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1 Introduction

The lax framework for languages with effects used in Harper (2016) distinguishes expressions, which
are effect-free, from computations, which may incur effects. The distinction is not based on types, but
rather a way to resolve the tension between functional and effectful programming. This distinction was
present in Algol-60, and has been refined and developed in more modern languages such as Haskell.
Alternatively, the distinction can be eliminated, integrating evaluation and execution, as is done in the
ML family of languages. The lax formulation may be considered prior in the sense that the integrated
formulation (with no such distinction) may be obtained from it by consolidating expressions and com-
putations, rendering them all as computations that may have effects.

The subject of this note is problem of assessing the cost of a program, a measure of the resources
required to execute it. The concept of a resource is abstract, but a very typical usage is to count the
number of critical operations taken by a computation, with the idea to facilitate a cost comparison
between programs with the same behavior. The classic example is given by sorting the elements of a
sequence according to some ordering. Here the figure ofmerit is the number of comparisons undertaken
by a given sorting algorithm. As is well-known algorithms vary in this regard: insertion sort takes
quadratically many comparisons for a given input, whereasmerge sort takes a polylogarithmic number.

Textbook accounts of cost tend to emphasize machine models, with the cost being the number of
instructions executed, or perhaps the amount of memory used, and are relatively loose about the re-
lation between the high-level notation one actually uses and the machine code that it stands for. As
the high-level notation becomes more sophisticated, for example including higher-order functions, the
connection between the two levels becomes rather obscure, requiring a detailed understanding of a
complex compiler to be fully accurate. Moreover, the machine model offers no support for abstraction.
But if the figure of merit is not the use of a machine instruction, how is one to define the count?

The alternative considered here is to take a linguistic approach that naturally supports abstract cost
measures. The idea is simple: equip a language with a step-counting computation that is integrated
into the program to be analyzed, and define cost in terms of the number of steps (in the abstract sense)
taken in a complete execution. Thus, in the case of sorting, each comparison is instrumentedwith a step
count, so that the number of steps is the number of comparisons (in whatever sense may be relevant).
Then the cost and outcome of a computation is defined by saying that it is equal to step𝑐(ret(𝑉)) for
some step count 𝑐 and result value 𝑉.
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Such equations are helpful for speaking about cost, but what if we wish to prove that two sort-
ing algorithms are behaviorally equivalent, independently of their cost? The instrumentation of pro-
grams with step counting interferes with the expected equations, rendering insertion and merge sort
inequivalent. What is needed is ameans of distinguishing extensional (cost-insensitive) from intensional
(cost-sensitive) behavior, so that any two correct sorting algorithms are extensionally equivalent, even
though they may be intensionally distinct. This is achieved by drawing a phase distinction governing
equations that expresses the desired distinction. Concretely, there are two phases, EXT and ⊤, that are
to be thought of as propositions, the former asserting the extensional phase, and the latter, trivially true
proposition, asserting the default phase. As the terminology suggests, the two phases are ordered by
entailment, with EXT ⊢ ⊤, but not conversely.

Finally, step counting is a form of effect, incrementing a step count, which therefore is confined
to the computation level. Besides signaling the imperative nature of step counting, the confinement
of profiling to computations ensures that it is clear when the count is increased, a necessity for pre-
cise analysis.1 When computations are not modally separated from expressions, as in the ML family
of languages, then in effect even expressions are forms of computations, with explicit sequencing of
evaluation order, and hence a well-defined cost.

2 Cost Accounting

For the sake of connecting with later work the statics of the lax language is formulated by two judg-
ments:

1. Γ ⊢ 𝑀 ∶ 𝐴: expression𝑀 with variables Γ evaluates to a value of type 𝐴;

2. Γ ⊢ 𝐸 ∻ 𝐴: computation 𝐸 with variable Γ returns a value of type 𝐴.

A variables is an expression standing for an unknown value of its declared type. The insistence on
variables ranging over values implies that function application is by-value, which is required for the
sake of analyzability. This is especially important in view of the fact that the type comp(𝐴) classifies
encapsulated computations that are executed by the bind computation: it is important to understand
how and when that computation value is determined for the sake of analysis.

For present purposes the type structure of expressions is not specified explicitly, but onemay assume
it to include sums, products, functions, and inductive types such as the natural numbers and lists for the
sake of formulating specific algorithms. To handle non-trivial patterns of recursion, such as are found
in merge sort, it is necessary to introduce a “program counter” that bounds the number of recursive
calls permitted in a given computation. For a given input, there is always a sufficiently large bound
to achieve a final outcome, which is the same from that point onward. When the bound is too small,
the algorithm prematurely terminates with no result, and is thus of an option type appropriate to the
problem.

The language is parameterized by a monoid, ℂ, of costs that includes 0 and is closed under addi-
tion. The abstract syntax of computations includes the computation step𝑐(𝐸) governed by the following
statics:

step
Γ ⊢ 𝐸 ∻ 𝐴 (𝑐 ∈ ℂ)

Γ ⊢ step𝑐(𝐸) ∻ 𝐴
1Of course there are even very small pieces of code whose cost bound defies analysis, the Collatz Function being one such

example—no one know if it terminates, let alone how many steps it takes on a given input!
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ret
𝑀 ⇓ 𝑉

ret(𝑀) ↦,→ ret(𝑉)

bnd-arg

𝑀1 ⇓ comp(𝐸1) 𝐸1
+𝑐
↦,,→ 𝐸′1

bnd(𝑀1;𝑥.𝐸2)
+𝑐
↦,,→ bnd(comp(𝐸′1);𝑥.𝐸2)

bnd-ret
𝑀1 ⇓ comp(ret(𝑉1))

bnd(𝑀1;𝑥.𝐸2) ↦,→ [𝑉1∕𝑥]𝐸2

step

step𝑐(𝐸)
+𝑐
↦,,→ 𝐸

Figure 1: Cost Dynamics of Commands

That is, any computation may be wrapped with a step command that adds a specified count to the
running total, without otherwise affecting the command’s behavior.

The dynamics of step-counting may be given by transition rules of the form 𝐸
+𝑐
↦,,→ 𝐸′, where

𝑐 ∈ ℂ, indicating a transition step with associated cost 𝑐. (When 𝑐 is omitted, it is understood to be
0.) Evaluation of expressions is given directly by the judgment𝑀 ⇓ 𝑉, stating that𝑀 evaluates to the
value𝑉, with no cost accounting involved. The dynamics of computations is given in Figure 1. The use
of labelled transitions is meant to convey that stepping engenders an effect, namely to increment the
cost by a given amount.

Define complete execution of computation 𝐸 with cost 𝑐, written 𝐸 ⇓𝑐 𝑉, by the following rules:

val
𝑀 ⇓ 𝑉

ret(𝑀) ⇓0 𝑉

step

𝐸
+𝑐
↦,,→ 𝐸′ 𝐸′ ⇓𝑐

′
𝑉

𝐸 ⇓𝑐+𝑐
′
𝑉

Thus, 𝑐 is the cumulative cost defined by adding up the cost of the individual computation steps lead-
ing to the result. Finally, 𝐸 ⇓ 𝑉 is defined to mean 𝐸 ⇓𝑐 𝑉 for some cost 𝑐, which is thereby being
disregarded.

3 Equations

Phases are propositions ordered by entailment; 𝜓 ⊢ 𝜙 means that 𝜓 being in phase 𝜓 entails being in
phase 𝜙. Equations between computations are conditioned by the phase: the judgment Γ ⊢𝜙 𝐸 ≡ 𝐸′ ∻
𝐴 states that the two computations of type 𝐴 are equal in phase 𝜙. As a general principle, if 𝜓 ⊢ 𝜙,
then any equation derivable in phase 𝜙 is also derivable in phase 𝜓, but not, in general, conversely. The
intuition is that stronger phases impose more equations than would hold in the weaker. For present
purposes there are two phases, EXT and⊤, ordered byEXT ⊢ ⊤, withEXT indicating extensional phase,
and ⊤, the “background phase,” governs the intensional phase.

Some representative equations between expressions and computations are given in Figure 2. These
include equations to consolidate stepping computations and govern their interaction with sequencing.
Rule step-ext states that costs are disregarded in the extensional phase, thereby isolating “pure behav-
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comp
Γ ⊢𝜙 𝐸 ≡ 𝐸′ ∻ 𝐴

Γ ⊢𝜙 comp(𝐸) ≡ comp(𝐸′) ∶ comp(𝐴)

bnd-ret
Γ ⊢ 𝑀 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐸 ∻ 𝐵

Γ ⊢𝜙 bnd(comp(ret(𝑀));𝑥.𝐸) ≡ [𝑀∕𝑥]𝐸 ∻ 𝐵

bnd-step
Γ ⊢ 𝐸1 ∻ 𝐴1 Γ, 𝑥 ∶ 𝐴1 ⊢ 𝐸2 ∻ 𝐴2 (𝑐 ∈ ℂ)

Γ ⊢𝜙 bnd(comp(step𝑐(𝐸1));𝑥.𝐸2) ≡ step𝑐(bnd(comp(𝐸1);𝑥.𝐸2)) ∻ 𝐴2

bnd-bnd
Γ ⊢ 𝑀1 ∶ comp(𝐴1) Γ, 𝑥1 ∶ 𝐴1 ⊢ 𝐸2 ∻ 𝐴2 Γ, 𝑥1 ∶ 𝐴1, 𝑥2 ∶ 𝐴2 ⊢ 𝐸3 ∻ 𝐴3

Γ ⊢𝜙 bnd(comp(bnd(𝑀1;𝑥1.𝐸2));𝑥2.𝐸3) ≡ bnd(𝑀1;𝑥1. bnd(comp(𝐸2);𝑥2.𝐸3)) ∻ 𝐴3

step-zero
Γ ⊢ 𝐸 ∻ 𝐴

Γ ⊢𝜙 step0(𝐸) ≡ 𝐸 ∻ 𝐴

step-step
Γ ⊢ 𝐸 ∻ 𝐴 (𝑐, 𝑐′ ∈ ℂ)

Γ ⊢𝜙 step𝑐(step𝑐′(𝐸)) ≡ step𝑐+𝑐
′(𝐸) ∻ 𝐴

step-ext
Γ ⊢ 𝐸 ∻ 𝐴

Γ ⊢EXT step𝑐(𝐸) ≡ 𝐸 ∻ 𝐴

Figure 2: Some Equations

ior” independent of any cost accounting. Omitted equations include specifying that equality is reflexive,
symmetric, and transitive, and that it is compatible with the constructs of the language.

Adding (eager) products to the language is straightforward, as they are formulated entirely at the
pure term level, rather than as computations. Sums and inductive types are more interesting in that
they involve cost accounting.

Exercise 1. Suppose that (eager) sum types are added to the language, with their elimination forms for
both values and computations. What equations would you expect to govern these constructs? Similarly,
suppose that the type of natural numbers is added, with primitive recursion for both values and computa-
tions. What equations govern this construct?

Exercise 2. The equations given in Figure 2 are intended to hold regardless of what other forms of effect
may be present in the language. Explainwhy it is not reasonable to add the following equation to the theory:

bnd-body
Γ ⊢ 𝑀 ∶ comp(𝐴) Γ, 𝑥 ∶ 𝐴 ⊢ 𝐸 ∻ 𝐵 (𝑐 ∈ ℂ)

Γ ⊢𝜙 bnd(𝑀;𝑥. step𝑐(𝐸)) ≡ step𝑐(bnd(𝑀;𝑥.𝐸)) ∻ 𝐵

Hint: Consider that there may be an error command that aborts execution.

4 Semantics

The equations given in Section 3 may be justified using Kripke-style binary logical relations to define
semantic equality of expressions and computations by induction on the structure of their types. The
Kripke worlds are phases, ordered by entailment, which in the cost setting means that equations true
in intensional phase hold also in the extensional phase, but not vice-versa.

Semantic equality of expressions and computations is expressed by the following families of rela-
tions indexed by phases:
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1. 𝑀
.
= 𝑀′ ∈ 𝐴 [𝜙]: logical equivalence of expressions of type 𝐴 in phase 𝜙.

2. 𝐸
.
= 𝐸′ ∈ �̃� [𝜙]: logical equivalence of computations returning type 𝐴 in phase 𝜙.

At the expression level the definitions of the expression relations follows the general principles of Kripke
logical relations.2 In the case of the computation type, comp(𝐴), the definition of logical equivalence is
as follows:

𝑀
.
= 𝑀′ ∈ comp(𝐴) [𝜙] iff 𝑀 ⇓ comp(𝐸), 𝑀′ ⇓ comp(𝐸′), and 𝐸

.
= 𝐸′ ∈ �̃� [𝜙].

The clauses for product, sum, function, and answer types may be adapted from those given in Harper
(2024), including especially the treatment of function types considering all “future” worlds.

Exercise 3. Give the definition of semantic equality for answer, product, and function types, and extend
these to nullary and binary sum types and the type of natural numbers.

Lemma 1 (Head Expansion of Expressions). Semantic equality of expressions is closed under head ex-
pansion: if 𝑀

.
= 𝑀′ ∈ 𝐴 [𝜙], then if 𝑁 ↦,→ 𝑀, then 𝑁

.
= 𝑀′ ∈ 𝐴 [𝜙], and if 𝑁′ ↦,→ 𝑀′, then

𝑀
.
= 𝑁′ ∈ 𝐴 [𝜙].

Proof. Straightforward, given that the relations are characterized by evaluation of𝑀 and𝑀′.

At the computation level logical equivalence is phase-sensitive, and defined as follows:

𝐸
.
= 𝐸′ ∈ �̃� [𝜙] iff 𝐸 ⇓𝑐 𝑉, 𝐸′ ⇓𝑐

′
𝑉′, 𝑉

.
= 𝑉′ ∈ 𝐴 [𝜙] and (𝑐 = 𝑐′ or 𝜙 ⊢ EXT)

Thus, in extensional phase, cost has no influence on semantic equality. The condition on costs could
be rephrased as stating 𝜙 ̸⊢ EXT implies 𝑐 = 𝑐′—outside of the extensional phase, the costs must
coincide.

Lemma 2 (Anti-Monotonicity). Suppose that 𝜓 ⊢ 𝜙. Then for all types 𝐴, if 𝑀
.
= 𝑀′ ∈ 𝐴 [𝜙], then

𝑀
.
= 𝑀′ ∈ 𝐴 [𝜓], and if 𝐸

.
= 𝐸′ ∈ �̃� [𝜙], then 𝐸

.
= 𝐸′ ∈ �̃� [𝜓].

Thus, every intensional semantic equality is also an extensional one, but the converse need not be
true because in the intensional phase steps are taken into account.

Exercise 4. Prove the anti-monotonicity lemma for computations, and for expressions of function type, by
induction on the structure of 𝐴.

Semantic equality is extended to open terms by functionality, regarding such terms as functions
of their free variables. First, semantic equality of expressions is extended to substitutions by defining
𝛾
.
= 𝛾′ ∈ Γ [𝜙] to means 𝛾(𝑥)

.
= 𝛾′(𝑥) ∈ Γ(𝑥) [𝜙] for each variable 𝑥 declared in Γ. Using this, semantic

equality of open expressions and open computations is defined as follows:

Γ≫𝜙 𝑀
.
= 𝑀′ ∈ 𝐴 iff 𝛾

.
= 𝛾′ ∈ Γ [𝜙] implies �̂�(𝑀)

.
= 𝛾′(𝑀′) ∈ 𝐴 [𝜙]

Γ≫𝜙 𝐸
.
= 𝐸′ ∈ �̃� iff 𝛾

.
= 𝛾′ ∈ Γ [𝜙] implies �̂�(𝐸)

.
= 𝛾′(𝐸′) ∈ �̃� [𝜙].

Theorem 3 (Reflexivity). 1. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ≫𝜙 𝑀
.
= 𝑀 ∈ 𝐴.

2As presented in Harper (2024), albeit for the unary case.
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2. If Γ ⊢ 𝐸 ∻ 𝐴, then Γ≫𝜙 𝐸
.
= 𝐸′ ∈ �̃�.

Proof. These are proved simultaneously by induction on derivations. For example, consider the intro-
duction rule for the type comp(𝐴). Let 𝜙 be a phase, and suppose that 𝛾

.
= 𝛾′ ∈ Γ [𝜙], with the intent

to show that comp(�̂�(𝐸))
.
= comp(𝛾′(𝐸′)) ∈ comp(𝐴) [𝜙]. It suffices to show �̂�(𝐸)

.
= 𝛾′(𝐸′) ∈ �̃� [𝜙],

which follows directly from the induction hypothesis.
As another example, consider the rule step given above. Fixing 𝜙 and 𝛾

.
= 𝛾′ ∈ Γ [𝜙], the goal is to

show that step𝑐(�̂�(𝐸))
.
= step𝑐(𝛾′(𝐸′)) ∈ �̃� [𝜙]. By the inductive hypothesis we have �̂�(𝐸)

.
= 𝛾′(𝐸′) ∈

�̃� [𝜙], which means that
1. �̂�(𝐸) ⇓𝑑 𝑉 for some cost 𝑑 and value 𝑉;

2. 𝛾′(𝐸′) ⇓𝑑
′
𝑉′ for some cost 𝑑′ and value 𝑉′;

3. 𝑉
.
= 𝑉′ ∈ 𝐴 [𝜙].

4. either 𝑑 = 𝑑′ or 𝜙 ⊢ EXT.

Now

1. step𝑐(�̂�(𝐸)) ⇓𝑐+𝑑 𝑉;

2. step𝑐(𝛾′(𝐸′)) ⇓𝑐+𝑑
′
𝑉′.

If 𝜙 ⊢ EXT, the result is immediate, otherwise note that if 𝑑 = 𝑑′, then 𝑐 + 𝑑 = 𝑐 + 𝑑′.

Exercise 5. Give the cases of the proof of Theorem 3 for bnd and ret.

The derivable equations are validated by the Fundamental Theorem of Logical Relations, which
states that derivable equations are semantically valid.

Theorem 4 (Fundamental Theorem). 1. If Γ ⊢𝜙 𝑀 ≡ 𝑀′ ∶ 𝐴, then Γ≫𝜙 𝑀
.
= 𝑀′ ∈ 𝐴.

2. If Γ ⊢𝜙 𝐸 ≡ 𝐸′ ∻ 𝐴, then Γ≫𝜙 𝑀
.
= 𝑀′ ∈ �̃�.

Exercise 6. Prove the cases of Theorem 4 for the rules given in Figure 2. Where does your proof attempt
break down in extending your argument to the equation considered in Example 2?

One consequence of the FTLR is non-interference, which states that extensional behavior is not
affected by intensional distinctions.

Theorem 5 (Non-Interference). If ⊢⊤ 𝐹 ∶ comp(unit) → comp(ans), then 𝐹 is extensionally a constant
function.

Proof. Suppose that ⊢⊤ 𝐹 ∶ comp(unit)→ comp(ans). Then by reflexivity

𝐹
.
= 𝐹 ∈ comp(unit)→ comp(ans) [⊤],

and so by anti-monotonicity,

𝐹
.
= 𝐹 ∈ comp(unit)→ comp(ans) [EXT].

Now 𝐸
.
= 𝐸′ ∈ ̃unit [EXT] for any 𝐸, 𝐸′, so

ap(𝐹; comp(𝐸))
.
= ap(𝐹; comp(𝐸′)) ∈ comp(ans) [EXT].

But then ap(𝐹; comp(𝐸)) ⇓ comp(𝐸0), ap(𝐹; comp(𝐸′)) ⇓ comp(𝐸′0), and𝐸0
.
= 𝐸′0 ∈ ̃ans [EXT], which is

to say that both sides evaluate to the same answer, yes or no as the case may be. Thus, 𝐹 is extensionally
equal to the constant function 𝜆(𝑢. comp(ret(yes))) or 𝜆(𝑢. comp(ret(no))).
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