
How to (Re)Invent Girard’s Method*

Robert Harper

Spring, 2021

1 Introduction

Harper (2024) shows how to reinvent Tait’s Method, the starting point for the general theory of logical
relations, a central method in type theory. The extension to account for polymorphism is not obvious,
the difficulty being that a form of circularity, called impredicativity, is inherent in the notion of type
quantification. That obstacle was overcome by Girard using what is now known as (wait for it)Girard’s
Method. The purpose of this note is to show how one might reinvent his method by considering again
the termination of head reduction for System F of variable types.

2 Polymorphic Types

The syntax of System F is given by the following grammar:

𝐴 ∶∶= 𝑋 ∣ ans ∣ 𝐴1 → 𝐴2 ∣ ∀(𝑋.𝐴)
𝑀 ∶∶= 𝑥 ∣ yes ∣ no ∣ 𝜆(𝑥.𝑀) ∣ ap(𝑀1;𝑀2) ∣ Λ(𝑋.𝑀) ∣ Ap(𝑀;𝐴)

Here 𝑋 is a type variable and 𝑥 is a term variable, the former ranging over types, the latter over terms of
a type.

A type variable context, ∆, is a finite set of declarations𝑋1 type,…𝑋𝑛 type, and a term variable context
is a finite set of declarations 𝑥1 ∶𝐴1,… , 𝑥𝑛 ∶𝐴𝑛, with no variable declared more than once. The statics
is given by two judgments, ∆ ⊢ 𝐴 type, stating that 𝐴 is a well-formed type relative to assumptions ∆,
and Γ ⊢∆ 𝑀 ∶ 𝐴, stating that𝑀 is of type 𝐴 under assumptions ∆ and Γ. The inductive definitions of
these judgments are given in Figure 1. These definitions are arranged so that contraction and exchange
(in either context) is implicitly admissible by virtue of considering sets of assumptions, and weakening
and substitution may be shown to be admissible by induction on derivations.

Lemma 1. The following substitution and weakening principles are admissible:

1. If ∆ ⊢ 𝐴 type, then ∆, 𝑋 type ⊢ 𝐴 type.

2. If Γ ⊢∆ 𝑁 ∶ 𝐵, then Γ ⊢∆,𝑋 type 𝑁 ∶ 𝐵.

3. If ∆ ⊢ 𝐴 type and ∆, 𝑋 type ⊢ 𝐵 type, then ∆ ⊢ [𝐴∕𝑋]𝐵 type.

*Copyright © Robert Harper. All Rights Reserved.

1



var

Γ, 𝑥 ∶ 𝐴 ⊢∆ 𝑥 ∶ 𝐴

yes

Γ ⊢∆ yes ∶ ans

no

Γ ⊢∆ no ∶ ans

lam
Γ, 𝑥 ∶ 𝐴1 ⊢∆ 𝑀2 ∶ 𝐴2

Γ ⊢∆ 𝜆(𝑥.𝑀2) ∶ 𝐴1 → 𝐴2

app
Γ ⊢∆ 𝑀1 ∶ 𝐴2 → 𝐴 Γ ⊢∆ 𝑀2 ∶ 𝐴2

Γ ⊢∆ ap(𝑀1;𝑀2) ∶ 𝐴

Lam
Γ ⊢∆,𝑋 type 𝑀 ∶ 𝐴

Γ ⊢∆ Λ(𝑋.𝑀) ∶ ∀(𝑋.𝐴)

App
Γ ⊢∆ 𝑀 ∶ ∀(𝑋.𝐵) ∆ ⊢ 𝐴 type

Γ ⊢∆ Ap(𝑀;𝐴) ∶ [𝐴∕𝑋]𝐵

Figure 1: Statics of System F

yes

yes final

no

no final

app
𝑀1 ↦,→ 𝑀′

1

ap(𝑀1;𝑀2) ↦,→ ap(𝑀′
1;𝑀2)

app-lam

ap(𝜆(𝑥.𝑀);𝑀2) ↦,→ [𝑀2∕𝑥]𝑀

App
𝑀 ↦,→ 𝑀′

Ap(𝑀;𝐴) ↦,→ Ap(𝑀′;𝐴)

App-Lam

Ap(Λ(𝑋.𝑀);𝐴) ↦,→ [𝐴∕𝑋]𝑀

Figure 2: Dynamics of System F

4. If ∆ ⊢ 𝐴 type and Γ ⊢∆,𝑋 type 𝑁 ∶ 𝐵, then [𝐴∕𝑋]Γ ⊢∆ [𝐴∕𝑋]𝑁 ∶ [𝐴∕𝑋]𝐵.

5. If Γ ⊢∆ 𝑀 ∶ 𝐴 and Γ, 𝑥 ∶ 𝐴 ⊢∆ 𝑁 ∶ 𝐵, then Γ ⊢∆ [𝑀∕𝑥]𝑁 ∶ 𝐵.

The dynamics is inductively defined by the rules in Figure 2. It defines weak head reduction for
closed terms (those with neither free type variables nor free ordinary variables). The reason to include
the special base type ans of answers is to provide a directly observable notion of the outcome of a com-
putation, either yes or no, which can be interpreted as an accept/reject signal. Complete programs are
therefore defined to be closed terms of type ans; from amachine-theoretic viewpoint complete programs
consist of the program per se together with its input (encoded as terms). Note well that types are never
evaluated or simplified in any way during execution!

Lemma 2 (Preservation). If ⊢∅ 𝑀 ∶ 𝐴 and𝑀 ↦,→ 𝑀′, then ⊢∅ 𝑀′ ∶ 𝐴.

3 Termination Proof

The most obvious strategy for proving termination is as a direct generalization of Tait’s Method for the
simply typed 𝜆-calculus. Because type variables range over types, it is natural to consider all closed

2 September 28, 2024



instances of types by substitution of closed types for type variables as follows:

Theorem 3. If Γ ⊢∆ 𝑀 ∶ 𝐴, then for any closing substitution 𝛿 ∶ ∆ for type variables and any hereditarily
terminating closing substitution 𝛾 ∶ Γ for term variables, the instance �̂�(�̂�(𝑀)) is hereditarily terminating
of type �̂�(𝐴).

Assuming that hereditary termination at type ans implies termination, the desired result of termi-
nation of complete programs follows directly.

This is well and good, provided that an appropriate generalization of hereditary termination can be
given that accounts for polymorphic types. The obvious definition builds on the same principle that
type variables range over closed types. Thus, a closed term𝑀 is hereditarily terminating at type ∀(𝑋.𝐵)
iff Ap(𝑀;𝐴) is hereditarily terminating at type [𝐴∕𝑋]𝐵 for every closed type 𝐴. This seems natural
enough, and would suffice for the above theorem, if only hereditary termination were properly defined
by this criterion.

It is not.
The trouble is that in the case of Tait’s Method hereditary termination at a type 𝐴 is defined by

induction on the structure of 𝐴. And here’s the rub: a substitution instance [𝐴∕𝑋]𝐵 of a type 𝐵 with a
free type variable 𝑋 in it can be larger (in any known sense) than 𝐵 itself, and hence than ∀(𝑋.𝐵). For
example, if 𝐴 = ∀(𝑋.𝑋 → 𝑋), then [𝐴∕𝑋](𝑋 → 𝑋) = 𝐴 → 𝐴, which is strictly larger than 𝐴. Not
only is it structurally larger, but the instance also has more occurrences of the type quantifier than does
the original term, in contrast to the first-order quantifier whose instances have fewer, even though they
may be larger in size.

What to do?
One move is to engage in what Lakatos (2015) calls “monster barring,” which is to rule out the

counterexamples. The standardmethod is to introduce a formof type stratification inwhich simple types
do not involve any quantification, whereas polytypes extend simple types to include quantified types.
The trick is then to demand that type variables range only over simple types, so that [𝐴∕𝑋]𝐵 is smaller
than 𝐵 whenever 𝐴 is simple, for the simple reason that the instance has one fewer type quantifier.
The language with this restriction is said to be predicative, rather than impredicative. Restricting to the
predicative fragment is enough to salvage Tait’s Method more or less intact.

But it does so at the expense of reducing the expressive power of the language. For example, no
longer are type constructors, such as product types, definable by their universal properties—exactly
because the universal conditions demand for their force on quantification over all other types with
specified structure, rather than just the small ones. On the other hand, who says these types ought to
be defined by their universal properties, rather than just being characterized by them? Well, no one.
And indeed the whole of dependent type theory is based on embracing predicativity, and defining all
type constructors independently, and then showing that their universal properties hold. After all, even
the impredicative encodings do not achieve universality: the unicity conditions must be imposed by
other means, so nothing is truly lost by avoiding the encodings.

Be that as it may, let us press on and consider an alternative to monster barring, namely proving
a much stronger property of terms that implies the desired syntactic criterion needed for the main
result. The trick is to think of the property “𝑀 is hereditarily terminating at type 𝐴” as a specification
of the behavior of𝑀 under head reduction. Tait’s Method breaks the termination proof into two parts:
(1) assigning a specification to a type by structural induction, and (2) showing that a well-typed term
behaves according to the induced specification.

Although types induce specifications, there is nothing to say that the only specifications are those
induced by types. For example, in the presence of a type of natural numbers, the type nat → nat induces

3 September 28, 2024



the specification “when applied to a computation of a nat, yields a computation of a nat.” And every
termof this type satisfies that specification. But onemay also consider a specification of functions of this
type such as “when applied to a computation of a prime, yields a computation of a perfect square.” This
property is well-defined, and some programs even satisfy it, but it is not a specification that is induced
by the static type discipline. In fact there are uncountably many such specifications laying around in
the world, but only countably many of them are induced by types.

Girard’s Method exploits this discrepancy.
It is fine to say that types induce specifications of behavior, but what is a behavioral specification in

general? The answer, in the present context, is any property that is closed under head expansion, which
is to say that if𝑀 satisfies the property, and𝑀′ ↦,→ 𝑀, then𝑀′ does as well. Although closure under

reverse execution may seem like an odd requirement, a moment’s thought reveals that it is simply the
expression of a natural condition on specifications, namely that they are determined by how a program
behaves, rather than on the details of what is is. For example, the property of a term stating that it
“contains three type quantifiers” is not closed under head expansion, and so is not a valid specification.
On the other hand, the prime-to-square property is a valid specification, because it speaks only of how
a function acts when applied, rather than what it is.

The crucial movemade by Girard is to enlarge the range of significance of a type variable from being
all closed type expressions, which is circular, to all possible behavioral specifications, which is not. The
remarks made earlier about the size of a substitution instance of a type being larger than the type is
irrelevant to Girard’s method. It achieves this by instead accepting that the collection of “all possible
specifications” is well-defined. This might seem innocuous to someone used to accepting all sorts of set
constructions, but it is well to understandwhy itmight be considered dubious. Because the termination
of System F implies the consistency of a strong logical system called second-order arithmetic, Gödel’s
Theorem tells us that the termination proof must use methods that go beyond mere behavioral speci-
fications. And, indeed, Girard’s Method does just this, by postulating a set of all possible specifications,
which in the jargon of the field are called type candidates.

It is now possible to outline the technical means by which Girard proves termination for System F.1

A candidate for a closed type𝐴 is a set of closed terms of type𝐴 that is closed under head expansion.
For each type𝐴 it is essential to postulate that the set of all candidates for𝐴 is well-defined (even though
it is more dubious than the termination property to be proved). Thus, hereditary termination at an type
𝐴 with free type variables must be defined relative to an assignment of type candidates to those type
variables.

More precisely, a type substitution 𝛿 for ∆, written 𝛿 ∶ ∆, is an assignment of a closed type to each
type variable declared in ∆. A candidate assignment 𝜂 for 𝛿 ∶ ∆, written 𝜂 ⊆ 𝛿 ∶ ∆, is an assignment of
a candidate for type 𝛿(𝑋) to each type variable 𝑋 declared in ∆. For ∆ ⊢ 𝐴 type, 𝛿 ∶ ∆, and𝑀 ∶ �̂�(𝐴),
define𝑀 to be hereditarily terminating at type 𝐴 relative to 𝜂 ⊆ 𝛿 ∶ ∆ by induction on the structure of
𝐴 as follows:

1. If 𝐴 = ans, then𝑀 is hereditarily terminating at type 𝐴 (rel. 𝜂 ⊆ 𝛿 ∶ ∆) iff𝑀 terminates (with
either yes or no).

2. If 𝐴 = 𝑋, a type variable, then 𝑀 is hereditarily terminating at type 𝐴 (rel. 𝜂 ⊆ 𝛿 ∶ ∆) iff
𝑀 ∈ 𝜂(𝑋) ⊆ 𝛿(𝑋), the candidate assigned to 𝑋.

1As with Tait’s Method, his actual proof was of strong normalization, but termination of closed terms under weak head
reduction is enough to lay bare the critical moves in the game.

4 September 28, 2024



3. If𝐴 = 𝐴1 → 𝐴2, then𝑀 is hereditarily terminating at type𝐴 (rel. 𝜂 ⊆ 𝛿 ∶ ∆) iff for all𝑀1 hered-
itarily terminating at 𝐴1 (rel. 𝜂 ⊆ 𝛿 ∶ ∆), the application ap(𝑀;𝑀1) is hereditarily terminating at
𝐴2 (rel. 𝜂 ⊆ 𝛿 ∶ ∆).

4. If 𝐴 = ∀(𝑋.𝐵), then𝑀 is hereditarily terminating at type 𝐴 (rel. 𝜂 ⊆ 𝛿 ∶ ∆) iff for all closed types
𝐶 and all candidates 𝒞 for type 𝐶, the application Ap(𝑀;𝐶) is hereditarily terminating at type 𝐵
(rel. 𝜂[𝑋 ↦,→ 𝒞] ⊆ 𝛿[𝑋 ↦,→ 𝐶] ∶ ∆, 𝑋 type).

Thus the candidate assignment “cuts the knot” by providing an abstract meaning for type variables con-
sistent with their concrete meaning given by a type substitution. Type quantification imposes a strong
requirement that a term of this type must be hereditarily terminating for any candidate assignment for
the quantified type variable, not just the canonical one associated to a given instance.

Lemma 4. The property of hereditary termination at type 𝐴 relative to a candidate assignment 𝜂 is well-
defined, and is itself a candidate for 𝐴 relative to 𝜂.

Proof. Hereditary termination is defined by induction on the structure of types. Because it speaks only
of the behavior of terms under head reduction, hereditary termination is itself easily seen to be closed
under head expansion, and so is among the candidates considered for interpretation of a type variable.

With this construction in hand, it is straightforward to prove, a la Tait, that every instance of every
term inhabits the candidate associated to its type, relative to an assignment of candidates to the free
type variables.

For ∆ ⊢ 𝐴 type, 𝛿 ∶ ∆, and 𝜂 ⊆ 𝛿 ∶ ∆, write𝑀 ∈ 𝐴 [𝜂] to mean that𝑀 is hereditarily terminating
at type 𝐴 (rel. 𝜂 ⊆ 𝛿 ∶ ∆). Define 𝛾 ∶ Γ to mean that 𝛾 is a substitution of closed terms of type declared
Γ, and define 𝛾 ∈ Γ [𝜂], where 𝛾 ∶ Γ, to mean that for every variable in Γ of type 𝐴, if 𝛾(𝑥) = 𝑀, then
𝑀 ∈ 𝐴 [𝜂]. Finally, define Γ ≫∆ 𝑀 ∈ 𝐴 to mean that if 𝛿 ∶ ∆, 𝜂 ⊆ 𝛿 ∶ ∆, and 𝛾 ∈ Γ [𝜂], then
�̂�(�̂�(𝑀)) ∈ 𝐴 [𝜂].

Theorem 5 (Girard). If Γ ⊢∆ 𝑀 ∶ 𝐴, then Γ≫∆ 𝑀 ∈ 𝐴.

The notation is a bit daunting, but the theorem merely states that a well-typed term satisfies the
behavioral property of hereditary termination. It is an immediate corollary that if𝑀 ∶ ans is a complete
program, then either𝑀 ↦,→

∗
yes or𝑀 ↦,→

∗
no, as was to be proved.

4 Proof of Main Theorem

Lemma 6 (Compositionality). Suppose ∆, 𝑋 type ⊢ 𝐵 type and ∆ ⊢ 𝐴 type. Then

𝑀 ∈ [𝐴∕𝑋]𝐵 [𝜂] iff𝑀 ∈ 𝐵 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]]

for any candidate assignment 𝜂.

Proof. By induction on the structure of 𝐵.

1. 𝐵 = 𝑋: Then [𝐴∕𝑋]𝐵 = 𝐴.
By definition𝑀 ∈ [𝐴∕𝑋]𝐵 [𝜂] iff𝑀 ∈ 𝐴 [𝜂] iff𝑀 ∈ 𝑋 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]].

5 September 28, 2024



2. 𝐵 = 𝑌 ≠ 𝑋: Then [𝐴∕𝑋]𝐵 = 𝐵.
By definition𝑀 ∈ [𝐴∕𝑋]𝐵 [𝜂] iff𝑀 ∈ 𝐵 [𝜂] iff𝑀 ∈ 𝐵 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]].

3. 𝐵 = 𝐵1 → 𝐵2: Then [𝐴∕𝑋]𝐵 = [𝐴∕𝑋]𝐵1 → [𝐴∕𝑋]𝐵2.
Suppose𝑀 ∈ [𝐴∕𝑋]𝐵 [𝜂] so as to show𝑀 ∈ 𝐵 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]].
To this end suppose that

𝑀1 ∈ 𝐵1 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]],

and show
ap(𝑀;𝑀1) ∈ 𝐵2 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]].

By induction 𝑀1 ∈ [𝐴∕𝑋]𝐵1 [𝜂], and so by assumption ap(𝑀;𝑀1) ∈ [𝐴∕𝑋]𝐵2 [𝜂]. But then by
induction ap(𝑀;𝑀1) ∈ 𝐵2 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]], as required.
The converse is proved similarly.

4. 𝐵 = ∀(𝑌.𝐵′) with 𝑌 ≠ 𝑋: Then [𝐴∕𝑋]𝐵 = ∀(𝑌.[𝐴∕𝑋]𝐵′), because 𝐴 is closed.

Suppose𝑀 ∈ [𝐴∕𝑋]𝐵 [𝜂] so as to show𝑀 ∈ 𝐵 [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]]]. Suppose 𝐶 type and let 𝒞 be
a candidate for 𝐶, it is enough to show

Ap(𝑀;𝐶) ∈ 𝐵′ [𝜂[𝑋 ↦,→ − ∈ 𝐴 [𝜂]][𝑌 ↦,→ 𝒞]].

By assumption and by the definition of hereditary termination at polymorphic type

Ap(𝑀;𝐶) ∈ [𝐴∕𝑋]𝐵′ [𝜂[𝑌 ↦,→ 𝒞]].

But then by induction

Ap(𝑀;𝐶) ∈ 𝐵′ [𝜂[𝑌 ↦,→ 𝒞][𝑋 ↦,→ − ∈ 𝐴 [𝜂[𝑌 ↦,→ 𝒞]]]].

Because 𝐴 cannot involve the type variable 𝑌, the predicates − ∈ 𝐴 [𝜂[𝑌 ↦,→ 𝒞]] and − ∈ 𝐴 [𝜂]
are equivalent, which suffices for the result.

The converse is proved similarly.

Exercise 1. Complete the proof of compositionality for the indicated converse cases omitted in the foregoing
incomplete proof.

In what follows if ∆ ⊢ 𝐴 type, abbreviate �̂�(𝐴) by �̂� whenever 𝛿 ∶ ∆ is evident, and, similarly, if
∆ ⊢ Γ ctx, write Γ̂ for �̂�(Γ), the extension of �̂� to term contexts. If Γ ⊢∆ 𝑀 ∶ 𝐴, write �̂� for �̂�(�̂�(𝑀))
when 𝛿 ∶ ∆ and 𝛾 ∶ Γ̂ are evident.

Proof of main theorem. Proceed by induction on the derivation of Γ ⊢∆ 𝑀 ∶ 𝐴.

1. Rule var: Then Γ = Γ′, 𝑥 ∶ 𝐴 and𝑀 = 𝑥.
Suppose 𝛿 ∶ ∆, 𝜂 ⊆ 𝛿 ∶ ∆, 𝛾 ∶ Γ̂, and 𝛾 ∈ Γ [𝜂]. Show that �̂�(�̂�(𝑀)) ∈ 𝐴 [𝜂], which is to say that
𝛾(𝑥) ∈ 𝐴 [𝜂].
This follows immediately from the assumption 𝛾 ∈ Γ [𝜂].

6 September 28, 2024



2. Rules yes and no:
Immediate by definition of hereditary termination at type ans.

3. Rule lam: Then𝑀 = 𝜆(𝑥.𝑀2),𝐴 = 𝐴1 → 𝐴2, and Γ, 𝑥∶𝐴1 ⊢∆ 𝑀2 ∶ 𝐴2. Note that �̂� = 𝜆(𝑥.�̂�2),
and �̂� = �̂�1 → �̂�2.
Suppose 𝛿 ∶ ∆, 𝜂 ⊆ 𝛿 ∶ ∆, 𝛾 ∶ Γ̂, and 𝛾 ∈ Γ [𝜂]. To show that �̂� ∈ 𝐴 [𝜂], suppose𝑀1 ∈ 𝐴1 [𝜂]
and show that ap(�̂�;𝑀1) ∈ 𝐴2 [𝜂].
Let Γ′ be Γ, 𝑥∶𝐴1, and let 𝛾′ be 𝛾[𝑥 ↦,→ 𝑀1], so that 𝛾′ ∶ Γ′ and 𝛾′ ∈ Γ′ [𝜂]. Note that 𝛾′(�̂�(𝑀2)) =
[𝑀1∕𝑥]�̂�2.
By induction hypothesis 𝛾′(𝑀2) ∈ 𝐴2 [𝜂], which is to say [𝑀1∕𝑥]�̂�2 ∈ 𝐴2 [𝜂]; the result follows
by closure under the head expansion

ap(�̂�;𝑀1) ↦,→ [𝑀1∕𝑥]�̂�2.

4. Rule app: Then𝑀 = ap(𝑀1;𝑀2), Γ ⊢∆ 𝑀1 ∶ 𝐴2 → 𝐴, and Γ ⊢∆ 𝑀2 ∶ 𝐴2.
Suppose 𝛿 ∶ ∆, 𝜂 ⊆ 𝛿 ∶ ∆, 𝛾 ∶ Γ̂, and 𝛾 ∈ Γ [𝜂] to show that �̂� ∈ 𝐴 [𝜂].
By the first inductive hypothesis �̂�1 ∈ 𝐴2 → 𝐴 [𝜂], and by the second �̂�2 ∈ 𝐴2 [𝜂].
The result follows immediately from the definition of hereditary termination at function type.

5. Rule Lam: Then 𝑀 = Λ(𝑋.𝑁), 𝐴 = ∀(𝑋.𝐵), so that �̂� = Λ(𝑋.�̂�) and �̂� = ∀(𝑋.�̂�) (recall that
𝛿 ∶ ∆ is closed), and also Γ ⊢∆,𝑋 type 𝑁 ∶ 𝐵.
To show �̂� ∈ 𝐴 [𝜂], it suffices to consider any 𝐶 type and any candidate 𝒞 for 𝐶, and show that
Ap(�̂�;𝐶) ∈ 𝐵 [𝜂[𝑋 ↦,→ 𝒞]].
This follows easily by induction and closure under thehead expansionAp(Λ(𝑋.�̂�);𝐶) ↦,→ [𝐶∕𝑋]�̂�,

noting that �̂�([𝐶∕𝑋]𝑁) = ˆ𝛿[𝑋 ↦,→ 𝐶](𝑁) and 𝜂[𝑋 ↦,→ 𝒞] ⊆ 𝛿[𝑋 ↦,→ 𝐶] ∶ ∆, 𝑋 type.

6. Rule App: Then𝑀 = Ap(𝑁;𝐶), 𝐴 = [𝐶∕𝑋]𝐵, Γ ⊢∆ 𝑁 ∶ ∀(𝑋.𝐵), and ∆ ⊢ 𝐶 type.
Suppose that 𝛿 ∶ ∆, 𝜂 ⊆ 𝛿 ∶ ∆, 𝛾 ∶ Γ̂, and note that �̂� = Ap(�̂�; �̂�), and �̂� = [�̂�∕𝑋]�̂�, and
�̂� ∶ ∀(𝑋.�̂�) and �̂� type.
Suppose that 𝛾 ∈ Γ [𝜂] so as to show that �̂� ∈ [𝐶∕𝑋]𝐵 [𝜂]. By compositionality it is enough to
show �̂� ∈ 𝐵 [𝜂[𝑋 ↦,→ − ∈ 𝐶 [𝜂]]].
It follows from the assumptions that

𝜂[𝑋 ↦,→ − ∈ 𝐶 [𝜂]] ⊆ 𝛿[𝑋 ↦,→ �̂�] ∶ ∆, 𝑋 type

because − ∈ 𝐶 [𝜂] is a candidate for type �̂�.
But then by the inductive hypothesis �̂� ∈ ∀(𝑋.𝐵) [𝜂], and so by the definition of hereditary ter-
mination at quantified type

Ap(�̂�; �̂�) ∈ 𝐵 [𝜂[𝑋 ↦,→ − ∈ 𝐶 [𝜂]]],

which was to be shown.

Corollary 7. If 𝑀 ∶ 𝐴 is a closed, well-typed term of System F, then 𝑀 terminates with a value. In
particular, if 𝐴 = ans, then either𝑀 ↦,→

∗
yes or𝑀 ↦,→

∗
no.

7 September 28, 2024



References

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press, 1989.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, Spring 2024. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf.

I. Lakatos. Proofs andRefutations: The Logic ofMathematicalDiscovery. Cambridge PhilosophyClassics.
CambridgeUniversity Press, 2015. ISBN9781316425336. URL https://books.google.com/books?
id=zb8qDgAAQBAJ. J. Worrall and E. Zahar, eds.

W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic, 32
(2):198–212, August 1967. ISSN 0022-4812, 1943-5886. doi: 10.2307/2271658. URL https://www.
cambridge.org/core/product/identifier/S0022481200113866/type/journal_article.

8 September 28, 2024


