
Semantic Equality for Typed 𝜆-Calculus*

Robert Harper

Spring 2024

1 Introduction

The unary logical relations developed inHarper (2024)may be extended fromunary predicates to binary
relations. In binary form these relations define exact equality at each type. Unlike axiomatic accounts
(those given by rules) exact equality defines when two terms of a type are semantically equal. For exam-
ple, the “add-to-self” and “doubling” functions on the natural numbers are exactly equal, because they
have the same I/O behavior. This formulation—the standard one for equality of functions—is called
extensional equality.

This note defines exact equality for terms of each type, and establishes some basic properties of it,
in particular that it is an equivalence relation that is compatible with the term-forming operations, and
that it respects—and thus contains—evaluation.

2 Exact Equality

The definition of exact equality is very similar to the definition of hereditary termination given inHarper
(2024).

𝑀 .= 𝑀′ ∈ ans iff 𝑀,𝑀′ ↦,→
∗

yes or𝑀,𝑀′ ↦,→
∗

no

𝑀 .= 𝑀′ ∈ unit iff 𝑀,𝑀′ ↦,→
∗
⟨⟩

𝑀 .= 𝑀′ ∈ 𝐴1 × 𝐴2 iff 𝑀 ↦,→
∗
⟨𝑀1,𝑀2⟩,𝑀′ ↦,→

∗
⟨𝑀′

1,𝑀
′
2⟩, and

𝑀1
.= 𝑀′

1 ∈ 𝐴1 and𝑀2
.= 𝑀′

2 ∈ 𝐴2

𝑀 .= 𝑀′ ∈ 𝐴1 → 𝐴2 iff 𝑀 ↦,→
∗
𝜆(𝑥.𝑁),𝑀′ ↦,→

∗
𝜆(𝑥.𝑁′), and

if𝑀1
.= 𝑀′

1 ∈ 𝐴1 then [𝑀1∕𝑥]𝑁
.= [𝑀′

1∕𝑥]𝑁
′ ∈ 𝐴2

The judgment𝑀 ∈ 𝐴 is defined to mean𝑀 .= 𝑀 ∈ 𝐴.
If exact equality is to be so-called, it ought to be symmetric and transitive.

Lemma 1. 1. If𝑀 .= 𝑀′ ∈ 𝐴 then𝑀′ .= 𝑀 ∈ 𝐴.

*Copyright © Robert Harper. All Rights Reserved

1



2. If𝑀 .= 𝑀′ ∈ 𝐴 and𝑀′ .= 𝑀′′ ∈ 𝐴, then𝑀 .= 𝑀′′ ∈ 𝐴.

Proof. By induction on 𝐴. Consider the case 𝐴 = 𝐴1 → 𝐴2.

1. Suppose that 𝑀 .= 𝑀′ ∈ 𝐴 with the goal to show that 𝑀′ .= 𝑀 ∈ 𝐴. By assumption 𝑀 ↦,→
∗

𝜆(𝑥.𝑁) and 𝑀′ ↦,→
∗
𝜆(𝑥.𝑁′). Assume that 𝑀′

1
.= 𝑀1 ∈ 𝐴1, with the intent to show that

[𝑀′
1∕𝑥]𝑁

′ .= [𝑀1∕𝑥]𝑁 ∈ 𝐴2. A direct application of the outer assumption yields [𝑀1∕𝑥]𝑁′ .=
[𝑀′

1∕𝑥]𝑁 ∈ 𝐴2, which is not what is required. However, exact equality at both𝐴1 and𝐴2 is sym-
metric. First, appealing to symmetry at 𝐴1, from the assumption𝑀′

1
.= 𝑀1 ∈ 𝐴1 it follows that

𝑀1
.= 𝑀′

1 ∈ 𝐴1, and hence by the outer assumption [𝑀1∕𝑥]𝑁
.= [𝑀′

1∕𝑥]𝑁
′ ∈ 𝐴2. Then, applying

symmetry at 𝐴2, the desired result follows.

2. Suppose that 𝑀 .= 𝑀′ ∈ 𝐴 and 𝑀′ .= 𝑀′′ ∈ 𝐴 with the goal to show that 𝑀 .= 𝑀′′ ∈ 𝐴. By
the definition of exact equality at function type, the two assumptions imply that𝑀 ↦,→

∗
𝜆(𝑥.𝑁),

𝑀′ ↦,→
∗
𝜆(𝑥.𝑁′), and𝑀′′ ↦,→

∗
𝜆(𝑥.𝑁′′). Now suppose that𝑀1

.= 𝑀′′
1 ∈ 𝐴1 with the intent to

show that [𝑀1∕𝑥]𝑁
.= [𝑀′′

1 ∕𝑥]𝑁
′′ ∈ 𝐴2. Here again a direct application of the outer assumptions

does not seem to help, obtaining

(a) [𝑀1∕𝑥]𝑁
.= [𝑀′′

1 ∕𝑥]𝑁
′ ∈ 𝐴2, and

(b) [𝑀1∕𝑥]𝑁′ .= [𝑀′′
1 ∕𝑥]𝑁

′′ ∈ 𝐴2.

Note that a symmetric and transitive relation is reflexive on related elements: if 𝑅(𝑀,𝑀′) then
𝑅(𝑀′,𝑀), and so 𝑅(𝑀,𝑀) and 𝑅(𝑀′,𝑀′). By the inductive assumptions equality at type 𝐴1 is
symmetric and transitive, and so 𝑀 .= 𝑀 ∈ 𝐴1 follows from the inner assumption. Then, by
the first outer assumption, [𝑀∕𝑥]𝑁 .= [𝑀∕𝑥]𝑁′ ∈ 𝐴2. Applying the second displayed equation
above, and the transitivity of equality at 𝐴2, the result follows.

Symmetric and transitive relations are called partial equivalence relations, or p.e.r.’s. The remark in
the proof about deriving reflexivity for related elements, called the “p.e.r. trick,” will be of further use
below.

Exercise 1. Check the remaining cases of symmetry and transitivity.

The analogue of the fundamental theorem in Harper (2024) is the reflexivity of exact equality. De-
fine 𝛾 .= 𝛾′ ∈ Γ variable-by-variable and define Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴 to mean if 𝛾 .= 𝛾′ ∈ Γ, then
𝛾̂(𝑀) .= 𝛾′(𝑀′) ∈ 𝐴.

Lemma 2 (Head Expansion). If𝑀 .= 𝑀′ ∈ 𝐴 and𝑁 ↦,→ 𝑀, then𝑁 .= 𝑀′ ∈ 𝐴.

The analogous propery for the right-hand side of the equation follows from symmetry, or may be
proved separately by an analogous argument.

Theorem 3 (Reflexivity). If Γ ⊢ 𝑀 ∶ 𝐴, then Γ ≫ 𝑀 ∈ 𝐴.

Proof. By induction on typing derivations, proceeding analogously to the proof given in Harper (2024).

2 September 28, 2024



Observe that the full meaning of reflexivity of open terms involves disparate substitution instances
of them. This is necessitated by the definition of computability at function types.

The fundamental theorem tells us that well-typed terms are exactly equal to themselves. At first this
may sound trivial, but because exact equality is a behavioral condition on evaluation, it requires proof,
and can even fail when a type system is not properly designed. By Lemma 1 exact equality for closed
terms is symmetric and transitive. However, this does not immediately imply that the same is true for
open terms!

Lemma 4 (Symmetry and Transitivity). 1. If Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴, then Γ ≫ 𝑀′ .= 𝑀 ∈ 𝐴.

2. If Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴 and Γ ≫ 𝑀′ .= 𝑀′′ ∈ 𝐴, then Γ ≫ 𝑀 .= 𝑀′′ ∈ 𝐴.
Proof. 1. Assume that Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴, and suppose that 𝛾′ .= 𝛾 ∈ Γ, with the intent to show

that 𝛾′(𝑀′) .= 𝛾̂(𝑀) ∈ 𝐴. Simply instantiating the assumption yields 𝛾′(𝑀) .= 𝛾̂(𝑀′) ∈ 𝐴, which
is neither the intended result, nor its symmetric form. Instead, by the symmetry of closed exact
equality, 𝛾 .= 𝛾′ ∈ Γ holds as well, so that instantiating the assumption yields the desired result.

2. Assume the two premises, and suppose that 𝛾 .= 𝛾′′ ∈ Γ, with the intent to show 𝛾̂(𝑀) .=
𝛾′′(𝑀′′) ∈ 𝐴. Instantiating the two premises directly yields

(a) 𝛾̂(𝑀) .= 𝛾′′(𝑀′) ∈ 𝐴, and
(b) 𝛾̂(𝑀′) .= 𝛾′′(𝑀′′) ∈ 𝐴.

These do not combine to yield the desired result. Instead, using again that the supposition gov-
erning the substitutions implies that 𝛾 .= 𝛾 ∈ Γ, we obtain 𝛾̂(𝑀) .= 𝛾̂(𝑀′) ∈ 𝐴, which combines
with the second equation above by transitivity to yield the desired conclusion.

The rules in Figure 1 may be validated as expressing true exact equations.

Theorem 5 (Equational Validity). If Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴, then 𝛾̂(𝑀) .= 𝛾′(𝑁) ∈ 𝐴 for all 𝛾 .= 𝛾′ ∈ Γ.
Proof. The proof is by induction on the derivation of the equation, making use of the lemmas given
above, including head expansion and reflexivity lemmas. The rules are formulatedwith typing premises
that are essential to the argument. In particular the rule for 𝛽-equivalence for function types relies on
the combination of the two typing premises to obtain an equation between two instances of the right-
hand side of the equation, with the result then following by head expansion.

Exercise 2. Complete the proof of Theorem 5 in the indicated manner. Which typing premises, if any, are
needed to complete the proof?

Semantic equality may be extended to the empty type, sum types, and natural numbers type as
follows.

𝑀 .= 𝑀′ ∈ void iff (never)

𝑀 .= 𝑀′ ∈ 𝐴1 + 𝐴2 iff 𝑀 ↦,→
∗
1 ⋅ 𝑀1, 𝑀′ ↦,→

∗
1 ⋅ 𝑀′

1 and𝑀1
.= 𝑀′

1 ∈ 𝐴1 or

𝑀 ↦,→
∗
2 ⋅ 𝑀2, 𝑀′ ↦,→

∗
2 ⋅ 𝑀′

2 and𝑀2
.= 𝑀′

2 ∈ 𝐴1

𝑀 .= 𝑀′ ∈ nat iff𝒩(𝑀,𝑀′), where𝒩 is the strongest relation such that𝒩(𝑀,𝑀′) if

𝑀,𝑀′ ↦,→
∗

zero, or𝑀 ↦,→
∗

succ(𝑁), 𝑀′ ↦,→
∗

succ(𝑁′) and𝒩(𝑁,𝑁′).

3 September 28, 2024



refl
Γ ⊢ 𝑀 ∶ 𝐴

Γ ⊢ 𝑀 ≡ 𝑀 ∶ 𝐴

sym
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴
Γ ⊢ 𝑁 ≡ 𝑀 ∶ 𝐴

trans
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴 Γ ⊢ 𝑁 ∶ 𝐴 Γ ⊢ 𝑁 ≡ 𝑃 ∶ 𝐴

Γ ⊢ 𝑀 ≡ 𝑃 ∶ 𝐴

1-𝜂
Γ ⊢ 𝑀 ∶ 1

Γ ⊢ 𝑀 ≡ ⟨⟩ ∶ 1

×-I
Γ ⊢ 𝑀1 ≡ 𝑁1 ∶ 𝐴1 Γ ⊢ 𝑀2 ≡ 𝑁2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ≡ ⟨𝑁1, 𝑁2⟩ ∶ 𝐴1 × 𝐴2

×-E-L
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 1 ≡ 𝑁 ⋅ 1 ∶ 𝐴1

×-E-R
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ⋅ 2 ≡ 𝑁 ⋅ 2 ∶ 𝐴1

×-𝛽-L
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ⋅ 1 ≡ 𝑀1 ∶ 𝐴1

×-𝛽-R
Γ ⊢ 𝑀1 ∶ 𝐴1 Γ ⊢ 𝑀2 ∶ 𝐴2

Γ ⊢ ⟨𝑀1,𝑀2⟩ ⋅ 2 ≡ 𝑀2 ∶ 𝐴2

×-𝜂
Γ ⊢ 𝑀 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝑀 ≡ ⟨𝑀 ⋅ 1,𝑀 ⋅ 2⟩ ∶ 𝐴1 × 𝐴2

→-I
Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑀2 ≡ 𝑁2 ∶ 𝐴2

Γ ⊢ 𝜆(𝑥.𝑀2) ≡ 𝜆(𝑥.𝑁2) ∶ 𝐴1 → 𝐴2

→-E
Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴1 → 𝐴2 Γ ⊢ 𝑀1 ≡ 𝑁1 ∶ 𝐴1

Γ ⊢ ap(𝑀;𝑀1) ≡ ap(𝑁;𝑁1) ∶ 𝐴2

→-𝛽
Γ, 𝑥∶𝐴1 ⊢ 𝑀2 ∶ 𝐴2 Γ ⊢ 𝑀1 ∶ 𝐴1

Γ ⊢ ap(𝜆(𝑥.𝑀2);𝑀1) ≡ [𝑀1∕𝑥]𝑀2 ∶ 𝐴2

→-𝜂
Γ ⊢ 𝑀 ∶ 𝐴1 → 𝐴2

Γ ⊢ 𝑀 ≡ 𝜆(𝑥. ap(𝑀;𝑥)) ∶ 𝐴1 → 𝐴2

Figure 1: Definitional Equivalence

4 September 28, 2024



Exact equality of natural numbers is inductively defined by the stated (and expected) conditions.
To prove that some property holds of exactly equal natural numbers, it suffices to exhibit a relation 𝑅
that satisfies the stated conditions. This is not exactly mathematical induction, but is obviously and
intentionally closed related to it.

Exercise 3. What equations should be added to the rules in Figure 1 to account for sums? State these, and
prove that they are semantically valid. Pay special attention to 𝜂-like principles, which characterize all of
the elements of a type.

Exercise 4. Extend the rules in Figure 1 to account for natural numbers, and verify that they are valid
with respect to semantic equality. What 𝜂-like principles are feasible? What limitations do you encounter?

Exercise 5. Define exact equality for co-natural numbers, and prove reflexivity for the corresponding ex-
tension of the statics. What reasoning principle is validated by your definition of semantic equality for this
type? What are appropriate equations for these constructs, and why are they valid?

3 Zig-Zag Closure

Proving Lemma 1 at the outset makes use of, and makes available, the “p.e.r. trick” in the proof of
Lemma 4. Another line of argumentation in the proof of Lemma 4 leads to an interesting variation on
the foregoing development that will be essential in more general settings (see Harper (2020).) In this
formulation reflexivity is taken as a presupposition of the exact equality judgment, which is to say that
when speaking of Γ ≫ 𝑀 .= 𝑀′ ∈ 𝐴, it is pre-supposed that𝑀 and𝑀′ are semantically sensible.

Let us then revisit the proof of Lemma 4 with this in mind. In both the symmetric and transitive
cases the presuppositions are instantiated with the given substitutions, yielding the horizontal lines,
oriented left-to-right, as depicted in Figure 3. The (solid) diagonal lines are provided by similarly in-
stantiating the assumptions. The desired conclusions are then indicated by the dashed lines. In each
case the diagonal is the completion of a zig-zag as depicted abstractly in Figure 2. Given Lemma 1 the
desired completionsmay be obtained using symmetry to reverse the orientation of a line and transitivity
to compose lines, and hence to complete these zig-zags, finishing the proofs.

This suggests another perspective. A binary relation 𝑅 is zig-zag complete iff 𝑅◦𝑅op◦𝑅 ⊆ 𝑅; that is,
if 𝑅(𝑀,𝑀′) and 𝑅(𝑁,𝑀′) and 𝑅(𝑁,𝑁′), then 𝑅(𝑀,𝑁′). A useful visualization is given in Figure 2 in
which the premises are indicated by solid lines and the conclusion by the dashed line, bearing in mind
that these lines are oriented from left to right. Noting that the only use of symmetry and transivity in
the foregoing development is in the proof of Lemma 4, it is sufficient to prove that the relations are,
instead, zig-zag complete, and then to appeal to this property directly to complete the (reformulated)
proof of symmetry and transitivity for open terms.

Exercise 6. Prove that closed exact equality is zig-zag complete by induction on type.

The reflexivity of exact equality is the statement that well-typed terms satisfy the behavioral condi-
tions dictated by their types.

Theorem 6 (Reflexivity, Revisited). If Γ ⊢ 𝑀 ∶ 𝐴, then Γ ≫ 𝑀 ∈ 𝐴.

Exercise 7. Prove the reflexivity theorem by induction on typing.

The soundness theorem for the derivable equations is reformulated as follows. Then, the validity
theorem is formulated as follows:

5 September 28, 2024



𝑀 𝑀′

𝑁 𝑁′

Figure 2: Zig-Zag Completeness

Theorem 7 (Equational Validity, Revisited). If Γ ⊢ 𝑀 ≡ 𝑁 ∶ 𝐴, then Γ ≫ 𝑀 ∈ 𝐴 and Γ ≫ 𝑁 ∈ 𝐴
imply Γ ≫ 𝑀 .= 𝑁 ∈ 𝐴.

The two membership conditions in Theorem 7 express the presuppositions required for the truth of an
equation.

Figure 3 illustrates the proof of symmetry and transitivity in terms of zig-zag diagrams.

Exercise 8. Prove the validity of the symmetry and transitivity rules given in Figure 1 in the sense of The-
orem 7. What makes the typing premise on the transitivity rule necessary?

Exercise 9. Prove the validity of the 𝛽 and 𝜂 equality rules given in Figure 1 in the sense of Theorem 7.
Given the presuppositions, which, if any, of the typing premises are necessary?

Observe that the reflexity rule is trivially validated by the presupposition, which may be discharged
by applying Theorem 6.

References

Robert Harper. Reynolds’s parametricity theorem, directly. Unpublished lecture note, Spring 2020.
URL https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/reynolds.pdf.

Robert Harper. How to (re)invent Tait’s method. Unpublished lecture note, Spring 2024. URL https:
//www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf.

Neelakantan R. Krishnaswami and Derek Dreyer. Internalizing Relational Parametricity in the Exten-
sional Calculus of Constructions. pages 20 pages, 591837 bytes, 2013. ISSN 1868-8969. doi: 10.
4230/LIPICS.CSL.2013.432. URL https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.CSL.2013.432. Artwork Size: 20 pages, 591837 bytes ISBN: 9783939897606Medium: appli-
cation/pdf Publisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Per Martin-Löf. Constructive mathematics and computer programming. In L. Jonathan Cohen, Jerzy
Łoś, Helmut Pfeiffer, andKlaus-Peter Podewski, editors, Logic,Methodology andPhilosophy of Science
VI, Proceedings of the Sixth International Congress of Logic, Methodology and Philosophy of Science,
Hannover 1979, volume 104 of Studies in Logic and the Foundations of Mathematics, pages 153–175.
North-Holland, 1982. doi: 10.1016/S0049-237X(09)70189-2. URL http://dx.doi.org/10.1016/
S0049-237X(09)70189-2.

6 September 28, 2024



(Presupp)
𝛾(𝑁) 𝛾′(𝑁)

(Presupp)

(Assume)

𝛾(𝑀) 𝛾′(𝑀)

𝛾̂(𝑀) 𝛾′(𝑀)

𝛾̂(𝑁) 𝛾′(𝑁)

𝛾̂(𝑃) 𝛾′(𝑃)

Figure 3: Symmetry and Transitivity via Zig-Zag Completeness

7 September 28, 2024


