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1 Introduction

Tarski’s theorem states that a monotone function on a complete lattice has a complete lattice of fixed
points, in particular a least and greatest. A useful class of special cases are powerset lattices ordered by
inclusion.

2 Tarski’s Theorem

Let 𝑋 be a set, not necessarily non-empty, and let℘𝑋 be the set of all subsets of 𝑋. The set℘𝑋 forms
a complete lattice under set inclusion, with meets given by intersection and joins given by union. That
is, if𝒳 ⊆ ℘𝑋, then

⋂
𝒳 is its meet (greatest lower bound) and

⋃
𝒳 is its join (least upper bound). The

least element is the join of the empty set, namely ∅, and the greatest element is the meet of the empty
set, namely 𝑋.

A function 𝐹 ∶ ℘𝑋 → ℘𝑋 ismonotone if it preserves inclusion: if 𝐴 ⊆ 𝐵 ⊆ 𝑋, then 𝐹(𝐴) ⊆ 𝐹(𝐵) ⊆

𝑋. For monotone 𝐹 on ℘𝑋, a pre-fixed point of 𝐹 is a set 𝐴 ⊆ 𝑋 such that 𝐹(𝐴) ⊆ 𝐴, and a post-fixed
point of 𝐹 is a set 𝐴 ⊆ 𝑋 such that 𝐴 ⊆ 𝐹(𝐴). A pre-fixed point of 𝐹 is also said to be 𝐹-closed and a
post-fixed point of 𝐹 is said to be 𝐹-consistent. A least pre-fixed point of a monotone 𝐹 is the smallest
(with respect to containment) 𝐹-closed set, and a greatest post-fixed point of 𝐹 is the largest (with respect
to containment) 𝐹-consistent set. Viewing the lattice as a (skinny) category, a monotone function 𝐹 on
it is a functor, a pre-fixed point of it is an 𝐹-algebra and a post-fixed point of it is an 𝐹-coalgebra. Thus, a
least pre-fixed point of 𝐹 is an initial 𝐹-algebra and a greatest post-fixed point of 𝐹 is a final 𝐹-coalgebra.

Everymonotone𝐹 ∶ ℘𝑋 → ℘𝑋 has a (unique) least pre-fixed point and (unique) greatest post-fixed
point, given by the equations

𝜇(𝐹) =
⋂

{𝐴 ⊆ 𝑋 ∣ 𝐹(𝐴) ⊆ 𝐴 }

𝜈(𝐹) =
⋃

{𝐴 ⊆ 𝑋 ∣ 𝐴 ⊆ 𝐹(𝐴) }

It is evident that 𝜇(𝐹) is contained in all pre-fixed points of 𝐹, it being their intersection. In fact 𝜇(𝐹)
is itself a pre-fixed point of 𝐹, 𝐹(𝜇(𝐹)) ⊆ 𝜇(𝐹), and it is thereby the least pre-fixed point. To see this, it
is enough to show that if 𝐹(𝐴) ⊆ 𝐴, then 𝐹(𝜇(𝐹)) ⊆ 𝐴. But if 𝐹(𝐴) ⊆ 𝐴, then 𝜇(𝐹) ⊆ 𝐴 by definition
of 𝜇(𝐹), and so, by monotonicity, 𝐹(𝜇(𝐹)) ⊆ 𝐹(𝐴) ⊆ 𝐴, as required. Then again by monotonicity
𝐹(𝐹(𝜇(𝐹))) ⊆ 𝐹(𝜇(𝐹)), which is to say that 𝐹(𝜇(𝐹)) is a pre-fixed point of 𝐹, and therefore 𝜇(𝐹) ⊆
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𝐹(𝜇(𝐹)). That is, 𝜇(𝐹) is a fixed point of 𝐹, and, because any fixed point is a pre-fixed point, it is the
least such. Dually, 𝜈(𝐹) contains all post-fixed points of 𝐹, it being their union, and, arguing dually to
the preceding, 𝜈(𝐹) is itself a post-fixed point of 𝐹. It is thus the greatest post-fixed point, and hence
a fixed point. (Categorially, this is Lambek’s Lemma, which states that the initial 𝐹-algebra and final
𝐹-coalgebra are isomorphisms.)

The least fixed point of a monotone 𝐹 on℘𝑋 affords the following induction principle: to show that
𝜇(𝐹) ⊆ 𝐴, it suffices to show that 𝐹(𝐴) ⊆ 𝐴, which is to say that 𝐴 is 𝐹-closed. Similarly, the greatest
post-fixed point, 𝜈(𝐹), of 𝐹 affords the following coinduction principle: to show that𝐴 ⊆ 𝜈(𝐹), it suffices
to show that 𝐴 ⊆ 𝐹(𝐴), which is to say that 𝐴 is 𝐹-consistent. Re-phrased in terms of predicates and
implication, the least fixed point of a monotone 𝐹 is the strongest property𝐴 of elements of 𝑋 such that
if 𝑥 ∈ 𝐹(𝐴), then 𝑥 ∈ 𝐴. Thus, to show that 𝑥 ∈ 𝜇(𝐹) implies 𝑥 ∈ 𝐴, it is enough to show that if
𝑥 ∈ 𝐹(𝐴), then 𝑥 ∈ 𝐴. Dually, the greatest fixed point of a monotone 𝐹 is the weakest property 𝐴 of
elements of 𝑋 such that if 𝑥 ∈ 𝐴, then 𝑥 ∈ 𝐹(𝐴).

As a case in point there are two proofs that 𝜇(𝐹) ⊆ 𝜈(𝐹), one using the minimality of 𝜇(𝐹), the
other using themaximality of 𝜈(𝐹). Because𝜇(𝐹) is the least pre-fixed point of𝐹, it is itself𝐹-closed, and
because 𝜈(𝐹) is the greatest post-fixed point of𝐹, it is itself𝐹-consistent. Thus, to show the containment
it suffices to show either that 𝜈(𝐹) is 𝐹-closed, 𝐹(𝜈(𝐹)) ⊆ 𝜈(𝐹), or that 𝜇(𝐹) is 𝐹-consistent, 𝜇(𝐹) ⊆
𝐹(𝜇(𝐹)). But these are exactly the converse containments that were obtained earlier to show that 𝜇(𝐹)
and 𝜈(𝐹) are fixed points of 𝐹.

Yet another perspective on the least pre-fixed point and greatest post-fixed point of a monotone 𝐹 is
provided by the following visualization of inductive and coinductive proofs. To show that every element
of 𝜇(𝐹) is also in some set 𝐴 representing a property of interest, it is enough to show that 𝜇(𝐹) ∩ 𝐴 is
closed under 𝐹. For if it is, then 𝜇(𝐹) is contained in this intersection, and hence in𝐴. The intersection
𝜇(𝐹)∩𝐴 is a priori smaller than 𝜇(𝐹), consisting only of those elements of 𝜇(𝐹) that are “good enough”
to have property 𝐴. But if the intersection is not so restrictive as to not be closed under 𝐹, then in
fact the intersection is no restriction at all, it being that 𝜇(𝐹) ∩ 𝐴 = 𝜇(𝐹). Dually, to show that some
collection 𝐴 ⊆ 𝑋 of elements is contained in 𝜈(𝐹), it is enough to boldly assert that they are by forming
𝜈(𝐹) ∪ 𝐴, which is a priori larger than 𝜈(𝐹). But if the union is consistent with 𝐹, then the assertion of
𝐴 is indefeasible, and hence 𝜈(𝐹) ∪ 𝐴 ⊆ 𝜈(𝐹). The union is not, in fact, larger than 𝜈(𝐹) after all—the
elements of 𝐴 were present from the get-go.

It is also possible to show that the meet and join of any set of fixed points of a monotone function is
itself a fixed point, but this seems not to be as useful as the construction of a least and greatest. Because
the development relies only on the universal properties of intersection and union, their being the meet
and join, respectively, with respect to set containment, it is straightforward to obtain Tarski’s Theorem
in full, which is stated for complete lattices, those pre-orders for which all subsets havemeets and joins.

3 Bekić’s Lemma

It often arises that two sets (properties) are to be simultaneously inductively defined because the def-
inition of each depends on the other. This situation can be expressed by considering two monotone
operators 𝐹, 𝐺 ∶ ℘𝑋 × ℘𝑋 → ℘𝑋 in the sense that if 𝐴 ⊆ 𝐴′ and 𝐵 ⊆ 𝐵′, then 𝐹(𝐴, 𝐵) ⊆ 𝐹(𝐴′, 𝐵′)

and 𝐺(𝐴, 𝐵) ⊆ 𝐺(𝐴′, 𝐵′). The operator (𝐹, 𝐺)(𝐴, 𝐵) ≝ (𝐹(𝐴, 𝐵), 𝐺(𝐴, 𝐵)) is therefore monotone with
respect to the componentwise ordering, (𝐴, 𝐵) ⊆ (𝐴′, 𝐵′) iff 𝐴 ⊆ 𝐴′ and 𝐵 ⊆ 𝐵′. By arguments anal-
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ogous to those given above1 it has a least fixed point, 𝜇(𝐹, 𝐺), a pair (𝐴0, 𝐵0) of subsets of 𝑋 such that
𝐹(𝐴0, 𝐵0) = 𝐴0 and 𝐺(𝐴0, 𝐵0) = 𝐵0, each “cross-referencing” the other as intended.

It is also possible to manage the interdependencies by an iterated process of taking least fixed points
of monotone operators on℘𝑋. Given 𝐹 and 𝐺 as above, define their curried forms by 𝐹𝐵(𝐴) ≝ 𝐹(𝐴, 𝐵),
which fixes the 𝐵 argument of 𝐹, and 𝐺𝐴(𝐵) = 𝐺(𝐴, 𝐵), which fixes the 𝐴 argument of 𝐺. These are
both monotone, and hence admit least fixed points, 𝜇(𝐹𝐵) = 𝐹𝐵(𝜇(𝐹𝐵)) = 𝐹(𝜇(𝐹𝐵), 𝐵), which solves
for 𝐴 parametrically in 𝐵, and 𝜇(𝐺𝐴) = 𝐺𝐴(𝜇(𝐺𝐴)) = 𝐺(𝐴, 𝜇(𝐺𝐴)), which solves for 𝐵 parametrically
in 𝐴. The maps 𝐴 ↦,→ 𝐹(𝐴, 𝜇(𝐺𝐴)) and 𝐵 ↦,→ 𝐺(𝜇(𝐹𝐵), 𝐵) are also monotone, and hence themselves
have least fixed points. Bekić’s Lemma implies that the simultaneous fixed point can be separated into
a pair of iterated fixed points:

𝜇(𝐹, 𝐺) = (𝜇(𝐴 ↦,→ 𝐹(𝐴, 𝜇(𝐺𝐴))), 𝜇(𝐵 ↦,→ 𝐺(𝜇(𝐹𝐵), 𝐵))).

These equations may be deduced from Bekic̀’s eponymous lemma.

Lemma 1 (Bekić). For monotone 𝐹, 𝐺 ∶ ℘𝑋 ×℘𝑋 → ℘𝑋,

𝜇(𝐹, 𝐺) = (𝐴0, 𝐵0), where 𝐴0 = 𝜇(𝐴 ↦,→ 𝐹(𝐴, 𝜇(𝐺𝐴))) and 𝐵0 = 𝜇(𝐺𝐴0).

Proof. First, note that𝐴0 = 𝐹(𝐴0, 𝜇(𝐺
𝐴0)) = 𝐹(𝐴0, 𝐵0) and𝐵0 = 𝐺𝐴0(𝐵0) = 𝐺(𝐴0, 𝐵0), so (𝐹, 𝐺)(𝐴0, 𝐵0) =

(𝐴0, 𝐵0) is a pre-fixed point of (𝐹, 𝐺). Then, suppose that (𝐹, 𝐺)(𝐴, 𝐵) ⊆ (𝐴, 𝐵) is another pre-fixed
point of (𝐹, 𝐺), and show that (𝐴0, 𝐵0) ⊆ (𝐴, 𝐵). Expanding, (𝐹, 𝐺)(𝐴, 𝐵) = (𝐹(𝐴, 𝐵), 𝐺(𝐴, 𝐵)), and so
𝐺𝐴(𝐵) = 𝐺(𝐴, 𝐵) ⊆ 𝐵, and therefore 𝜇(𝐺𝐴) ⊆ 𝐵, and so by monotonicity 𝐹(𝐴, 𝜇(𝐺𝐴)) ⊆ 𝐹(𝐴, 𝐵) ⊆ 𝐴.
But𝐴0 is the least such set, so𝐴0 ⊆ 𝐴. Moreover,𝐵0 ⊆ 𝐵 because𝜇(𝐺𝐴0) ⊆ 𝜇(𝐺𝐴) ⊆ 𝐵 bymonotonicity,
and 𝐵0 is the least such set.

By a symmetric argument it may be proved that

𝜇(𝐹, 𝐺) = (𝐴′
0
, 𝐵′

0
), where 𝐴′

0
= 𝜇(𝐹𝐵′

0
) and 𝐵′

0
= 𝜇(𝐵 ↦,→ 𝐺(𝜇(𝐹𝐵), 𝐵)).

4 Assertions and Rules

A typical application of the fixed point constructions is to justify the definition of one ormore assertions,
or formal judgments, by a collection of rules. The idea is that the rules constitute an inductive definition
of the mentioned assertions. For example, the following rules define the judgment 𝑛 𝗇𝖺𝗍, stating that 𝑛
is a natural number:

zero

𝚣𝚎𝚛𝚘 𝗇𝖺𝗍

succ
𝑛 𝗇𝖺𝗍

𝚜𝚞𝚌𝚌(𝑛) 𝗇𝖺𝗍

Similarly, the even and odd numbers may be simultaneously defined by the following rules:

zero-even

𝚣𝚎𝚛𝚘 𝖾𝗏𝖾𝗇

succ-odd
𝑛 𝖾𝗏𝖾𝗇

𝚜𝚞𝚌𝚌(𝑛) 𝗈𝖽𝖽

succ-even
𝑛 𝗈𝖽𝖽

𝚜𝚞𝚌𝚌(𝑛) 𝖾𝗏𝖾𝗇

1This is where the (mild) generalization of Tarski’s Theorem to complete lattices is helpful.
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In both cases the subjects of the assertions are abstract binding trees in the sense of Harper (2016),
among which are those used above.

The forms of assertion may be thought of as labels that distinguish one from another. Thus, the
underlying set 𝑋 of the inductive definition is the collection of assertions consisting of an abt together
with a label drawn from the set of such forms. Each rule 𝑟 is of the form

𝑗1…𝑗𝑛

𝑗

wherein the 𝑗𝑖’s and 𝑗 are assertions (elements of𝑋). Each such rule 𝑟 determines a monotone function
𝐹𝑟 ∶ ℘𝑋 → ℘𝑋 that applies rule 𝑟 to a given set 𝐴 ⊆ 𝑋 of assertions:

𝐹𝑟(𝐴) = { 𝑗 ∈ 𝑋 ∣ 𝑗1, … , 𝑗𝑛 ∈ 𝐴 }.

A set 𝑅 of rules induces a monotone function that collectively closes up under each rule in the set:

𝐹𝑅(𝐴) =
⋃

𝑟∈𝑅

𝐹𝑟(𝐴).

The assertions defined by the set of rules 𝑅 are precisely those in 𝜇(𝐹𝑅). The principle of rule induction
is simply the induction principle associated with the least fixed point of 𝐹𝑅.

Exercise 1. Prove by induction on the rules defining the assertion 𝑛 𝗇𝖺𝗍 that if 𝑛 𝗇𝖺𝗍 then either 𝑛 is 𝚣𝚎𝚛𝚘,
or there exists 𝑛′ 𝗇𝖺𝗍 such that 𝑛 is 𝚜𝚞𝚌𝚌(𝑛′). That is, the defining rules for an inductively defined assertion,
in this 𝑛 𝗇𝖺𝗍, may be “inverted” in that they are necessary as well as sufficient conditions for the validity of
the assertion.

What about the greatest fixed point 𝜈(𝐹𝑅)? As remarked earlier, 𝜈(𝐹𝑅) contains 𝜇(𝐹𝑅), but is the
containment strict? The answer depends on the choice of subjects for the assertions in 𝑋. For an object
to be in the least fixed point of a rule set means that it must be forced to be so by applying rules. But to
be in the greatest fixed point means only that if an assertion is in it, and if it arises as the conclusion of
some rule in 𝑅, then the premises of that rule must also be present. This condition allows for circular
reasoning in the presence of self-referential syntactic objects. For example, suppose that𝜔 is the infinite
stack of successors 𝚜𝚞𝚌𝚌(𝚜𝚞𝚌𝚌(𝚜𝚞𝚌𝚌(… ))), which is to say that 𝜔 = 𝚜𝚞𝚌𝚌(𝜔), it is its own successor.2
Considering the greatest fixed point interpretation of the rules defining the natural numbers, the judg-
ment 𝜔 𝗇𝖺𝗍 is valid in that interpretation. Assuming that this is the case, and noting that 𝜔 is successor
of itself, the sole rule governing the successor requires that 𝜔 𝗇𝖺𝗍, precisely what is being assumed.

Exercise 2. Consider that 𝜔 and 𝜔′ are cosntructed so that 𝜔 = 𝚜𝚞𝚌𝚌(𝜔′) and that 𝜔′ = 𝚜𝚞𝚌𝚌(𝜔)—they
are each other’s successor. Prove that, in the greatest fixed point, both 𝜔 𝗇𝖺𝗍 and 𝜔′ 𝗇𝖺𝗍 are valid. Similarly,
consider that 𝜔 is constructed so that 𝜔 = 𝚜𝚞𝚌𝚌(𝚜𝚞𝚌𝚌(𝜔)); prove that, once again, 𝜔 𝗇𝖺𝗍 is valid in the
coinductive interpretation of the rules defining the natural numbers.

2If you are wondering how this could come about, just consider that the syntactic objects are graphs, rather than trees,
with cycles allowed.
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