
Reynolds’s Parametricity Theorem* †

Robert Harper

Spring, 2024

1 Introduction

In a landmark paper Reynolds (1983) develops a mathematical account of Strachey’s informal concept
of parametricity of polymorphic functions. Parametricity characterizes the “uniform” behavior of poly-
morphic functions using logical relations, a concept introduced by Tait (1967) in the study of functionals
of finite type. Reynolds’s work, which was motivated by the study of data abstraction in programming
languages, was done around the same time as, and independently of, Girard’s extension of Tait’smethod
to second-order quantification, which was motivated by the analysis of proofs in second-order logic.1
Whereas Girard made use of unary predicates, Reynolds used binary relations, a technically small, yet
practically large, difference that gave rise to new methods for proving properties of programs knowing
only their types. Reynolds observed that the type discipline of a language determines the abstraction
properties enjoyed by its programs; in particular, clients of abstract types are polymorphic, and hence
enjoy stability properties across changes of representation determined entirely by their types.

The formulation given heremakes use of the aforementioned ideas fromTait, Girard, and Reynolds,
but cast in an operational framework. In contrast to the presentation in PFPL the formulation given
here is independent of a prior notion of equality. In compensation candidates are required to enjoy a
property called zig-zag completeness (Krishnaswami and Dreyer, 2013), which suffices to ensure that
equality is symmetric and transitive by a simple and direct argument.

2 The Language

Please see Harper (2020) for the definition of the language F, including its syntax and dynamics. The
dynamics is to be understood via a tacit erasure of type information from terms given as follows:

1. Type labels are removed from 𝜆-abstractions, 𝜆(𝑥.𝑀) becomes 𝜆(𝑥.𝑀).

2. Λ-abstractions Λ(𝑋.𝑀) are replaced by anonymous Λ-abstractions Λ(𝑀).

3. Type applications Ap(𝑀;𝐴) are replaced by instantiations Ap(𝑀) corresponding to Λ(𝑁).

With this understanding it is never necessary to substitute types for type variables when defining the
dynamics of terms.

*Copyright © Robert Harper. All Rights Reserved
†Thanks to Carlo Angiuli, Karl Crary, Yiyang Guo, and Harrison Grodin for helpful discussions.
1See Harper (2020) for an introduction to Girard’s method.

1



𝑀 𝑀′

𝑁 𝑁′

Figure 1: Zig-Zag Completeness

3 Parametricity

Abinary relation𝑅 ∶ 𝐴 ↔ 𝐴′ between closed terms of closed types𝐴 and𝐴′ is a parametricity candidate
for 𝐴 and 𝐴′, written 𝑅 ∶ 𝐴 ↔ 𝐴′, iff it satisfies the following two closure conditions:

1. Head expansion: if𝑀 𝑅 𝑀′, then

(a) if 𝑁 ↦,→ 𝑀, then 𝑁 𝑅 𝑀′, and

(b) if 𝑁′ ↦,→ 𝑀′, then𝑀 𝑅 𝑁′.

2. Zig-Zag Completeness (ZZC): if𝑀 𝑅 𝑀′, 𝑁 𝑅 𝑁′, and 𝑁 𝑅 𝑀′, then𝑀 𝑅 𝑁′.

Head expansion is a natural requirement when thinking of types as specifications of program behavior.
Zig-zag completeness is depicted in Figure 1. It may be stated in terms of the converse and composition
of relations as the containment 𝑅◦𝑅op◦𝑅 ⊆ 𝑅. The opposite containment is always valid, so zig-zag
completeness may be re-stated as the equation 𝑅◦𝑅op◦𝑅 = 𝑅.

A candidate assignment, 𝜂, for type substitutions 𝛿, 𝛿′ ∶ ∆ is a function assigning to each∆ ⊢ 𝑋 type
a candidate 𝜂(𝑋) ∶ 𝛿𝑋 ↔ 𝛿′𝑋.

Definition 1 (Similarity). The binary relation,𝑀 ∼ 𝑀′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′], called similarity, is defined
for substitutions 𝛿, 𝛿′ ∶ ∆, closed terms𝑀 ∶ �̂�(𝐴) and𝑀′ ∶ 𝛿′(𝐴), and candidate assignment 𝜂 ∶ 𝛿 ↔ 𝛿′,
by induction on the structure of 𝐴 as follows:

𝑀 ∼ 𝑀′ ∈ ans [𝜂 ∶ 𝛿 ↔ 𝛿′] iff 𝑀,𝑀′ ↦,→
∗

yes or𝑀,𝑀′ ↦,→
∗

no

𝑀 ∼ 𝑀′ ∈ 𝑋 [𝜂 ∶ 𝛿 ↔ 𝛿′] iff 𝑀 𝜂(𝑋) 𝑀′

𝑀 ∼ 𝑀′ ∈ 𝐴1 → 𝐴2 [𝜂 ∶ 𝛿 ↔ 𝛿′] iff

⎧
⎪

⎨
⎪
⎩

𝑀 ↦,→
∗
𝜆(𝑥.𝑀2), 𝑀′ ↦,→

∗
𝜆(𝑥.𝑀′

2),

𝑀1 ∼ 𝑀′
1 ∈ 𝐴1 [𝜂 ∶ 𝛿 ↔ 𝛿′] implies

[𝑀1∕𝑥]𝑀2 ∼ [𝑀′
1∕𝑥]𝑀

′
2 ∈ 𝐴2 [𝜂 ∶ 𝛿 ↔ 𝛿′]

𝑀 ∼ 𝑀′ ∈ ∀(𝑋.𝐴2) [𝜂 ∶ 𝛿 ↔ 𝛿′] iff
⎧

⎨
⎩

𝑀 ↦,→
∗
Λ(𝑀2), 𝑀′ ↦,→

∗
Λ(𝑀′

2), and if 𝑅 ∶ 𝐵 ↔ 𝐵′ then

𝑀2 ∼ 𝑀′
2 ∈ 𝐴2 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐵]↔ 𝛿′[𝑋 ↦,→ 𝐵′]]

It is immediate from the form of the definition that similarity is closed under head expansion, given
that candidates are required to be.

2 September 28, 2024



Exercise 1. Extend the definition of similarity to account for existential types,∃(𝑋.𝐴), definedas inHarper
(2016). Your definition should account for the possibility that related packages need not have the same
implementation type, rather the operations need only correspond.

Lemma 2 (Head Expansion). If𝑀 ∼ 𝑀′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′], then if 𝑁 ↦,→ 𝑀, then 𝑁 ∼ 𝑀′ ∈ 𝐴 [𝜂 ∶

𝛿 ↔ 𝛿′], and if𝑁′ ↦,→ 𝑀′, then𝑀 ∼ 𝑁′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′].

Proof. All conditions are defined in terms of evaluation to a value, and candidates are assumed to be
closed under head expansion.

Lemma 3 (Zig-Zag Completeness). For each∆ ⊢ 𝐴 type, and each candidate assignment 𝜂 for 𝛿, 𝛿′ ∶ ∆,
the similarity relation _ ∼ _ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′] is zig-zag complete.

Proof. By induction on the structure of 𝐴:

1. If 𝐴 is a type variable 𝑋, then 𝜂(𝑋) is a candidate for 𝛿(𝑋) and 𝛿′(𝑋), and is therefore zig-zag
complete.

2. If 𝐴 = ∀(𝑋.𝐴2). Assume that

(a) 𝑀 ∼ 𝑀′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′],
(b) 𝑁 ∼ 𝑁′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′], and
(c) 𝑁 ∼ 𝑀′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′].

It follows that

(a) 𝑀 ↦,→
∗
Λ(𝑀2),

(b) 𝑀′ ↦,→
∗
Λ(𝑀′

2),

(c) 𝑁 ↦,→
∗
Λ(𝑁2), and

(d) 𝑁′ ↦,→
∗
Λ(𝑁′

2).

To show that𝑀 ∼ 𝑁′ ∈ 𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′], it suffices to assume that 𝑅 ∶ 𝐴 ↔ 𝐴′, and show that
𝑀2 ∼ 𝑁′

2 ∈ 𝐴2 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐵]↔ 𝛿′[𝑋 ↦,→ 𝐵′]].
From the assumptions we have

(a) 𝑀2 ∼ 𝑀′
2 ∈ 𝐴2 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐴]↔ 𝛿′[𝑋 ↦,→ 𝐴′]],

(b) 𝑁2 ∼ 𝑁′
2 ∈ 𝐴2 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐴]↔ 𝛿′[𝑋 ↦,→ 𝐴′]], and

(c) 𝑁2 ∼ 𝑀′
2 ∈ 𝐴2 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐴]↔ 𝛿′[𝑋 ↦,→ 𝐴′]].

But then the result follows by the inductive hypothesis that similarity at𝐴2 relative to 𝜂[𝑋 ↦,→ 𝑅]
is zig-zag complete.

3 September 28, 2024



Exact equality of two terms in a type, Γ≫∆ 𝑀
.
= 𝑀′ ∈ 𝐴, is defined tomean that for all substitutions

𝛿, 𝛿′ ∶ ∆, for all candidate assignments 𝜂 for 𝛿 and 𝛿′, if 𝛾 ∼ 𝛾′ ∈ Γ [𝜂 ∶ 𝛿 ↔ 𝛿′], then 𝛾(𝑀) ∼ 𝛾′(𝑀) ∈
𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′]. Write Γ≫∆ 𝑀 ∈ 𝐴 to mean Γ≫∆ 𝑀

.
= 𝑀 ∈ 𝐴.

Lemma 4 (Compositionality). Suppose that ∆ ⊢ 𝐵 type and ∆, 𝑋 ⊢ 𝐴 type. Let 𝛿, 𝛿′ ∶ ∆ and assume
𝜂 ∶ 𝛿 ↔ 𝛿′. Then,

𝑀 ∼ 𝑀′ ∈ [𝐵∕𝑋]𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′] iff 𝑀 ∼ 𝑀′ ∈ 𝐴 [𝜂1 ∶ 𝛿1 ↔ 𝛿′1],

where 𝛿1 = 𝛿[𝑋 ↦,→ �̂�𝐵], and 𝛿′1 = 𝛿′[𝑋 ↦,→ 𝛿′𝐵], and 𝜂1 = 𝜂[𝑋 ↦,→ _ ∼ _ ∈ 𝐵 [𝜂 ∶ 𝛿 ↔ 𝛿′]].

Exercise 2. Prove Lemma 4 by induction on the structure of 𝐴.

In the context of F the reflexivity theorem is known as the parametricity theorem.

Theorem 5 (Parametricity). If Γ ⊢∆ 𝑀 ∶ 𝐴, then Γ≫∆ 𝑀 ∈ 𝐴.

Proof. By induction on typing derivations, using Lemma 2 and 4. Here are two cases of the proof.

1. Consider Γ ⊢∆ Λ(𝑀) ∶ ∀(𝑋.𝐴) following from Γ ⊢∆,𝑋 type 𝑀 ∶ 𝐴 by the introduction for the
quantifier. Suppose that 𝛿, 𝛿′ ∶ ∆ are instances of ∆, that 𝜂 ∶ 𝛿 ↔ 𝛿′, and that 𝛾 ∼ 𝛾′ ∈ Γ [𝜂 ∶
𝛿 ↔ 𝛿′]. The goal is to show that Λ(�̂�(𝑀)) ∼ Λ(𝛾′(𝑀′)) ∈ ∀(𝑋.𝐴) [𝜂 ∶ 𝛿 ↔ 𝛿′]. To this
end suppose that 𝐵 type, 𝐵′ type, and 𝑅 ∶ 𝐵 ↔ 𝐵′; it suffices to show that �̂�(𝑀) ∼ 𝛾′(𝑀′) ∈
𝐴 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐵] ↔ 𝛿′[𝑋 ↦,→ 𝐵′]]. But this follows directly by induction, noting that
𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐵]↔ 𝛿′[𝑋 ↦,→ 𝐵′] is again a candidate assignment.

2. Consider Γ ⊢∆ Ap(𝑀) ∶ [𝐵∕𝑋]𝐴 following from Γ ⊢∆ 𝑀 ∶ ∀(𝑋.𝐴) and ∆ ⊢ 𝐵 type by the
elimination rule for the quantifier. Suppose that 𝛿, 𝛿′ ∶ ∆ and 𝜂 ∶ 𝛿 ↔ 𝛿′, and that 𝛾 ∼ 𝛾′ ∈
Γ [𝜂 ∶ 𝛿 ↔ 𝛿′], with the goal to show that

Ap(�̂�(𝑀)) ∼ Ap(𝛾′(𝑀′)) ∈ [𝐵∕𝑋]𝐴 [𝜂 ∶ 𝛿 ↔ 𝛿′].

Note that by the second assumption �̂�(𝐵) type and 𝛿′(𝐵) type, written 𝐵 and 𝐵′, respectively. By
Lemma 4 the objective becomes to show that

Ap(�̂�(𝑀)) ∼ Ap(𝛾′(𝑀′)) ∈ 𝐴 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐵]↔ 𝛿′[𝑋 ↦,→ 𝐵′]],

where 𝑅(𝑁,𝑁′) ≝ 𝑁 ∼ 𝑁′ ∈ 𝐵 [𝜂 ∶ 𝛿 ↔ 𝛿′] for 𝑁 ∶ 𝐵 and 𝑁′ ∶ 𝐵′. By the inductive hypothesis
and definition of similarity at quantified types,

(a) �̂�(𝑀) ⇓ Λ(𝑁);
(b) 𝛾′(𝑀) ⇓ Λ(𝑁′);
(c) 𝑁 ∼ 𝑁′ ∈ 𝐴 [𝜂[𝑋 ↦,→ 𝑅] ∶ 𝛿[𝑋 ↦,→ 𝐵]↔ 𝛿′[𝑋 ↦,→ 𝐵′]],

from which the result follows by head expansion.

Exercise 3. Prove the remaining cases of the parametricity theorem.

4 September 28, 2024



4 Equational Soundness

Judgmental equality for F is the extension of that for simple types (seeHarper (2022)) with the following
two rules for quantified types:

∀−𝛽
Γ ⊢∆,𝑋 type 𝑀 ∶ 𝐴 ∆ ⊢ 𝐵 type

Γ ⊢∆ Ap(Λ(𝑋.𝑀);𝐵) ≡ [𝐵∕𝑋]𝑀 ∶ [𝐵∕𝑋]𝐴

∀−𝜂
Γ ⊢∆ 𝑀 ∶ ∀(𝑋.𝐴)

Γ ⊢∆ 𝑀 ≡ Λ(𝑋.Ap(𝑀;𝑋)) ∶ ∀(𝑋.𝐴)

In addition the evident compatibility rules are included as well.

Theorem 6 (Soundness). If Γ ⊢∆ 𝑀 ≡ 𝑀′ ∶ 𝐴, then Γ≫∆ 𝑀
.
= 𝑀′ ∈ 𝐴

Sketch. Closure under head expansion suffices for the 𝛽 principles:

1. If Γ, 𝑥 ∶ 𝐴1 ≫∆ 𝑀2 ∈ 𝐴2 and Γ≫∆ 𝑀1 ∈ 𝐴1, then Γ≫∆ 𝜆(𝑥.𝑀2)(𝑀1)
.
= [𝑀1∕𝑥]𝑀2 ∈ 𝐴2.

2. If Γ≫∆,𝑋 type 𝑀2 ∈ 𝐴2 and ∆ ⊢ 𝐴1 type, then Γ≫∆ Ap(Λ(𝑀2))
.
= 𝑀2 ∈ [𝐴1∕𝑋]𝐴2.

The definition of similarity ensures that the 𝜂 principles are valid:

1. If Γ≫∆ 𝑀 ∈ 𝐴1 → 𝐴2, then Γ≫∆ 𝑀
.
= 𝜆(𝑥.𝑀(𝑥)) ∈ 𝐴1 → 𝐴2.

2. If Γ≫∆ 𝑀 ∈ ∀(𝑋.𝐴2), then Γ≫∆ 𝑀
.
= Λ(Ap(𝑀)) ∈ ∀(𝑋.𝐴2).

Compatibility of exact equality with both forms of abstraction and application are left as exercises. Para-
metricity states that equality is reflexive. Symmetry and transitivity are proved as in Harper (2022),
using Lemma 3 and Theorem 5, as illustrated in Figure 2.

Exercise 4. Flesh out the proof of Theorem 6 for the cases of symmetry and transitivity, and the compati-
bility rule for type abstraction.

Just as with, say, the natural numbers in the simply typed case, the judgmental equality rules are
entirely inadequate for proving any interesting exact equivalences, in particular those involving a para-
metricity argument.

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, Cam-
bridge, England, Second edition, 2016.

Robert Harper. How to (re)invent Girard’s method. Unpublished lecture note, Spring 2020. URL
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/girard.pdf.

Robert Harper. Semantic equality for typed 𝜆-calculus. Unpublished lecture note., July 2022. URL
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tlc-semeq.pdf.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, Spring 2024. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf.

5 September 28, 2024



(Presupp)
𝛾(𝑁) 𝛾′(𝑁)

(Presupp)

(Assume)

𝛾(𝑀) 𝛾′(𝑀)

�̂�(𝑀) 𝛾′(𝑀)

�̂�(𝑁) 𝛾′(𝑁)

�̂�(𝑃) 𝛾′(𝑃)

Figure 2: Symmetry and Transitivity via Zig-Zag Completeness

Neelakantan R. Krishnaswami and Derek Dreyer. Internalizing Relational Parametricity in the Exten-
sional Calculus of Constructions. pages 20 pages, 591837 bytes, 2013. ISSN 1868-8969. doi: 10.
4230/LIPICS.CSL.2013.432. URL https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.CSL.2013.432. Artwork Size: 20 pages, 591837 bytes ISBN: 9783939897606Medium: appli-
cation/pdf Publisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor, Infor-
mation Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September
19-23, 1983, pages 513–523. North-Holland/IFIP, 1983.

W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic, 32
(2):198–212, August 1967. ISSN 0022-4812, 1943-5886. doi: 10.2307/2271658. URL https://www.
cambridge.org/core/product/identifier/S0022481200113866/type/journal_article.

6 September 28, 2024


