓ 𝜆(𝑥.𝑀′

2),

𝑀1
.
= 𝑀′

1 ∈ 𝐴1 implies ap(𝑀;𝑀1)
.
= ap(𝑀′;𝑀′

1) ∈ 𝐴2

𝑀
.
= 𝑀′ ∈ cont(𝐴) iff 𝑀 ⇓ cont(𝐾), 𝑀′ ⇓ cont(𝐾′), and 𝐾

.
= 𝐾′ ∈ 𝐴

𝑀
.
= 𝑀′ ∈ comp(𝐴) iff 𝑀 ⇓ comp(𝐸), 𝑀′ ⇓ comp(𝐸′), and 𝐸

.
= 𝐸′ ∈ �̃�

𝐸
.
= 𝐸′ ∈ �̃� iff 𝐾

.
= 𝐾′ ∈ 𝐴 implies 𝐾 ⊳ 𝐸 ↓ 𝐾′ ⊳ 𝐸′

𝐾
.
= 𝐾′ ∈ 𝐴 iff 𝑉

.
= 𝑉′ ∈ 𝐴 implies 𝐾 ⊲ 𝑉 ↓ 𝐾′ ⊲ 𝑉′

Figure 5: Exact Equality for Continuations

To verify the validity of these equations requires the definition of exact equality of expressions, com-
putations, and continuations, following along the lines of the definition of hereditary termination given
in the previous section. The definitions are given in Figure 5. The relation 𝑠 ↓ 𝑠′ for states 𝑠 and 𝑠′means
that they have the same outcome, returning the same answer to the empty stack.

Define 𝛾
.
= 𝛾′ ∈ Γ tomean that 𝛾(𝑥)

.
= 𝛾′(𝑥) ∈ 𝐴 for each variable Γ ⊢ 𝑥 ∶ 𝐴. Then Γ≫𝑀

.
= 𝑀′ ∈

𝐴means �̂�(𝑀)
.
= ̂𝛾(𝑀′) ∈ 𝐴 for every 𝛾

.
= 𝛾′ ∈ Γ, and similarly for computations and continuations.

Theorem 5 (Reflexivity). 1. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ≫𝑀 ∈ 𝐴.

2. If Γ ⊢ 𝐸 ∻ 𝐴, then Γ≫ 𝐸 ∈ �̃�.

3. If 𝐾 ÷ 𝐴, then 𝐾 ∈ 𝐴.

Exercise 3. Prove Theorem 5 by induction on the statics, making use of the definitions given in Figure 5.
You need only consider the rules for computations, taking those for expressions as given by previous work.

With this in hand one may prove that the derivable equations given in Figure 4 are valid as exact
equations in this sense.

Theorem 6 (Equational Validity). 1. If Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴, then Γ≫𝑀
.
= 𝑀′ ∈ 𝐴.

2. If Γ ⊢ 𝐸 ≡ 𝐸′ ∻ 𝐴, then Γ≫ 𝐸
.
= 𝐸′ ∈ �̃�.

Proof. Let us consider here rule bnd-throw, leaving the others as exercises, following along similar
lines. Suppose that 𝛾

.
= 𝛾′ ∈ Γ, and that 𝐾2

.
= 𝐾′

2 ∈ 𝐴2, with the goal to show that

letcc(𝑘2. bnd(comp(throw(𝑘2; �̂�(𝑀)));𝑥1.�̂�(𝐸2)))
.
= letcc(𝑘2. throw(𝑘2; 𝛾′(𝑀))) ∈ 𝐴2.

Let the left-hand side be denoted by 𝐸, and the right-hand side by 𝐸′. It suffices to show that

𝐾2 ⊳ 𝐸 ↓ 𝐾′
2 ⊳ 𝐸′

7 September 28, 2024



under the assumption governing their respective control stacks. Execution of the left-hand state pro-
ceeds as follows:

𝐾2 ⊳ 𝐸 ↦,→ bnd(comp(throw(cont(𝐾2); [cont(𝐾2)∕𝑘2]�̂�(𝑀)));𝑥1.[cont(𝐾2)∕𝑘2]�̂�(𝐸2))

↦,→ 𝐾2◦𝑥1.[cont(𝐾2)∕𝑘2]�̂�(𝐸2) ⊳ throw(cont(𝐾2); [cont(𝐾2)∕𝑘2]�̂�(𝑀))

↦,→ 𝐾2 ⊳ [cont(𝐾2)∕𝑘2]�̂�(𝑀)

Similarly, the right-hand state executes as follows:

𝐾′
2 ⊳ 𝐸′ ↦,→ throw(comp(𝐾′

2); [cont(𝐾′
2)∕𝑘2]𝛾′(𝑀))

↦,→ 𝐾′
2 ⊳ [cont(𝐾′

2)∕𝑘2]𝛾′(𝑀)

But then by the inductive assumptions given by the premises of the rule the result follows immediately.

Exercise 4. Prove Theorem 6 by induction on the derivation of the equations, making use of the definitions
given in Figure 5.

6 Connection to Classical Logic

In a celebrated result of Griffin’s the foregoing computational interpretation of continuations as stacks,
or control contexts, may be seen as providing a computational meaning for classical logic. To see the
connection, write ¬𝐴 for the type cont(𝐴), to be thought of as the type of refutations of the type 𝐴
viewed as a proposition. This interpretation arises from the following observations about the types of
the continuation primitives, written in propositional form:

• throw𝐵 ∶ (¬𝐴 ∧ 𝐴) ⊃ 𝐵.

• letcc𝐴 ∶ (¬𝐴 ⊃ 𝐴) ⊃ 𝐴.

The first is simply negation elimination: from a proof of ¬𝐴 and a proof of 𝐴 one may conclude any-
thing, it being a contradictory situation. The second is called Peirce’s Law, which is akin to the classical
principal of double-negation elimination. It says that if the assumption of ¬𝐴 is contradictory (because
𝐴 can be derived from it), then 𝐴 must be true. Indeed, under the usual bivalent intepretation of clas-
sical logic in terms of truth values, Peirce’s Law is a tautology.

What is fascinating, though, is that this principal has computational content! To be sure, its content
is not “direct” in the usual sense of constructive logic, but is “indirect” in the sense that continuations
provide a means of not returning to the point at which they are invoked, and hence can be regarded as
proving falsity. Thus, operationally, the meaning of letcc is that it provides its body with a proof of ¬𝐴
in the form of a continuation. The body may simply return a value of type 𝐴, and that is the overall
result. But it may also invoke the provided continuation, which it can do only by possessing a proof
of 𝐴 to throw to it. Thus, regardless of the control path, direct or indirect, the upshot is that the letcc
evaluates to a proof of𝐴. Notice that, implicitly, the law of the excluded middle is lurking here in that a
computation can either return normally, or invoke a contnuation to avoid doing so. This is guaranteed

8 September 28, 2024



by the termination property proved above: the body of the letcc must return, either directly or via a
throw to the continuation at the point of invocation.

The “trick” of the above proof is the duality between proofs and refutations in classical logic. Whereas
the role of a proof is to affirm the truth of a proposition, the role of a refutation is to deny it. Put another
way, the proof is an implementation of a proposition, and a refutation is its client.4 By having access to
the client—in the form of a continuation or stack—a classical proof can “use the client against itself,”
evading an otherwise impossible obligation in a purely constructive setting.

A telling example is classical proof—viewed as a program—of the lawof the excludedmiddle, stating
that ¬𝐴∨𝐴 is true, regardless of what is𝐴. First, the proof blithely asserts that ¬𝐴 is true by indicating
the left summand and providing a carefully constructed continuation (built using letcc) as evidence for
it. A client of the proof may simply fold, never inquiring any further, and the prover succeeds with
its bluff. However, the client might respond by raising the prover and passing a proof of 𝐴 to it (using
throw). But that means that the client itself knows that 𝐴 is true! The aforementioned refutation of 𝐴
then backtracks to the point of the bluff, which is of course not allowed in poker, and instead asserts that
𝐴 is true, providing the proof that the client gave it. The client is none the wiser, because in a purely
functional language it has noway to know that the prover has retracted its earlier bet, and instead placed
a sure-fire winner instead. It is thus a pusillanimous proof, one that “changes its mind” to avoid the
embarrassment of being called with schmaltz for a hand.

Returning to the types-as-propositions of throw and letcc, it is essential, in light of the foregoing, to
interpret implication, 𝐴 ⊃ 𝐵, as 𝐴 ⇀ 𝐵 ≝ 𝐴 → comp(𝐵), to allow for (classical) proofs that use the
client against itself, the essence of indirect proof.

Exercise 5. 1. Spell out in detail the above-sketched proof of excluded middle, and trace its execution
on the stack machine, noting carefully the use of “time travel” to ensure that the bluff cannot fail.

2. Give a direct proof of ¬¬(¬𝐴 ∨ 𝐴), one that does not use letcc (Peirce’s Law or its equivalents). The
doubly negated form is thereby seen to be constructively valid, meaning that no instance of excluded
middle is refuted by constructive logic.

3. Give a direct proof of ¬(𝐴 ∧ ¬𝐴), which is also constructively valid.

4. Given an indirect proof of¬(¬𝐴∧¬𝐵) ⊃ (𝐴∨𝐵). Explain why no direct proof is possible, by reducing
it to the law of the excluded middle.

References

Timothy G Griffin. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 47–58, 1989.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, Cam-
bridge, England, Second edition, 2016.

Robert Harper. Tait computability for sums. Unpublished lecture note., February 2022. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait-sums.pdf.

4But why is the client a refutation? In classical logic there is no loss of generality, because any proof of a fact can be turned
into a refutation of its negation.

9 September 28, 2024



Hayo Thielecke. Control effects as a modality. Journal of Functional Programming, 19:17–26, 1 2009.
ISSN 09567968. doi: 10.1017/S0956796808006734.

10 September 28, 2024


