
Dependent Type Theory for Programming and Proving*

Robert Harper

Spring 2024

1 Introduction

Simple, or non-dependent, type theories feature a complete separation between types and programs.
Types, given a priori, are used to classify programs based on their execution behavior, which is also
specified in advance. More precisely, types determine when two programs behave the same way, and
hence are considered equal. In richer languages types themselves admit non-trivial notions of equality,
always adhering to the general principle that equal types classify the same behaviors. Such languages
are said to be phase separated in that type checking is regarded as a static, or compile-time, or verification-
time, notion, whereas execution is regarded as a dynamic, or run-time, notion. The vast majority of
extant programming languages are phase-separated in this sense.

By contrast dependent type theories exhibit no such separation of types from programs. In fact types
are themselves programs that have the special status of being used as classifiers of other programs—and
they themselves are also so-classified. Dependent type theories are phase integrated in that there is no
clear separation between types and programs, rather types are simply a certain class of programs that
admit interpretation as classifiers. Such type theories are distinctly expressive, so much so that they
serve not only to classify data objects, but are also precise enough to serve as specifications of program
behavior. Thus, a type such as “sequence of length 𝑛” classifies finite sequences of values whose length
is 𝑛 ≥ 0, and arrow types such as those between sequences of length 𝑛 and sequences of length 2×𝑛may
be regarded as specifications of program behavior. Transposing the emphasis, programs are regarded
as evidence that a type qua proposition is true in the Brouwerian sense of being realized by a program.

One role of dependent types in programming languages is as a rich language for programmodules,
separable components that may be selectively combined to form larger components, ultimately com-
plete programs. Such languages, though reliant on dependent types for their expressive power, exhibit
a phase distinction between the static and dynamic aspects of a program module, the static aspects be-
ing types and the dynamics aspects being executable programs. The distinction lies in the treatment of
equality of components: whereas two modules may differ when considered in full, they may coincide
when their run-time aspects are disregarded, thereby isolating only their compile-time aspects. Such a
distinction is crucial for supporting well-established program developmentmethodologies, particularly
those based directly on combining statically coherent components to form other components. Given
such a phase distinction, violations of such coherence constraints are visible at compile time, ensuring
that violations are caught when the program is composed, rather than once delivered to a user.

*Copyright © Robert Harper. All Rights Reserved

1



The development of these ideas will proceed in stages, first considering only value types, then con-
sidering computation types, and finally the phase distinction. The core concept of dependent type the-
ory is that of a family of types indexed by the elements of another type or types. A non-indexed type is a
degenerate family with no indexing; otherwise, a family is, informally, a mapping from a type into the
“multiverse” of all types.1 For technical reasons families are usually defined in an iterated (“curried”)
form, so as to avoid the reliance on product types in their definition, though once those are available, a
family can always be presented in simultaneous (“uncurried”) form. Families are closed under gener-
alizations of the function and product types considered in the non-dependent setting, and are enriched
to include inductive and coinductive types, albeit with dependent forms of their elimination and in-
troductory forms, respectively. A crucial question is the status of equality as a family of types; there
are several extant notions with different properties. Finally, a stratified hierarchy of universes, types
whose elements are types, is considered, affording considerable expressive power and providing conve-
nient technical devices for consolidating familes of types with families of elements. Then type theory
is equipped, in the manner of cbpv, with effectful computation types, which are distinguished to avoid
compromising the very notion of a family, or the fundamental propositions-as-types principle. The
static/dynamic phase distinction collapses the elements of a value type, and of all computation types,
so as to isolate the compile-time significance of a programmodule from its run-time aspects. The asso-
ciated notion of an extension type provides support for the notion of a sharing specification governing
the coherent composition of programs from components.

2 Pure Dependent Type Theory

A formalism for dependent type theory defines the following judgment forms:

1. Γ ⊢ 𝐴 type, stating that 𝐴 is a type in context Γ;

2. Γ ⊢ 𝐴 ≡ 𝐴′ type, stating that 𝐴 and 𝐴′ are equal types in context Γ;

3. Γ ⊢ 𝑀 ∶ 𝐴, stating that𝑀 is a term of type 𝐴;

4. Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴, stating that𝑀 and𝑀′ are equal elements of type 𝐴.

Whereas the latter two judgments are familiar from non-dependent type theory, the first two are mani-
festations of the inter-relatedness between types and their elements that is characteristic of dependent
type theory.

Any set of rules defining these judgments should be formulated to ensure that the following well-
formation conditions are true:

1. If Γ ⊢ 𝐴 ≡ 𝐴′ type, then Γ ⊢ 𝐴 type and Γ ⊢ 𝐴′ type.

2. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ ⊢ 𝐴 type.

3. If Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴, then Γ ⊢ 𝑀 ∶ 𝐴 and Γ ⊢ 𝑀′ ∶ 𝐴.

Contrarily, the well-formation of the context is pre-supposed in these situations! That is, the successive
types of the variables in a context are assumed to be well-formed types in the prefix of the context up
to, but not including, that variable.

1The motivation for the peculiar terminology will emerge as part of the development.

2 September 28, 2024



type-refl
Γ ⊢ 𝐴 type

Γ ⊢ 𝐴 ≡ 𝐴 type

type-sym
Γ ⊢ 𝐴 ≡ 𝐴′ type

Γ ⊢ 𝐴′ ≡ 𝐴 type

type-trans
Γ ⊢ 𝐴 ≡ 𝐴′ type Γ ⊢ 𝐴′ ≡ 𝐴′′ type

Γ ⊢ 𝐴 ≡ 𝐴′′ type

elt-refl
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ 𝑀 ≡ 𝑀 ∶ 𝐴

elt-sym
Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴
Γ ⊢ 𝑀′ ≡ 𝑀 ∶ 𝐴

elt-trans
Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴 Γ ⊢ 𝑀′ ≡ 𝑀′′ ∶ 𝐴

Γ ⊢ 𝑀 ≡ 𝑀′′ ∶ 𝐴

elt-resp
Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐴′ type

Γ ⊢ 𝑀 ∶ 𝐴′

eqv-resp
Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐴′ type

Γ ⊢ 𝑀 ≡ 𝑀′ ∶ 𝐴′

var-of

Γ𝑥 ∶ 𝐴Γ′ ⊢ 𝑥 ∶ 𝐴

var-eqv
Γ ⊢ 𝑥 ∶ 𝐴

Γ ⊢ 𝑥 ≡ 𝑥 ∶ 𝐴

Figure 1: Structural Rules of Dependent Type Theory

The structural rules for a dependent type theory are given in Figure 1. These rules are to be included
in any dependent type theory to ensure that the following general principles are upheld:

1. Judgmental equality of types and their elements is an equivalence relation.

2. Formation and equality of elements respects equality of their classifiers: equal types determine
equal elements and their equality.

3. Variables inhabit the types according to their declaration in the context. Consequently, the in-
duced entailment between types is reflexive.

4. Substitution of elements of a type for variables of that typemust be valid for all forms of judgment.
Consequently, the induced entailment between types is transitive.

5. The dependence of types and terms on variables must be functional in that substitution of equal
elements must yield equal results.

Reflexivity and substitution suffice to ensure that weakening (adding additional variables) and contrac-
tion (consolidating two variables of the same type) are admissible.2 The functionality condition for
types is fundamental to the very idea of dependency: the occurrence of variables within types is that of
a function from a type to the multiverse of types.

There aremany variations on the formulation of dependent type theory according to various criteria
such as convenience for usage in an implementation, and according to the formulation of concepts such

2The proof of both properties follows from a generalization of substitution to simultaneous instantiation of the variables
in a context by terms in another context. The rules must be formulated with this in mind; for example, the “extra” context
beyond the declaration of the variable in the variable rule is there to “build in” weakening to ensure that it be admissible.

3 September 28, 2024



as inductive types. These variations are far too numerous to consider here; the present development is
concerned only with the skeletal apparatus of dependent type theory. The formulation considered here
relies on the admissibility of, say, substitution and weakening, which means that they hold for a given
set of rules, and must be reconsidered whenever the theory is extended with new constructs.

Although all of the value types in a non-dependent setting can be carried over to the dependent
setting without change, to get their full expressive power their dependent counterparts usually have
much richer—and more flexible—typing rules. A good example is the type bool of booleans, whose
introductory forms are true and false, and whose elimination is the conditional branch, if(𝑒;𝑒1;𝑒2). In
a non-dependent setting both branches of the conditional must be of the same type, because it is not
possible to predict the outcome of the branch statically. However, in a dependent setting we have the
possibility—because expressions can appear in types—to give a much more powerful typing rule, and
associated equations, as given in Figure 2. The important point is that the type of the conditional is
dependent on the condition on which it is branching, which raises the possibility that the result type
can also branch on the same condition to determine the type for each branch. This is achieved using
a type-level version of the conditional, called a large elimination form, that yields a type instead of a
term on each branch.3 Thus, one may judge that if(𝑀;7; true) is of type If(𝑀; nat ; bool)! It is important
to study the rules in Figure 2 very carefully to see how this is achieved. In particular note well that
the generic rule of type equivalence plays an essential role. In general the elimination form of any
inductive type—including the empty type, any sum type, and the type of natural numbers—is similarly
general, and relies—for the moment—on the “large” elimination forms to define a family that takes
full advantage of the dependency of the type of the elimination on the expression being eliminated.

It is worth noting that, even for the type of booleans, the equations given in Figure 2 are incomplete
in that there are true equtaions that cannot be proved using these rules. An example of such an equation
is if(𝑀;𝑁;𝑁) ≡ 𝑁 ∶ 𝐴, stating that if both branches of a conditional are the same, then the there is no
need to branch at all. It is possible, though technically rather involved, to prove that this equation is
not derivable from the given rules, and is therefore “missing” from the theory. In the special case of
booleans, or any other finite type, it is possible to rectify this shortcoming by introducing the following
principle of boolean induction for proving equations involving a boolean variable:

bool-ind
Γ ⊢ 𝑀 ∶ bool Γ, 𝑥 ∶ bool ⊢ 𝑁 ∶ 𝐵 Γ, 𝑥 ∶ bool ⊢ 𝑁′ ∶ 𝐵

Γ ⊢ [true ∕𝑥]𝑁 ≡ [true ∕𝑥]𝑁′ ∶ [true ∕𝑥]𝐵 Γ ⊢ [false ∕𝑥]𝑁 ≡ [false ∕𝑥]𝑁′ ∶ [false ∕𝑥]𝐵
Γ ⊢ [𝑀∕𝑥]𝑁 ≡ [𝑀∕𝑥]𝑁′ ∶ [𝑀∕𝑥]𝐵

That is, if two terms, 𝑁 and 𝑁′, with a free variable of boolean type coincide on true and an false, then
they are equal for any boolean. Using this rule equations such as the one mentioned are derivable.
So why not add it to the theory? There are two reasons, one practical, the other conceptual. As a
practical matter the principle of bool-induction involves a bifurcation of proof obligations, one for true,
one for false. When nested inside one another, each such bifurcation introduces another factor of two,
and quickly becomes unmanageable. For this reason, bool-induction is not normally included in the
equations of a type theory. As a conceptual matter, the idea does not scale to other inductive types,
the premier example being the natural numbers, for the simple reason that the inductive hypothesis in
equality proof would require an equational assumption, and these are not available in type theory as
presented here. This question will be reconsidered once “identity types” are considered; for now, let us

3In due course the “large” conditional will be reduced to an ordinary conditional whose branches are elements of a “uni-
verse” of types.

4 September 28, 2024



true

Γ ⊢ true ∶ bool

false

Γ ⊢ false ∶ bool

if
Γ ⊢ 𝑀 ∶ bool Γ, 𝑥 ∶ bool ⊢ 𝐵 type Γ ⊢ 𝑀1 ∶ [true ∕𝑥]𝐵 Γ ⊢ 𝑀2 ∶ [false ∕𝑥]𝐵

Γ ⊢ if(𝑀;𝑀1;𝑀2) ∶ [𝑀∕𝑥]𝐵

if-true
Γ, 𝑥 ∶ bool ⊢ 𝐵 type Γ ⊢ 𝑀1 ∶ [true ∕𝑥]𝐵 Γ ⊢ 𝑀2 ∶ [true ∕𝑥]𝐵

Γ ⊢ if(true ;𝑀1;𝑀2) ≡ 𝑀1 ∶ [true ∕𝑥]𝐵

if-true
Γ, 𝑥 ∶ bool ⊢ 𝐵 type Γ ⊢ 𝑀1 ∶ [true ∕𝑥]𝐵 Γ ⊢ 𝑀2 ∶ [true ∕𝑥]𝐵

Γ ⊢ if(true ;𝑀1;𝑀2) ≡ 𝑀2 ∶ [true ∕𝑥]𝐵

If
Γ ⊢ 𝑀 ∶ bool Γ ⊢ 𝐴1 type Γ ⊢ 𝐴2 type

Γ ⊢ If(𝑀;𝐴1;𝐴2) type

If-true
Γ ⊢ 𝐴1 type Γ ⊢ 𝐴2 type

Γ ⊢ If(true ;𝐴1;𝐴2) ≡ 𝐴1 type

If-false
Γ ⊢ 𝐴1 type Γ ⊢ 𝐴2 type

Γ ⊢ If(false ;𝐴1;𝐴2) ≡ 𝐴2 type

Figure 2: Booleans in Dependent Type Theory (Selected Rules)

simply say that it is not practical to admit induction as ameans of proving equations involving variables
of an inductive type.

Similarly, the function type is generalized to permit the range type of an application to be depend
on the argument value. Thus, the type 𝐴 → 𝐵 becomes the dependent form 𝑥 ∶ 𝐴 → 𝐵, where 𝐵 may
depend on 𝑥 of type 𝐴. Correspondingly, the type of an application substitutes the argument itself into
the result type of the function. Similarly, the product type𝐴×𝐵 becomes the dependent form 𝑥∶𝐴×𝐵,
again with 𝐵 depending on 𝑥 of type 𝐴. Correspondingly, the type of the second projection substitutes
the first projection itself into the type of the second component. Rules for these generalizations are
given in Figures 3 and 4. The dependent function type degenerates into the ordinary function type
in the case that the range type is independent of the argument, and similarly the dependent product
type degenerates into the ordinary product type in the case that the type of the second component does
not depend on the first component. It is possible to consider 𝜂-like principles for both the product
and function types; these are left as an exercise. Transposed into logic the dependent function type
corresponds to universal quantification, a view that is especially natural when the domain type is a
“data” type as opposed to a proposition. Similarly, the dependent product type corresponds to existential
quantification in the full-throated constructive sense in which the witness to the existential is provided
along with the proof that it satisfies the property given as second component. Constructive negation is

5 September 28, 2024



pi
Γ ⊢ 𝐴1 type Γ, 𝑥 ∶ 𝐴1 ⊢ 𝐴2 type

Γ ⊢ 𝑥 ∶ 𝐴1 → 𝐴2 type

lam
Γ ⊢ 𝐴1 type Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ 𝜆(𝑥.𝑀2) ∶ 𝑥 ∶ 𝐴1 → 𝐴2

app
Γ ⊢ 𝑀 ∶ 𝑥 ∶ 𝐴1 → 𝐴2 Γ ⊢ 𝑀1 ∶ 𝐴1

Γ ⊢ ap(𝑀;𝑀1) ∶ [𝑀1∕𝑥]𝐴2

beta
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ap(𝜆(𝑥.𝑀2);𝑀1) ≡ [𝑀1∕𝑥]𝑀2 ∶ [𝑀1∕𝑥]𝐴2

Figure 3: Dependent Function Types (Selected Rules)

sigma
Γ ⊢ 𝐴1 type Γ, 𝑥 ∶ 𝐴1 ⊢ 𝐴2 type

Γ ⊢ 𝑥 ∶ 𝐴1 × 𝐴2 type

pair
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ [𝑀1∕𝑥]𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ∶ 𝑥 ∶ 𝐴1 × 𝐴2

fst
Γ ⊢ 𝑀 ∶ 𝑥 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 1 ∶ 𝐴1

snd
Γ ⊢ 𝑀 ∶ 𝑥 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 2 ∶ [𝑀 ⋅ 1∕𝑥]𝐴2

fst-pair
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ [𝑀1∕𝑥]𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ⋅ 1 ≡ 𝑀1 ∶ 𝐴1

snd-pair
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ [𝑀1∕𝑥]𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ⋅ 2 ≡ 𝑀2 ∶ [𝑀1∕𝑥]𝐴2

Figure 4: Dependent Product Types (Selected Rules)

definable as ¬𝐴 ≝ 𝐴 → void, a transformation of a hypothetical proof of 𝐴 into a proof of falsehood.
Famously, ¬¬𝐴 is weaker than 𝐴 itself, though in the presence of continuation effects the two can be
reconciled.

Exercise 1. Formulate 𝜂-like equations for dependent function and product types.

So far there are no examples of dependent types that would make use of the infrastructure estab-
lished so far. As with conventional textbook logic, the identity (or equality) type provides a fundamental
example.4 The identity type, Id[𝐴](𝑀;𝑁), is axiomatized as the least reflexive binary relation on ele-
ments of type 𝐴, which is presented in Figure 5. Whereas the introductory form is straightforward, the
eliminatory form is infamously obscure. However, all it says is to prove a property 𝐵 of a given proof 𝑃
of the identity of𝑀 and𝑁, it suffices to prove that 𝐵 is true for all possible instances of reflexivity, with
the proof given 𝑥.𝑄. The stated equation specifies that if the proof 𝑃 is, in fact, an instance of reflexivity,
then the induction form is definitionally equivalent to the corresponding instance of 𝑄.

Though beguiling, the difficult with this formulation of equality is that it reduces equality to syn-
tactic identity. In particular, when 𝐴 is a function type 𝐴1 → 𝐴2, it deems two functions 𝐹 and 𝐺 of
this type to be equal exactly when they are identical, up to judgmental equality. But according to this

4Which terminology is used depends on the formulation, of which two main examples are extant.

6 September 28, 2024



id
Γ ⊢ 𝐴 type Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝑁 ∶ 𝐴

Γ ⊢ Id[𝐴](𝑀;𝑁) type

refl
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ refl[𝐴](𝑀) ∶ Id[𝐴](𝑀;𝑀)

ind
Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝑁 ∶ 𝐴 Γ ⊢ 𝑃 ∶ Id[𝐴](𝑀;𝑁)

Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴, 𝑧 ∶ Id[𝐴](𝑥; 𝑦) ⊢ 𝐵 type
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑄 ∶ [𝑥, 𝑥, refl[𝐴](𝑥)∕𝑥, 𝑦, 𝑧]𝐵

Γ ⊢ id-ind[𝐴;𝑥, 𝑦, 𝑧.𝐵](𝑃; 𝑥.𝑄) ∶ [𝑀,𝑁, 𝑃∕𝑥, 𝑦, 𝑧]𝐵

ind-beta
Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴, 𝑧 ∶ Id[𝐴](𝑥; 𝑦) ⊢ 𝐵 type

Γ ⊢ 𝑀 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑄 ∶ [𝑥, 𝑥, refl[𝐴](𝑥)∕𝑥, 𝑦, 𝑧]𝐵
Γ ⊢ id-ind[𝐴;𝑥, 𝑦, 𝑧.𝐵](refl[𝐴](𝑀); 𝑥.𝑄) ≡ [𝑀∕𝑥]𝑄 ∶ [𝑀,𝑀, refl[𝐴](𝑀)∕𝑥, 𝑦, 𝑧]𝐵

Figure 5: Identity Type

criterion the functions5 𝜆(𝑥.2×𝑥) and 𝜆(𝑥+𝑥.), being not identical, or in fact not equal to each other! In
other words it fails to equate two functions on the basis of their having the same input/output behavior,
the standard notion of equality of functions in mathematics.6 This is the infamous problem of function
extensionality in type theory: if the identity type given in Figure 5 is used to express equality, then it
fails to equate two functions with the same input/output behavior unless they are in fact the very same
programs.7

What to do? Inmathematical practice functions are invariably treated extensionally—indeed, in set
theory, they are defined as sets of ordered pairs, an inherently extensional choice. But in a constructive
setting they should also have computational meaning as programs. There are several extant proposals
for how to manage this situation. One is simply to live with it, but that has proved to be a practical
impossibility. Another is to add to type theory an axiom stating that if two functions give equal results
(in the sense of the identity type) on all inputs then they are to be regarded as equal:

funext ∶ 𝑓, 𝑔 ∶ (𝐴 → 𝐵) → (𝑥 ∶ 𝐴 → Id[𝐵](ap(𝑓;𝑥); ap(𝑔;𝑥))) → Id[𝐴 → 𝐵](𝑓; 𝑔)

But what is the elimination rule for the identity type supposed to make of an instance of funext? It’s
only reduction property is for reflexivity, and the elimination rule amounts to the supposition that the
only evidence for an identity is reflexivity. The result is a mess in which even closed elements of type
bool are not simply true and false!

The fundamental problem is that equality is a type-specific notion, whereas the identity type axiom-
atizes it in a type-generic fashion. Functions are only the first symptom of the disorder. For example,
if one were to have quotient types in this setting, then the fact that elements of a type are equivalent

5Spare the informality for the sake of argument.
6Indeed in set theory functions are defined to be certain sets of ordered pairs; the two indicated functions determining the

same set of ordered pairs, they are identical, hence equal. But in a setting where computation matters, the representational
device used in set theory is not available, it is important to have access to the code in order to execute it.

7The problem is not limited to functions, though these are often called out as the central issue; other mathematical objects
fail to be equated properly when equality is formulated in this way.

7 September 28, 2024



must be regarded as evidence that their equivalence classes are identical, and this goes beyond mere
reflexivity. There are several extant reactions to this observation. The most (in)famous, because widely
criticized, though even more widely adopted for practical reasons, is to abandon the identity type in
favor of the equality type (Martin-Löf, 1982), more on which shortly, which permits evidence for the
equality of, say, two functions to suffice for them to be judgmentally equal, and hence interchangeable
in all contexts. An alternative is to define equality on a type-by-type basis, with, say, equality at function
types being defined to be the above-mentioned functionality principle (Altenkirch et al., 2007). A third
approach is to introduce higer-dimensional structure in the form of “thin cubes” that codify evidence
for an equation8 and to introduce a coercion operation that enacts that evidence (Sterling et al., 2022).

All three approaches have their advantages, albeit at the expense of considerable machinery to for-
mulate them precisely. Here we confine ourselves to the first, formulating what is called extensional
type theory. First, to avoid possible confusion, the identity type described above is replaced by the
equality type, Eq[𝐴](𝑀;𝑁), with at most one inhabitant, ⋆, that witnesses the truth of an equation that
is derivable judgmentally. The unicity of this element is imposed explicitly. The critical rule is the elim-
ination rule, called equality reflection, which states that if there is evidence (which at most exists) for an
equation, then it is judged to hold. (See 6 for specifics.) Using equality reflection one may easily prove
that the identity function and the double-negation function on the booleans are judgmentally equal as
elements of type bool → bool.

The chief criticism against this formulation of equality is that by enriching the equality judgment
to be mathematically sensible, it is by the same token rendered undecidable—the equality reflection
rule says that to determine whether two elements of a type are equal, it suffices to search for a proof
of that fact. Consequently, because typing is defined to respect equality of types, and because equality
of indices of a family of types implies equality of their instances, type checking is no longer decidable.
In some circles this is regarded as completely unacceptable and wrong-headed: type checking must be
decidable.9

The other two approaches mentioned above work by encoding the influence of such evidence ex-
plicitly in the type theory, relying on one form or another of coercion to make use of it, retaining some
implicit notion of equality by virtue of computation. In the case of OTT the idea is to defineEq[𝐴](𝑀;𝑁)
by induction on the structure of 𝐴; for example, the isomorphism

Eq[𝐴 → 𝐵](𝐹;𝐺) ≅ 𝑥, 𝑦 ∶ 𝐴 → Eq[𝐴](𝑥;𝑦) → Eq[𝐵](ap(𝐹;𝑥); ap(𝐺;𝑦))

expresses the intended extensional equality of elements of the function type. When Eq[𝐴](𝑀;𝑁) is
taken as a primitive notion as in Figure 6, the foregoing isomorphism expresses a true fact about equality
at function type. Alternatively, one can define the equality type by induction on the structure of𝐴, using
clauses such as the one above to define the meaning of equality on a type-by-type basis. The indicated
isomorphism then provides coercions back and forth that are used tomediate uses of equality in a proof.
Although this summary is accurate, as far as it goes, working it out in detail is rather involved, and is not
a clear “win” over the extensional approach except insofar as one insists on decidability of judgmental
equality.

The last major ingredient in pure dependent type theory is that of a universe, a type whose elements
are types. Absent universes, type theory lacks any form of “polymorphism” such as is found in many
programming languages to express code whose behavior is generic across choices of types—the iden-
tity function on a type being a leading example, it requiring no knowledge of a type to simply return

8Or, more generally, define deformation paths within a type.
9Invariably ignoring the intractible complexity of the decision problem!

8 September 28, 2024



eq-form
Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝑁 ∶ 𝐴
Γ ⊢ Eq[𝐴](𝑀;𝑁) type

eq-intro
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ ⋆ ∶ Eq[𝐴](𝑀;𝑀)

eq-unicity
Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝑁 ∶ 𝐴

Γ ⊢ 𝑃 ∶ Eq[𝐴](𝑀;𝑁) Γ ⊢ 𝑄 ∶ Eq[𝐴](𝑀;𝑁)
Γ ⊢ 𝑃 ≡ 𝑄 ∶ Eq[𝐴](𝑀;𝑁)

eq-reflection
Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝑁 ∶ 𝐴 Γ ⊢ 𝑃 ∶ Eq[𝐴](𝑀;𝑁)

Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴

Figure 6: Equality Type

a given element of it. In their presence the genericity in type can be expressed by an ordinary func-
tion abstraction over a universe of types. Absent universes, special-purpose “large elim’s,” such as the
conditional type expression associated with booleans discussed above, must be included in the type
theory. In their presence, however, the large elimination forms are merely standard elimination forms
whose result is an element of a universe. In a programming context modules are, informally, hybrid
structures consisting of some types and some pieces of code, which may be construed as dependent
products over a universe—and parameterized modules may be construed as dependent functions over
such structures (MacQueen, 1986).

If a universe is to be a type-of-types, why not have just one, the type of all types, including itself?
OriginallyMartin-Löfmade this very proposal, but itwas later shownbyGirard to be inconsistent.10 The
standardmove—since Russell—is to stratify universes into an infinite hierarchy, each contained within
the next, with each universe closed under all type-forming operations, including formation of prior
universes at a given level. Informally, the “union” of all of these universes determines the collection of
all types, but that thought is merely conceptual, rather than codified into type theory itself.

Supporting a hierarchy of universes requires that the judgments 𝐴 type and 𝐴 ≡ 𝐴′ type be gener-
alized to specify a universe level whose structure is dictated by the requirements of predicativity (non-
circularity) in the use of universes. Writing 𝐴 type𝑖 to mean that 𝐴 is a type of level 𝑖, and 𝐴 ≡ 𝐴′ type𝑖
to mean that 𝐴 and 𝐴′ are equivalent types at level 𝑖, the rules governing universes are given in Fig-
ure 7, along with the ambient rules governing the stratified type hierarchy that they induce. It is left
implicit that each level in the type hierarchy is closed under the constructs discussed above, and indeed
the level-free judgments can be interpreted as being schematic in the choice of level. It is a matter of
convention whether the level hierarchy begins with 0 or 1, but to be fully expressive it should extend
indefinitely through any finite level.

Using universes large elimination forms such as If(𝑀;𝐴;𝐵) can be replaced by the “small” form
if(𝑀;𝐴;𝐵) whose range type is some universe 𝒰, achieving a technical economy not available without
universes.

10But doesn’t SystemF quantify over all possible types as inputs? Yes, but it does not permit computing such types as output,
which makes all the difference.

9 September 28, 2024



U-form

Γ ⊢ 𝒰𝑖 type𝑖+1

Cum
Γ ⊢ 𝐴 type𝑖
Γ ⊢ 𝐴 type𝑖+1

Cum-eq
Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖
Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖+1

Resp
Γ ⊢ 𝑀 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖

Γ ⊢ 𝑀 ∶ 𝐴′

Resp-eq
Γ ⊢ 𝑀 .= 𝑀′ ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖

Γ ⊢ 𝑀 .= 𝑀′ ∶ 𝐴′

U-intro
Γ ⊢ 𝐴 type𝑖
Γ ⊢ 𝐴 ∶ 𝒰𝑖

U-into-eq
Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖
Γ ⊢ 𝐴 .= 𝐴′ ∶ 𝒰𝑖

U-elim
Γ ⊢ 𝐴 ∶ 𝒰𝑖

Γ ⊢ 𝐴 type𝑖

U-elim-eq
Γ ⊢ 𝐴 .= 𝐴′ ∶ 𝒰𝑖

Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖

Figure 7: Universes

A related extension of type theory is to postulate a universe of propositions, which are “at most true”
in that an element of a proposition is a proof of its truth, but all such proofs of a given proposition are
equated. This is fundamentally a classical conception of proposition, exactly because it must suppress
the information content of constructive notions of disjunction and existence. Indeed, from its incep-
tion, a characteristic of intuitionististic logic is that proofs of such propositions must determine the
disjunct and exhibit a witness to the truth of an existential. One way to suppress this information is
to work under Gödel’s double negation interpretation of classical logic, whereby disjunction and exis-
tential quantification are formulated as if doubly negated, so that existence has the force “cannot fail
to exist” and disjunction has the force “cannot both be false.” Other, more abstract, formulations are
possible, but for present purposes it is not necessary to develop these notions in detail.

3 Impure Dependent Type Theory

It is possible to incorporate effects into dependent type theory, provided that effectful computations are
segregated from pure expressions. Otherwise, the role of type theory as a logic via the propositions-as-
types principle is lost, and the very idea of dependency becomes questionable when, say, indices of a
family of types have effects. However, it is perfectly feasible to integrate effects using methods inspired
by either the lax or cbpv formulation of effects considered earlier in this course, of which the latter is
developed here.

The judgmental apparatus of the theory is adjusted to account for effects by adding a class of compu-
tation types and their equality, and a class ofmembership and equality judgments for each computation
type:

10 September 28, 2024



susp
Γ ⊢ 𝑋 ctype𝑖
Γ ⊢ U(𝑋) type𝑖

susp-eq
Γ ⊢ 𝑋 ≡ 𝑋′ ctype𝑖

Γ ⊢ U(𝑋) ≡ U(𝑋′) type𝑖

free
Γ ⊢ 𝐴 type𝑖

Γ ⊢ F(𝐴) ctype𝑖

free-eq
Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖

Γ ⊢ F(𝐴) ≡ F(𝐴′) ctype𝑖

pi-comp
Γ ⊢ 𝐴 type Γ, 𝑥 ∶ 𝐴 ⊢ 𝑋 ctype

Γ ⊢ 𝑥 ∶ 𝐴 ⇀ 𝑋 ctype

Figure 8: Computation Types (Selected Rules)

1. Γ ⊢ 𝑋 ctype, stating that 𝑋 is a computation type in context Γ;

2. Γ ⊢ 𝑋 ≡ 𝑋′ ctype, stating 𝑋 and 𝑋′ are equal computation types in Γ;

3. Γ ⊢ 𝐶 ∶ 𝑋, stating that 𝐶 is a computation of type 𝑋 in Γ;

4. Γ ⊢ 𝐶 ≡ 𝐶′ ∶ 𝑋, stating that 𝐶 and 𝐶′ are equal computations of type 𝑋 in Γ.

Computation types must be similarly stratified to value types, with the stratification induced by the free
type constructor, which includes the latter among the former.

Each level in the computation type hierarchy is closed under the constructs given inHarper (2024a),
instantiated by computations as inHarper (2024c). The suspension and free type constructors are added
at each level of the appropriate value and computation typehierarchy, and the partial (effectful) function
type may be generalized to dependent form. See Figure 8 for a selection of rules governing these exten-
sions in isolation from any “actual” effects. For the later, the formulations given in Harper (2024c) may
be readily adapted to the computation level in the dependent setting, providing a desired integration
of effects with proofs that retains the interpretation of propositions-as-types, but also permits defining
and verifying properties of programs that make use of effects such as partiality, continuations, and state
that are essential for “real world” programming.

In the extended setting it is natural to consider a universe of computation types, itself a value type,
to permit similar forms of quantification over computation types.

Exercise 2. Extend the value types to include a predicative hierarchy of universes of computation types,
𝒳⟨𝑖⟩, whose elements are computation types. How does this universe relate to the universe hierarchy,𝒰⟨𝑖⟩,
of value types?

For the case of imperative programming with assignables, the computation level of type theory is a
natural setting for enriching the languagewithHoare triple typesNanevski et al. (2006); Nanevski (2024)
that express pre- and post-conditions for the execution of such programs. The Iris Project Project (2024)
is a richly developed system for verifying (concurrent) imperative programs in this setting.

11 September 28, 2024



4 Computational Semantics (Summary)

Following Martin-Löf (1982); Allen (1987); Angiuli (2019) a computational semantics for dependent
type theory may be defined as follows:11

1. Fix a deterministic transition system 𝑈 ↦,→ 𝑈′ for closed terms 𝑈 and 𝑈′, which are used to

interpret the constructs of type theory. Final states are values, defined by the judgment 𝑈 val.
For the pure fragment of type theory it is customary to consider a lazy dynamics in which values
are determined by their outermost form, leaving sequencing to the impure fragment, but it is
also possible to consider instead an eager formulation. Variables are considered to range over
closed terms, but may in some circumstances limited to values without major alteration of the
development.

2. A type system defines, for each predicativity level 𝑖 ≥ 0, a binary relation𝐴 .=𝑖 𝐴′, called exact type
equality (at level 𝑖), and, for each𝐴 such that𝐴 .=𝑖 𝐴, a binary relation𝑀

.=𝑖 𝑀′ ∈ 𝐴, called exact
equality of elements𝑀,𝑀′ of type𝐴 (at level 𝑖). All of these relations are required to be symmetric
and transitive, and closed under head expansion in all arguments. Moreover, if 𝐴 .=𝑖 𝐴′, then
𝑀 .=𝑖 𝑀′ ∈ 𝐴 iff𝑀 .=𝑖 𝑀′ ∈ 𝐴′, and, for each 𝑖 ≥ 0, if 𝐴 .=𝑖 𝐴′, then 𝐴 .=𝑖+1 𝐴′ and, for 𝐴 .=𝑖 𝐴′,
𝑀 .=𝑖 𝑀′ ∈ 𝐴 iff𝑀 .=𝑖+1 𝑀′ ∈ 𝐴.

3. For a type system given by the above relations, equality of contexts and of substitutions classified
by valid context is defined as follows.

(a) 𝜀 .=𝑖 𝜀, and ∅
.=𝑖 ∅ ∈ 𝜀.

(b) 𝑥 ∶ 𝐴, Γ .=𝑖 𝑥 ∶ 𝐴′, Γ′ iff 𝐴 .=𝑖 𝐴′ and, if 𝑀 .=𝑖 𝑀′ ∈ 𝐴, then [𝑀∕𝑥]Γ .=𝑖 [𝑀′∕𝑥]Γ′, and
𝑥 → 𝑀 , 𝛾 .=𝑖 𝑥 → 𝑀′ , 𝛾′ ∈ 𝑥 ∶ 𝐴, Γ iff𝑀 .=𝑖 𝑀′ ∈ 𝐴 and 𝛾 .=𝑖 𝛾′ ∈ [𝑀∕𝑥]Γ.

4. The hypothetical judgments Γ ≫𝑖 𝐴
.= 𝐴′ and Γ ≫𝑖 𝑀

.= 𝑀′ ∈ 𝐴 are defined for semantically
valid contexts and semantically valid substitutions as follows:

(a) Γ ≫𝑖 𝐴
.= 𝐴′ iff 𝛾 .=𝑖 𝛾′ ∈ Γ implies 𝛾̂(𝐴) .=𝑖 𝛾′(𝐴′).

(b) Γ ≫𝑖 𝑀
.= 𝑀′ ∈ 𝐴, for Γ ≫𝑖 𝐴

.= 𝐴, iff 𝛾 .=𝑖 𝛾′ ∈ Γ implies 𝛾̂(𝑀) .=𝑖 𝛾′(𝑀′) ∈ 𝛾̂(𝐴)

Observe the dependency structure that ensures that an indexing type is defined prior to its use to define
a family of types or of their elements, and that the predicativity levels are defined in order of level,
requiring that these levels be cumulative in that one is contained in the next.

It then remains to define a variety of types and their elements with which a given type system is con-
structed. The following clauses define the intended definitions of exact equality at a few representative
types; see Angiuli (2019) for a full development of the definitions and their properties.

• Universes internalize typing at each predicativity level:

1. If 𝐴,𝐴′ ⇓ 𝒰⟨𝑖⟩, then 𝐴
.=𝑖+1 𝐴′.

2. If 𝐵 ⇓ 𝒰⟨𝑖⟩, then 𝐴
.=𝑖+1 𝐴′ ∈ 𝐵 iff 𝐴 .=𝑖 𝐴′.

• Equality types internalize equality:
11Please Angiuli (2019) for a full development.

12 September 28, 2024



1. If 𝐴 ⇓ Eq[𝐵](𝑀;𝑀′) and 𝐴′ ⇓ Eq[𝐵′](𝑁;𝑁′), then 𝐴 .=𝑖 𝐴′ iff 𝐵 .=𝑖 𝐵′, 𝑀
.=𝑖 𝑁 ∈ 𝐵, and

𝑀′ .=𝑖 𝑁′ ∈ 𝐵.
2. If 𝐴 ⇓ Eq[𝐵](𝑁;𝑁′), where 𝐴 .=𝑖 𝐴, then𝑀

.=𝑖 𝑀′ ∈ 𝐴 iff𝑀,𝑀′ ⇓ ⋆ and 𝑁 .=𝑖 𝑁′ ∈ 𝐵.

• Booleans are bits:

1. If 𝐴,𝐴′ ⇓ bool, then 𝐴 .=𝑖 𝐴′.
2. If 𝐴 ⇓ bool, then𝑀 .=𝑖 𝑀′ ∈ 𝐴 iff𝑀,𝑀′ ⇓ true or𝑀,𝑀′ ⇓ false.

• Dependent function types:

1. If𝐴 ⇓ 𝑥 ∶𝐴1 → 𝐴2 and𝐴′ ⇓ 𝑥 ∶𝐴′
1 → 𝐴′

2, then𝐴
.=𝑖 𝐴′ iff𝐴1

.=𝑖 𝐴′
1 and, if𝑀

.=𝑖 𝑀′ ∈ 𝐴1,
then [𝑀∕𝑥]𝐴2

.=𝑖 [𝑀′∕𝑥]𝐴′
2.

2. If 𝐴 ⇓ 𝑥 ∶ 𝐴1 → 𝐴2 where 𝐴
.=𝑖 𝐴, then𝑀

.=𝑖 𝑀′ ∈ 𝐴 iff𝑀 ⇓ 𝜆(𝑥.𝑀2),𝑀′ ⇓ 𝜆(𝑥.𝑀′
2) and

𝑀1
.=𝑖 𝑀′

1 ∈ 𝐴1 implies [𝑀1∕𝑥]𝑀2
.=𝑖 [𝑀′

1∕𝑥]𝑀
′
2 ∈ [𝑀1∕𝑥]𝐴2.

With these formulations of exact equality in hand, it is a lengthy exercise to verify the validity of the
derivable typing judgments according to the formulation given earlier.

Theorem 1 (FTLR). 1. If Γ ⊢ 𝐴 type𝑖 , then Γ ≫𝑖 𝐴
.= 𝐴, and if Γ ⊢ 𝐴 ≡ 𝐴′ type𝑖 , then Γ ≫𝑖 𝐴

.= 𝐴′.

2. If Γ ⊢ 𝑀 ∶ 𝐴, where Γ ≫𝑖 𝐴
.= 𝐴, then Γ ≫𝑖 𝑀

.= 𝑀 ∈ 𝐴, and if Γ ⊢ 𝑀 .= 𝑀′ ∶ 𝐴, then
Γ ≫𝑖 𝐴

.= 𝐴 and Γ ≫𝑖 𝑀
.= 𝑀′ ∈ 𝐴.

Exercise 3. Check that the semantic equality type may be used to interpret the identity type proposed by
Martin-Löf. How is the elimination form justified in this setting?

Exercise 4 (Thought Question). Exercise 3 interprets the identity type as exact equality of its closed in-
stances, an extensional interpretation. How might one define a semantics for intensional type theory that
interprets the identity type as definitional equivalence? Hint: Such a definition must consider open terms,
because definitional equivalence is defined as a congruence relating open terms.

Accounting for effects as described in Harper (2024c) is relatively straightforward, provided that the
semantics maintains the distinction between computations and expressions, linked by the modalities.
There can be no general format covering all possible combinations of effects; instead, each situation
is unto itself, requiring its own notion of the dynamics of computations, which is then used to give
meaning to the computation types and the suspension modality, using the aforementioned notes as a
guide.

The suspension type is defined in the evident manner:

1. If 𝐴 ⇓ U(𝑋) and 𝐴′ ⇓ U(𝑋′), then 𝐴 .=𝑖 𝐴′ iff 𝑋 .=𝑖 𝑋′.

2. If𝐴 ⇓ U(𝑋), where𝑋 .=𝑖 𝑋, then𝑀
.=𝑖 𝑀′ ∈ 𝐴 iff𝑀 ⇓ susp(𝐶),𝑀′ ⇓ susp(𝐶′), and𝐶 .=𝑖 𝐶′ ∈ 𝑋.

The partial dependent function type is defined similarly to the dependent function type, albeit with the
range being a computation type.

1. If 𝐴 ⇓ 𝑥 ∶ 𝐴1 ⇀ 𝑋2 and 𝐴′ ⇓ 𝑥 ∶ 𝐴′
1 ⇀ 𝐴′

2, then 𝐴
.=𝑖 𝐴′ iff 𝐴1

.=𝑖 𝐴′
1 and if𝑀1

.=𝑖 𝑀′
1 ∈ 𝐴1,

then [𝑀1∕𝑥]𝐴2
.=𝑖 [𝑀′

1∕𝑥]𝐴
′
2.

13 September 28, 2024



2. If 𝐴 ⇓ 𝑥 ∶ 𝐴1 ⇀ 𝑋2, where 𝐴
.=𝑖 𝐴, then 𝜆(𝑥.𝐶2)

.=𝑖 𝜆(𝑥.𝐶′2) ∈ 𝐴 iff 𝑀1
.=𝑖 𝑀′

1 ∈ 𝐴1 implies
[𝑀1∕𝑥]𝐶1

.=𝑖 [𝑀′
1∕𝑥]𝐶

′
2 ∈ [𝑀1∕𝑥]𝐴2

For partial computations the requirement is that the termination behavior be the same, and that termi-
nating computations yield exactly equal results.

1. If 𝐴 ⇓ F(𝐵) and 𝐴′ ⇓ F(𝐵′), then 𝐴 .=𝑖 𝐴′ iff 𝐵 .=𝑖 𝐵′.

2. If 𝐴 ⇓ F(𝐵), where 𝐴 .=𝑖 𝐴, then 𝐶 .=𝑖 𝐶′ ∈ 𝐴 iff 𝐶 ⇓ ret(𝑀) implies 𝐶′ ⇓ ret(𝑀′) and
𝑀 .=𝑖 𝑀′ ∈ 𝐵, and 𝐶′ ⇓ ret(𝑀′) implies 𝐶 ⇓ ret[𝜏](𝑀) and𝑀 .=𝑖 𝑀′ ∈ 𝐵.

It is important that the possibility of non-termination be confined to computations of free type so that
the crucial propositions-as-types correspondence is not disrupted. If, say, non-terminating terms were
permitted, then every type would be inhabited, and hence “true” when regarded as a proposition.

Exercise 5. Extend Theorem 1 to account for partial computations on the basis of the characterizations
of the computation types given above.

Exercise 6. Show that the binary product of computation types,𝑋1×𝑋2, is definable from the partial func-
tion type using the boolean value type. Show that the expected 𝛽-like equational laws are derivable under
this definition. Hint: you will need to make use of a “large elimination” form for booleans mapping into
computation types.

Exercise 7. Extend the semantics of value types to include a universe of computation types as described
in Exercise 2.

Finally, it is possible to account for phase distinctions using the samemethods as developed inHarper
(2024b), namely to treat phases as Kripke worlds ordered logical entailment for exact equality. For ex-
ample, to account for cost, the extensional phase, EXT, indicates that step-counting is to be suppressed,
allowing comparison of algorithms irrespective of cost. In a dependent setting with equality types, this
means that, extensionally, one may prove that insertion sort and merge sort are equal as functions on
sequences, perhaps by showing that both are equal to an algorithmically “magical” function that, given
a sequence, returns the sequence in sorted order. Outside of the extensional phase the cost accounting
matters, allowing internalized verifications of both cost and behavior in type theory (Niu et al., 2022).

References

Stuart Frazier Allen. Anon-type-theoretic semantics for type-theoretic language. phd, Cornell University,
USA, 1987. AAI8725748.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now! In Pro-
ceedings of the 2007 workshop on Programming languages meets program verification, pages 57–68,
Freiburg Germany, October 2007. ACM. ISBN 978-1-59593-677-6. doi: 10.1145/1292597.1292608.
URL https://dl.acm.org/doi/10.1145/1292597.1292608.

CarloAngiuli. Computational Semantics of CartesianCubical Type Theory. PhD thesis, CarnegieMellon
University, Pittsburgh, PA, September 2019.

14 September 28, 2024



Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, Cam-
bridge, England, Second edition, 2016.

Robert Harper. Call-by-push-value. Unpublished lecture note., January 2024a. URL https://www.cs.
cmu.edu/~rwh/courses/atpl/pdfs/cbpv.pdf.

Robert Harper. Cost effects and phases. Unpublished lecture note., January 2024b. URL https://www.
cs.cmu.edu/~rwh/courses/atpl/pdfs/cost.pdf.

Robert Harper. Effects in call-by-push-value. Unpublished lecture note., March 2024c. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/pdfs/effects.pdf.

David B. MacQueen. Using dependent types to express modular structure. In Proceedings of the 13th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages - POPL ’86, pages 277–
286, St. Petersburg Beach, Florida, 1986. ACM Press. doi: 10.1145/512644.512670. URL http://
portal.acm.org/citation.cfm?doid=512644.512670.

Per Martin-Löf. Constructive Mathematics and Computer Programming. In Logic, Methodology and
Philosophy of Science VI, volume 104 of Studies in Logic and Foundations of Mathematics, pages 153–
175. Elsevier, 1982. URL https://doi.org/10.1016/S0049-237X(09)70189-2.

Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Number 1 in Studies in proof theory
Lecture notes. Bibliopolis, Napoli, 1984. ISBN 978-88-7088-105-9.

Aleks Nanevski. HTT: Hoare Type Theory, 2024. URL https://software.imdea.org/~aleks/htt/.

Aleksandar Nanevski, GregMorrisett, and Lars Birkedal. Polymorphism and Separation in Hoare Type
Theory. 2006.

Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A cost-aware logical framework.
Proceedings of the ACM on Programming Languages, 6(POPL):1–31, January 2022. ISSN 2475-1421.
doi: 10.1145/3498670. URL https://dl.acm.org/doi/10.1145/3498670.

Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Lof’s Type Theory, 1990.
URL https://www.cse.chalmers.se/research/group/logic/book/.

The Iris Project. The Iris Project, 2024. URL https://iris-project.org.

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. A Cubical Language for Bishop Sets. Logical
Methods in Computer Science, Volume 18, Issue 1:9069, March 2022. ISSN 1860-5974. doi: 10.46298/
lmcs-18(1:43)2022. URL https://lmcs.episciences.org/9069.

15 September 28, 2024


