
How to (Re)Invent Tait’s Method*

Robert Harper

Spring 2024

1 Introduction

Two of the most important developments in type theory were the invention, by W. W. Tait, of Tait’s
Method for function types, which was later extended by J.-Y. Girard to Girard’s Method for type quan-
tification, both of which were incorporated into a general theory of logical relations for a wide range
of type theories. Tait’s method continues to be known by its original name, the computability method,
which interprets types as predicates in the manner developed below.1

The problem considered by Tait was to prove that 𝛽-reduction for the simply typed 𝜆-calculus is
strongly normalizing, which is usually defined to mean that there are no infinite 𝛽-reduction sequences
starting with a well-typed term. The question considered here is related, but technically much simpler,
the termination of a deterministic head reduction strategy for a simply typed 𝜆-calculus. The type sys-
tem considered here has unit, product, and function types, augmented with a type of answers, yes or
no, corresponding to the accept or reject distinction for abstract machines.

2 Simple Types

The syntax of the language considered here is given by the following grammar:

𝐴 ∶∶= 1 ∣ ans ∣ 𝐴1 × 𝐴2 ∣ 𝐴1 → 𝐴2

𝑀 ∶∶= 𝑥 ∣ yes ∣ no ∣ ⟨⟩ ∣ ⟨𝑀1,𝑀2⟩ ∣ 𝑀 ⋅ 1 ∣ 𝑀 ⋅ 2 ∣ 𝜆(𝑥.𝑀) ∣ ap(𝑀1;𝑀2)

The statics is entirely standard, defining the typing judgment Γ ⊢ 𝑀 ∶ 𝐴, in such a way that
the structural properties are admissible. Contraction and exchange are accounted for by treating the
typing context Γ as a finite set of variable typings 𝑥1∶𝐴1,… , 𝑥𝑛∶𝐴𝑛 in which 𝑥𝑖 ≠ 𝑥𝑗 whenever 𝑖 ≠ 𝑗.
Weakening is built-in by stating all rules with an ambient typing context Γ that goes along for the ride.
See Figure 1 for the definition of typing. Substitution (transitivity), which states that if Γ, 𝑥∶𝐴 ⊢ 𝑁 ∶ 𝐵,
and Γ ⊢ 𝑀 ∶ 𝐴, then Γ ⊢ [𝑀∕𝑥]𝑁 ∶ 𝐵, is surprisingly difficult to prove.

Define Γ′ ⊢ 𝛾 ∶ Γ to mean that 𝛾 is a finite function defined on variables declared in Γ such that if
Γ ⊢ 𝑥 ∶ 𝐴, then Γ′ ⊢ 𝛾(𝑥) ∶ 𝐴. Such a mapping determines a substitution function, �̂�, on terms that
replaces each such 𝑥 with 𝛾(𝑥) throughout the term.

Lemma 1 (Substitution). If Γ ⊢ 𝑀 ∶ 𝐴 and Γ′ ⊢ 𝛾 ∶ Γ, then Γ′ ⊢ �̂�𝑀 ∶ 𝐴.

*Copyright © Robert Harper. All Rights Reserved.
1It can be confusing, at first, that Tait’s notion of computability has nothing to do with computability theory!

1

var

Γ, 𝑥∶𝐴 ⊢ 𝑥 ∶ 𝐴

yes

Γ ⊢ yes ∶ ans

no

Γ ⊢ no ∶ ans

unit

Γ ⊢ ⟨⟩ ∶ 1

pair
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ∶ 𝐴1 × 𝐴2

lft
Γ ⊢ 𝑀 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 1 ∶ 𝐴1

rht
Γ ⊢ 𝑀 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 2 ∶ 𝐴2

lam
Γ, 𝑥∶𝐴1 ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ 𝜆(𝑥.𝑀2) ∶ 𝐴1 → 𝐴2

app
Γ ⊢ 𝑀1 ∶ 𝐴2 → 𝐴 Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ap(𝑀1;𝑀2) ∶ 𝐴

Figure 1: Typed 𝜆-Calculus Statics

The structural properties of typing follow immediately from substitution and the definition of typing:

1. Reflexivity: 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴. This is an instance of the reflexivity rule.

2. Transitivity: If Γ, 𝑥∶𝐴 ⊢ 𝑁 ∶ 𝐵, then Γ ⊢ 𝑀 ∶ 𝐴 implies Γ ⊢ [𝑀∕𝑥]𝑁 ∶ 𝐵.

3. Weakening: If Γ ⊢ 𝑁 ∶ 𝐵, then Γ, 𝑥∶𝐴 ⊢ 𝑁 ∶ 𝐵, where 𝑥 is not declared in Γ.

4. Contraction: If Γ, 𝑥1 ∶ 𝐴, 𝑥2 ∶ 𝐴 ⊢ 𝑁 ∶ 𝐵,then Γ, 𝑥 ∶ 𝐴 ⊢ [𝑥, 𝑥∕𝑥1, 𝑥2]𝑁 ∶ 𝐵.

Exercise 1 (Difficult). Attempt to prove Lemma 1 by induction on the derivation of Γ ⊢ 𝑀 ∶ 𝐴. There is
one spot where your proof is sure to break down. Isolate that spot, and consider other ways to recover the
intended result.

The dynamics is given by a transition system𝑀 ↦,→ 𝑀′ between closed 𝜆-terms of some type. Any
closed typed term is a valid initial state. Final states are defined along with transition in Figure 2.

Theorem 2 (Preservation). If𝑀 ∶ 𝐴 and𝑀 ↦,→ 𝑀′, then𝑀′ ∶ 𝐴.

Proof. By induction on transition.

3 Termination Proof

The goal is to prove termination for terms of observable type:

Theorem 3 (Termination). If𝑀 ∶ ans, then either𝑀 ↦,→
∗

yes or𝑀 ↦,→
∗

no.

That is, any complete program either accepts or rejects.
Given the statement of the theorem, practically the only move available is to proceed by induction

on typing. Let us consider some cases.

var Does not apply to closed terms.

2 September 28, 2024

yes

yes final

no

no final

unit

⟨⟩ final

pair

⟨𝑀1,𝑀2⟩ final

lam

𝜆(𝑥.𝑀2) final

lft
𝑀 ↦,→ 𝑀′

𝑀 ⋅ 1 ↦,→ 𝑀′ ⋅ 1

rht
𝑀 ↦,→ 𝑀′

𝑀 ⋅ 2 ↦,→ 𝑀′ ⋅ 2

lft-pair

⟨𝑀1,𝑀2⟩ ⋅ 1 ↦,→ 𝑀1

rht-pair

⟨𝑀1,𝑀2⟩ ⋅ 2 ↦,→ 𝑀2

app
𝑀1 ↦,→ 𝑀′

1

ap(𝑀1;𝑀2) ↦,→ ap(𝑀′
1;𝑀2)

app-lam

ap(𝜆(𝑥.𝑀);𝑀2) ↦,→ [𝑀2∕𝑥]𝑀

Figure 2: Typed 𝜆-Calculus Dynamics

yes Immediate, as yes final.

no Immediate, as no final.

unit Does not apply, not of type ans.

pair Does not apply, not of type ans.

lft By induction, um

rht By induction, um

lam Does not apply, not of type ans.

app By induction applied to the first premise, um

All cases are trivial, or completely unclear.
Well, because the subterms of a term of type ans need not have type ans, it seems clear that it is

necessary to strengthen the theorem to say something about terms of any type.

Lemma 4. If𝑀 ∶ 𝐴, then there exists𝑁 such that𝑁 final and𝑀 ↦,→
∗
𝑁.

The lemma suffices for the theorem because of the definition of finality for terms of type ans. Let
us consider the proof of this lemma.

var Does not apply to closed terms.

yes Immediate, as yes final.

no Immediate, as no final.

unit Immediate, as ⟨⟩ final.

3 September 28, 2024

pair Immediate, as ⟨𝑀1,𝑀2⟩ final.

lft By induction there exists 𝑁 such that 𝑁 final and𝑀 ↦,→
∗
𝑁. By preservation and the definition

of finality 𝑁 must be of the form ⟨𝑁1, 𝑁2⟩. By the definition of transition

𝑀 ⋅ 1 ↦,→
∗
⟨𝑁1, 𝑁2⟩ ⋅ 1 ↦,→ 𝑁1.

But now what?

rht Analogous, what to do with 𝑁2?

lam Immediate, as 𝜆(𝑥.𝑀2) final.

app By induction applied to the first premise there exists 𝑁1 such that 𝑁1 final and𝑀1 ↦,→
∗
𝑁1. By

preservation and the definition of finality 𝑁1 must have the form 𝜆(𝑥.𝑀). By the definition of
transition

ap(𝑀1;𝑀2) ↦,→
∗

ap(𝜆(𝑥.𝑀);𝑀2) ↦,→ [𝑀2∕𝑥]𝑀.

But now what?

In the projection cases the components of the pair are general terms about which nothing is known.
In the application case the value of the first argument is a 𝜆-abstraction whose body is an open term
(with free variable 𝑥) aboutwhich nothing is known. This suggests strengthening the lemma by proving
a property called hereditary termination, which is stronger than mere termination. It should have the
following characteristics in order to push through the proof of the strengthened lemma below:

1. A hereditarily terminating expression of type 1 should be terminating, and hence transition to ⟨⟩.

2. A hereditarily terminating expression of type ans should be terminating, and hence transition to
either yes or no.

3. A hereditarily terminating expression of type 𝐴1 ×𝐴2 should terminate with a pair ⟨𝑁1, 𝑁2⟩ such
that both 𝑁1 and 𝑁2 are hereditarily terminating.

4. A hereditarily terminating expression of type 𝐴2 → 𝐴 should terminate with a function 𝜆(𝑥.𝑀)
such that if𝑀2 is hereditarily terminating of type 𝐴2, then [𝑀2∕𝑥]𝑀 should be hereditarily ter-
minating at type 𝐴.

These conditions constitute a definition of the property 𝑀 is hereditarily terminating at type 𝐴, which
is defined for closed 𝑀 ∶ 𝐴. The first two cases are given outright; the others rely on hereditary ter-
mination at constituent types of a compound type. Thus, hereditary termination at a type is defined by
induction on the structure of the type.2

Lemma 5. If𝑀 ∶ 𝐴, then𝑀 is hereditarily terminating at type 𝐴.

2For reference the type-indexed family of predicates, HT𝐴(𝑀), defining hereditary termination is given in Figure 3.

4 September 28, 2024

HT1(𝑀) iff 𝑀 ↦,→
∗
⟨⟩

HTans(𝑀) iff 𝑀 ↦,→
∗

yes or𝑀 ↦,→
∗

no

HT𝐴1×𝐴2(𝑀) iff 𝑀 ↦,→
∗
⟨𝑀1,𝑀2⟩ and HT𝐴1(𝑀1) and HT𝐴2(𝑀2)

HT𝐴1→𝐴2(𝑀) iff 𝑀 ↦,→
∗
𝜆(𝑥.𝑀2) and HT𝐴1(𝑀1) implies HT𝐴2([𝑀1∕𝑥]𝑀2)

HTΓ(𝛾) iff HT𝐴(𝛾(𝑥)) for all 𝑥 ∶ 𝐴 ∈ Γ

Figure 3: Hereditary Termination, HT𝐴(𝑀)

The proof proceeds as before by induction on typing. The cases for the constants are immediate by
the definition of hereditary termination at base type.

The problematic elimination cases use the definition of hereditary termination, along with an addi-
tional property, called head expansion. Before stating it, let us see how it arises. Consider the rule lft
once again. By induction on the premise of the rule, HT𝐴1×𝐴2(𝑀). By the definition of hereditary ter-
mination𝑀 ↦,→

∗
⟨𝑀1,𝑀2⟩ and HT𝐴1(𝑀1). To show HT𝐴1(𝑀 ⋅ 1), observe that

𝑀 ⋅ 1 ↦,→
∗
⟨𝑀1,𝑀2⟩ ⋅ 1 ↦,→ 𝑀1.

To complete the proof it suffices to show that hereditary termination is closed under “reverse execution”.

Lemma 6 (Head Expansion). If HT𝐴(𝑀) and𝑀′ ↦,→ 𝑀, then HT𝐴(𝑀′).

Proof. Immediate, because the definition of hereditary termination is defined in terms of the evaluation
behavior of terms.

This completes the proof for the rule lft; rules rht and app are handled similarly.
What about the pair and function cases?

pair By induction𝑀1 is hereditarily terminating at 𝐴1 and𝑀2 is hereditarily terminating at type 𝐴2;
the goal is to show that ⟨𝑀1,𝑀2⟩ is hereditarily terminating at type 𝐴1 × 𝐴2. A pair is already a
value (final state), so an appeal to the inductive hypothesis suffices to finish the proof.

lam To show that 𝜆(𝑥.𝑀2) is hereditarily terminating at 𝐴1 → 𝐴2, show that whenever𝑀1 is heredi-
tarily terminating at 𝐴1, then [𝑀1∕𝑥]𝑀2 is hereditarily terminating at 𝐴2. But what to do?

The problem now is that in the function case there is no inductive hypothesis available to give us the
necessary information about the open term𝑀, which has one free variable, 𝑥, in it. The lemma must
be strengthened once more to account for open terms, even though the desired property applies only to
closed terms.

The judgment Γ ≫ 𝑀 ∈ 𝐴 is defined to mean that if HTΓ(𝛾), then HT𝐴(�̂�(𝑀)). We may then state
the fundamental theorem as follows:

5 September 28, 2024

Theorem 7. If Γ ⊢ 𝑀 ∶ 𝐴, then Γ≫𝑀 ∈ 𝐴.
Proof. The proof is by induction on typing derivations. The critical case is the last one in the preceding
attempt, for which the strengthened statement provides precisely what is needed to push the proof
through. The other cases require a bitmore care in handling the application of 𝛾 to the terms in question,
but there are no further obstacles to the proof.

And that is Tait’s Method!

Exercise 2. If termination is required only for closed programs of answer type, and not for higher types,
then a “negative” formulation of hereditary termination is sensible:

HT𝐴1×𝐴2(𝑀) iff HT𝐴1(𝑀 ⋅ 1) and HT𝐴2(𝑀 ⋅ 2)
HT𝐴1→𝐴2(𝑀) iff HT𝐴1(𝑀1) implies HT𝐴2(ap(𝑀;𝑀1))

Re-prove the termination theorem using this revised definition of hereditary termination at product and
function types.

Exercise 3. Finite sums, given by the empty type 0 and the binary sum, 𝐴1 + 𝐴2, require a “positive”
formulation of hereditary termination:

HT0(𝑀) iff (never)

HT𝐴1+𝐴2(𝑀) iff 𝑀 ↦,→
∗
1 ⋅𝑀1 and HT𝐴1(𝑀1), or

𝑀 ↦,→
∗
2 ⋅𝑀2 and HT𝐴2(𝑀2).

Extend the proof of termination to account for sum types based on these definitions. What would be a
“negative” formulation of sum types? What goes wrong?

For the next two exercises the typing and transition rules are given in Figure 4.

Exercise 4. Extend the termination proof to account for the type nat of natural numbers, generated by
zero and successor, and interpreted by iteration, under a lazy dynamics whereby any successor is a value,
regardless of the form of the predecessor. Define hereditary termination at type nat as the strongest property
𝒫 of𝑀 ∶ nat such that

1. If𝑀 ↦,→
∗

zero, then 𝒫(𝑀), and

2. If𝑀 ↦,→
∗

succ(𝑁) and 𝒫(𝑁), then 𝒫(𝑀).

From this definition derive a suitable induction principle to use in the proof of termination by Tait’smethod.

Exercise 5. Extend the termination proof to account for the type conat of co-natural numbers, whichmay
be tested for zero and successor, and introduced by a generator with internal state of arbitary type. Define
hereditary termination at type conat to be the weakest property 𝒫 of 𝑀 ∶ conat such that if 𝒫(𝑀), then
either

1. pred(𝑀) ↦,→
∗
1 ⋅ ⟨⟩, or

2. pred(𝑀) ↦,→
∗
2 ⋅𝑁 with 𝒫(𝑁).

From this definition derive a suitable coinduction principle using Tait’s method, and use this to prove the
fundamental theorem for the type conat.

6 September 28, 2024

nat-I-z

Γ ⊢ zero ∶ nat

nat-I-s
Γ ⊢ 𝑀 ∶ nat

Γ ⊢ succ(𝑀) ∶ nat

nat-E
Γ ⊢ 𝑀 ∶ nat Γ ⊢ 𝑀0 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑀1 ∶ 𝐴

Γ ⊢ natit 𝑀 {𝑀0 ∣ 𝑥.𝑀1} ∶ 𝐴

zero-val

zero val

succ-val

succ(𝑀) val

rec-step
𝑀 ↦,→ 𝑀′

natit 𝑀 {𝑀0 ∣ 𝑥.𝑀1} ↦,→ natit 𝑀0 {𝑥 ∣ 𝑀1.}

rec-step-z

natit zero {𝑀0 ∣ 𝑥.𝑀1} ↦,→ 𝑀0

rec-step-s

natit succ(𝑀) {𝑀0 ∣ 𝑥.𝑀1} ↦,→ [natit 𝑀 {𝑀0 ∣ 𝑥.𝑀1}∕𝑥]𝑀1

conat-E
Γ ⊢ 𝑀 ∶ conat

Γ ⊢ pred(𝑀) ∶ 1+ conat

conat-I
Γ ⊢ 𝑀 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑁 ∶ 1+𝐴

Γ ⊢ gen(𝑀;𝑥.𝑁) ∶ conat

pred-step
𝑀 ↦,→ 𝑀′

pred(𝑀) ↦,→ pred(𝑀′)

pred-gen

pred(gen(𝑀;𝑥.𝑁)) ↦,→ case [𝑀∕𝑥]𝑁 { _1.1 ⋅ ⟨⟩1 ∣ _2.1 ⋅ ⟨⟩2 }𝑦gen(𝑦;𝑥.𝑁)

Figure 4: Natural and Co-Natural Numbers

7 September 28, 2024

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, Cam-
bridge, England, Second edition, 2016.

Robert Harper. Tarski’s fixed point theorem. (Unpublished lecture note), Spring 2024. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/notes/tarski.pdf.

W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic, 32
(2):198–212, August 1967. ISSN 0022-4812, 1943-5886. doi: 10.2307/2271658. URL https://www.
cambridge.org/core/product/identifier/S0022481200113866/type/journal_article.

8 September 28, 2024

