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1 Introduction

In Harper (2024) Tait’s computability method is developed to prove termination of closed terms of the
typed 𝜆-calculus with respect to weak head reduction. The proof lays bare the skeleton of Tait’s method
through a graduated series of failed attempts leading to the discovery. But in doing so it also evades
crucial aspects of Tait’s original proof of normalization of the typed 𝜆-calculus.1 Whereas weak head
reduction corresponds to the (lazy) execution of closed functional programs, normalization corresponds
to simplifications of algebraic formulas with free variables, reducing, for example, (𝑥+1) (𝑥−1) to 𝑥2−1
using the laws of arithmetic.

Termination states that every well-typed 𝜆-term may be brought into fully evaluated form, normal-
ization states that every well-typed 𝜆-termmay be brought into fully simplified form. The unicity of the
fully evaluated form is obvious, because weak head reduction is deterministic in that at most one head
reduction applies to any given term. The unicity of the fully simplified form is far from obvious, and
must be proved separately, again making use of Tait’s method! The critical difference is that simplifica-
tion applies to open, as well as closed, terms, and may be performed within the body of a 𝜆-abstraction.
For example the term 𝜆(𝑥. ap(𝜆(𝑦.𝑦);𝑥))may be simplified to 𝜆(𝑥.𝑥) using a reduction analogous to one
step of execution.

To account for free variables the normalization theorem makes use of a generalization of Tait’s
method, called Kripke logical relations. In Kripke’s terminology the computability predicates are in-
dexed not only by a type, but also by a possible world that determines the free variables that may occur
in the terms to which the predicate applies. Possible worlds are pre-ordered by extension, adding fresh
variables to world to obtain another. The extending world is said to be a future world of the extended
world. Crucially, the computability predicates must be monotone with respect to this pre-order: if a
term is computable in a world, then it remains computable in all future worlds.

Using possible worlds it is possible to prove that every substitution instance of a well-typed open
term by well-typed open terms is, in a sense to be made precise, hereditarily normalizing. What is not
obvious, however, is that well-typed open terms are normalizable (in contrast to hereditary termination,
which immediately implies termination.) To obtain the desired result requires an additional maneuver,
Tait’s pas-de-deux relating normalized terms to a class of hereditarily neutral terms that include the
variables of the world. From this the desired normalization property follows directly.

*Copyright © Robert Harper. All Rights Reserved.
1As mentioned in Harper (2024) Tait considers a stronger property called, oddly enough, strong normalization, whose

purpose is of no concern here.
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𝛽-→

ap(𝜆(𝑥.𝑀);𝑀2)→𝛽 [𝑀2∕𝑥]𝑀

𝛽-×-lft

⟨𝑀1,𝑀2⟩ ⋅ 1→𝛽 𝑀1

𝛽-×-rht

⟨𝑀1,𝑀2⟩ ⋅ 2→𝛽 𝑀2

lft
𝑀 →𝛽 𝑀′

𝑀 ⋅ 1→𝛽 𝑀′ ⋅ 1

rht
𝑀 →𝛽 𝑀′

𝑀 ⋅ 2→𝛽 𝑀′ ⋅ 2

app-fun
𝑀1 →𝛽 𝑀′

1

ap(𝑀1;𝑀2)→𝛽 ap(𝑀′
1;𝑀2)

app-arg*
𝑀2 →𝛽 𝑀′

2

ap(𝑀1;𝑀2)→𝛽 ap(𝑀1;𝑀′
2)

lam*
𝑀 →𝛽 𝑀′

𝜆(𝑥.𝑀)→𝛽 𝜆(𝑥.𝑀′)

pair-lft*
𝑀1 →𝛽 𝑀′

1

⟨𝑀1,𝑀2⟩→𝛽 ⟨𝑀′
1,𝑀2⟩

pair-rht*
𝑀2 →𝛽 𝑀′

2

⟨𝑀1,𝑀2⟩→𝛽 ⟨𝑀1,𝑀′
2⟩

Figure 1: 𝛽-Reduction𝑀 →𝛽 𝑀′

2 Reduction and Normalization

Let the syntax and statics of the type 𝜆-calculus be defined as inHarper (2024). The 𝛽-reduction relation,
𝑀 →𝛽 𝑀′, on open terms𝑀 and𝑀′ is inductively defined by the rules in Figure 1. Multistep reduction,
𝑀 →∗

𝛽 𝑀
′, is the reflexive and transitive closure of 𝛽-reduction, and𝑀 →+

𝛽 𝑀
′ is its transitive closure.

Weak head 𝛽-reduction,𝑀 ↦,→𝛽 𝑀′ is defined on open terms similarly to 𝛽-reduction by omitting the
“starred” rules in Figure 1.

An open term𝑀 is in 𝛽-normal form iff it is 𝛽-irreducible,𝑀 ̸→𝛽, meaning that there is no𝑀′ such
that𝑀 →𝛽 𝑀′. An open term𝑀 is normalizable, written 𝗇𝗈𝗋𝗆𝛽(𝑀), iff there exists a 𝛽-normal form,
𝑁, such that𝑀 →∗

𝛽 𝑁.

Theorem 1 (Normalization). If Γ ⊢ 𝑀 ∶ 𝐴, then 𝗇𝗈𝗋𝗆𝛽(𝑀).

The main idea is to introduce a generalization of the hereditary termination condition obtained
in Harper (2024) that accounts for free variables. Let ∆ range over variable contexts pre-ordered by
(reversed) containment: ∆′ ≤ ∆ iff ∆ ⊢ 𝑥 ∶ 𝐴 implies ∆′ ⊢ 𝑥 ∶ 𝐴. The family 𝖧𝖭∆𝐴(𝑀) of predicates
indexed by contexts, ∆, as possible worlds, and types, 𝐴, on well-formed terms ∆ ⊢ 𝑀 ∶ 𝐴, is defined
in Figure 2.

Besides being applicable to open terms, the definition differs from hereditary termination in several
notable ways:

1. The conditions for unit and answer types require only normalizability.
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𝖧𝖭∆1 (𝑀) iff 𝗇𝗈𝗋𝗆𝛽(𝑀)

𝖧𝖭∆ans(𝑀) iff 𝗇𝗈𝗋𝗆𝛽(𝑀)

𝖧𝖭∆𝐴1×𝐴2
(𝑀) iff 𝖧𝖭∆𝐴1

(𝑀 ⋅ 1) and 𝖧𝖭∆𝐴2
(𝑀 ⋅ 2)

𝖧𝖭∆𝐴1→𝐴2
(𝑀) iff for all ∆′ ≤ ∆, if 𝖧𝖭∆

′

𝐴1
(𝑀1) then 𝖧𝖭

∆′
𝐴2
(ap(𝑀;𝑀1))

𝖧𝖭∆Γ (𝛾) iff 𝖧𝖭
∆
𝐴(𝛾(𝑥)) for all 𝑥 ∶ 𝐴 ∈ Γ

Figure 2: Hereditary Normalization, 𝖧𝖭∆𝐴(𝑀)

2. The conditions for product and function types are given in terms of their elimination forms, re-
spectively projection and application. The term𝑀 cannot be expected to have canonical form; it
might, for example, be a variable declared in ∆.

3. Hereditary normalization at function types quantifies over all “future” worlds, which is to say all
extensions of∆. Intuitively, by weakening a term of a type in∆ is also a term of a type in∆′. Thus,
a function in ∆must be applicable in any enlarged context in which it may be used.

Lemma 2 (Anti-Monotonicity). If 𝖧𝖭∆𝐴(𝑀) and ∆′ ≤ ∆, then 𝖧𝖭∆
′

𝐴 (𝑀).

Proof. The proof proceeds by induction on the structure of𝐴. Note that if∆ ⊢ 𝑀 ∶ 𝐴, and∆′ ≤ ∆, then
∆′ ⊢ 𝑀 ∶ 𝐴—typing is closed under weakening. The cases for unit and answer type are immediate;
the case for product types is proved by appeal to induction on the component types. For function types,
suppose that 𝐴 = 𝐴1 → 𝐴2, and that 𝖧𝖭

∆
𝐴(𝑀), with the goal to show that 𝖧𝖭∆

′

𝐴 (𝑀). To this end
suppose that ∆′′ ≤ ∆′ and 𝖧𝖭∆

′′

𝐴1
(𝑀1). By transitivity ∆′′ ≤ ∆, so by assumption 𝖧𝖭∆

′′

𝐴2
(ap(𝑀;𝑀1)), as

required.

Lemma 3 (Head Expansion). If𝑀′ ↦,→𝛽 𝑀 and 𝖧𝖭∆𝐴(𝑀), then 𝖧𝖭∆𝐴(𝑀′).

Proof. Exercise.

Observe that the definition of head reduction is chosen so that the preceding lemma holds; in par-
ticular, head reduction must descend through projection and (the function position) of application.

The fundamental theorem quantifies over all open instances of a term, and also accounts for weak-
ening to an extended context.

Theorem 4 (Fundamental Theorem). If Γ ⊢ 𝑀 ∶ 𝐴, then for all ∆, if 𝖧𝖭∆Γ (𝛾), then 𝖧𝖭
∆
𝐴(�̂�(𝑀)).

Proof. By induction on typing. For concision, write �̂� for �̂�(𝑀) when 𝛾 is clear from context.

var We have Γ = Γ′, 𝑥 ∶ 𝐴, and𝑀 = 𝑥. By assumption 𝖧𝖭∆𝐴(𝛾(𝑥)), and, noting that �̂�(𝑥) = 𝛾(𝑥) by
definition, the result follows immediately.

app Fix ∆ and 𝛾 such that 𝖧𝖭∆𝛾 (Γ); we are to show 𝖧𝖭∆𝐴2
(ap(�̂�;�̂�1)). By induction 𝖧𝖭

∆
𝐴1→𝐴2

(�̂�) and
𝖧𝖭∆𝐴1

(�̂�1), using reflexivity of the ordering on worlds.
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var

𝖭𝖭∆,𝑥∶𝐴𝐴 (𝑥)

fst
𝖭𝖭∆𝐴1×𝐴2

(𝑈)

𝖭𝖭∆𝐴1
(𝑈 ⋅ 1)

snd
𝖭𝖭∆𝐴1×𝐴2

(𝑈)

𝖭𝖭∆𝐴2
(𝑈 ⋅ 2)

app
𝖭𝖭∆𝐴1→𝐴2

(𝑈) 𝗇𝗈𝗋𝗆𝛽(𝑀)

𝖭𝖭∆𝐴2
(ap(𝑈;𝑀))

Figure 3: Normalizable Neutrality, 𝖭𝖭∆𝐴(𝑀).

lam Fix ∆ and 𝖧𝖭∆Γ (𝛾); we are to show 𝖧𝖭∆𝐴1→𝐴2
(𝜆(𝑥.�̂�2)). Suppose that ∆′ ≤ ∆, and suppose that

𝖧𝖭∆
′

𝐴1
(𝑀′

1). Then, by anti-monotonicity, 𝖧𝖭
∆′
Γ (𝛾). Therefore, for some 𝑥 ∉ Γ, 𝖧𝖭∆

′

Γ,𝑥∶𝐴1
(𝛾[𝑥 ↦,→

𝑀′
1]). Therefore, by induction, and by the definition of substitution, 𝖧𝖭

∆′
𝐴2
([𝑀1∕𝑥]�̂�2). The result

follows by head expansion.

Exercise 1. Complete the proof of Theorem 4 for the product types.

In the proof of termination given in Harper (2024) it is immediate that hereditary termination im-
plies termination, at all types. Thus, the termination theorem, which is analogous to the fundamental
theorem here, directly implies the desired termination property. Moreover, it is sensible to ask only for
termination of closed terms of answer type, and, correspondingly, to give a purely “negative” formula-
tion of hereditary termination that does not demand evaluation to a value at compound types.

In contrast normalization is, by its nature, a property of all terms, of any type, not just answer type.
Because it is defined for open terms a negative formulation of hereditary normalization is required.
Consequently, it is not immediate that a hereditary normalizing term is normalizing, except at answer
type. The proof of normalization proceeds as follows:

1. Instantiate the fundamental theorem at the identity substitution sending each variable in Γ to
itself, and conclude that 𝖧𝖭Γ𝐴(𝑀) whenever Γ ⊢ 𝑀 ∶ 𝐴. To use the identity substitution requires
that the variables in aworld be hereditarily normalizable at their declared type. This is immediate
for atomic types, but requires proof at compound types.

2. Show that hereditary normalization implies normalization at all types. This is immediate for the
atomic types, but requires proof at compound types. The proof requires that variables of any type
be hereditarily normalizable.

As will become clear shortly, both properties must be proved simultaneously, proceeding by induction
on the structure of types. Moreover, it is not sufficient to consider not only variables, but a larger class
of neutral terms, 𝑈, given by the following grammar:

𝑈 ∶∶= 𝑥 ∣ 𝑈 ⋅ 1 ∣ 𝑈 ⋅ 2 ∣ ap(𝑈;𝑀).

The class of normalizably neutral terms of a type, written 𝖭𝖭∆𝐴(𝑈), is defined by induction on the struc-
ture of 𝑈 by the conditions given in Figure 3.

Exercise 2. Check that if 𝖭𝖭∆𝐴(𝑈) and ∆′ ≤ ∆, then 𝖭𝖭∆
′

𝐴 (𝑈).
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Lemma 5 (Pas-de-deux).

1. If 𝖭𝖭∆𝐴(𝑈), then 𝖧𝖭
∆
𝐴(𝑈).

2. If 𝖧𝖭∆𝐴(𝑀), then 𝗇𝗈𝗋𝗆𝛽(𝑀).

Proof. Simultaneously, by induction on the structure of 𝐴.

1. 𝐴 = 1 or 𝐴 = ans:

(a) Every normalizably neutral term of base type is self-evidently normalizable, and so heredi-
tarily normalizable at that type.

(b) Every hereditarily normalizable term at base type is, by definition, normalizable.

2. 𝐴 = 𝐴1 × 𝐴2:

(a) If 𝖭𝖭∆𝐴(𝑈), then, by definition, 𝖭𝖭
∆
𝐴1
(𝑈 ⋅ 1) and 𝖭𝖭∆𝐴2

(𝑈 ⋅ 2). By induction, 𝖧𝖭∆𝐴1
(𝑈 ⋅ 1), and

similarly 𝖧𝖭∆𝐴2
(𝑈 ⋅ 2). But then 𝖧𝖭∆𝐴(𝑈) by definition of hereditary normalizability.

(b) If𝖧𝖭∆𝐴(𝑀), then𝖧𝖭∆𝐴1
(𝑀 ⋅1) and𝖧𝖭∆𝐴2

(𝑀 ⋅2), so by induction 𝗇𝗈𝗋𝗆𝛽(𝑀 ⋅1) and 𝗇𝗈𝗋𝗆𝛽(𝑀 ⋅2),
and so 𝗇𝗈𝗋𝗆𝛽(𝑀), by a careful analysis of reductions from the projections.

3. 𝐴 = 𝐴1 → 𝐴2:

(a) Suppose that 𝖭𝖭∆𝐴(𝑈). To show 𝖧𝖭∆𝐴(𝑈), let ∆′ ≤ ∆ and note that 𝖭𝖭∆
′

𝐴 (𝑈) as well. Sup-
pose that 𝖧𝖭∆

′

𝐴1
(𝑀1). Then, by induction, 𝗇𝗈𝗋𝗆𝛽(𝑀1), and so 𝖭𝖭

∆′
𝐴2
(ap(𝑈;𝑀1)). But then, by

induction, 𝖧𝖭∆
′

𝐴2
(ap(𝑈;𝑀1)), as required.

(b) Suppose𝖧𝖭∆𝐴(𝑀). Choosing∆′ = ∆, 𝑥∶𝐴1 ≤ ∆, then𝖭𝖭∆
′

𝐴1
(𝑥) by definition, and so𝖧𝖭∆

′

𝐴1
(𝑥)

by induction. But then 𝖧𝖭∆
′

𝐴2
(ap(𝑀;𝑥)) by definition, and, by induction 𝗇𝗈𝗋𝗆𝛽(ap(𝑀;𝑥)). A

careful analysis of reductions shows that 𝗇𝗈𝗋𝗆𝛽(𝑀).

Exercise 3. Show that

1. If 𝗇𝗈𝗋𝗆𝛽(𝑀 ⋅ 1) and 𝗇𝗈𝗋𝗆𝛽(𝑀 ⋅ 2), then 𝗇𝗈𝗋𝗆𝛽(𝑀).

2. If 𝗇𝗈𝗋𝗆𝛽(ap(𝑀;𝑥)), then 𝗇𝗈𝗋𝗆𝛽(𝑀).

Exercise 4. Prove that the identity substitution, Γ ⊢ 𝜄 ∶ Γ sending 𝑥 to itself, is hereditarily normalizing,
which is to say 𝖧𝖭ΓΓ(𝜄).

Corollary 6 (Normalization). If Γ ⊢ 𝑀 ∶ 𝐴, then 𝗇𝗈𝗋𝗆𝛽(𝑀).

Proof. By the Fundamental Theorem and Exercise 4,𝖧𝖭Γ𝐴(𝜄(𝑀)). But 𝜄(𝑀) = 𝑀, so, by the pas-de-deux,
𝗇𝗈𝗋𝗆𝛽(𝑀).

Exercise 5. Generalize the foregoing from normalization to an arbitrary property 𝒫 of open terms. What
conditions on𝒫 are required to ensure that everywell-typed term satisfies that property? Treat𝒫 as a family
of properties indexed by context ∆ and type 𝐴 of terms ∆ ⊢ 𝑀 ∶ 𝐴.
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