Adequacy of Regular Expression Encoding (Forward Direction)

Stephen Magill

Theorem. If $x \in L(r)$ then $\Gamma_r(s, f)$; $\vdash \forall y$. $s(x \cdot y) \multimap f(y)$.

Proof. We proceed by structural induction on r.

Case $r = r_1 \cap r_2$:

By our construction,
$$\Gamma_r(s, f) = \forall x. \ s(x) \multimap s_1(x) \otimes s_2(x)$$

 $\Gamma_{r_1}(s_1, f_1)$
 $\Gamma_{r_2}(s_2, f_2)$
 $\forall x. \ f_1(x) \otimes f_2(x) \multimap f(x)$

By our inductive hypothesis,

If
$$x_1 \in L(r_1)$$
 then $\Gamma_{r_1}(s_1, f_1)$; $\vdash \forall y. \ s_1(x_1 \cdot y) \multimap f_1(y)$.

and

If
$$x_2 \in L(r_2)$$
 then $\Gamma_{r_2}(s_2, f_2)$; $\vdash \forall y. \ s_2(x_2 \cdot y) \multimap f_2(y)$.

We will use these facts to construct a proof that if $x \in L(r)$ then $\Gamma_r(s, f)$; $\vdash \forall y. \ s(x \cdot y) \multimap f(y)$.

Assume $x \in L(r)$. Since $r = r_1 \cap r_2$, we have that $x \in L(r_1) \cap L(r_2)$ and thus $x \in L(r_1)$ and $x \in L(r_2)$. This satisfies the conditions in the inductive hypotheses and thus gives us the following facts:

$$\Gamma_{r_1}(s_1, f_1); \cdot \Vdash \forall y. \ s_1(x \cdot y) \multimap f_1(y)$$

$$\Gamma_{r_2}(s_2, f_2); \cdot \Vdash \forall y. \ s_2(x \cdot y) \multimap f_2(y)$$

We can apply weakening (which holds for the unrestricted context) to get

$$\Gamma_r(s, f); \quad \Vdash \quad \forall y. \ s_1(x \cdot y) \multimap f_1(y)$$
 (1)

$$\Gamma_r(s, f); \quad \Vdash \quad \forall y. \ s_2(x \cdot y) \multimap f_2(y)$$
 (2)

Now we must prove $\Gamma_r(s, f)$; $\vdash \forall y. \ s(x \cdot y) \multimap f(y)$.

And here is a proof:

$$\frac{\overline{\Gamma_r(s,f);\cdot \Vdash \forall x.\ f_1(x)\otimes f_2(x) \multimap f(x)}}{\Gamma_r(s,f);\cdot \Vdash f_1(y')\otimes f_2(y') \multimap f(y')} \underbrace{\forall E}_{\begin{array}{c}\Gamma_r(s,f);s(x\cdot y') \Vdash f(y')\\\hline \Gamma_r(s,f);s(x\cdot y') \vdash f(y')\\\hline \overline{\Gamma_r(s,f);\cdot \Vdash s(x\cdot y') \multimap f(y')} \multimap I\\\hline \overline{\Gamma_r(s,f);\cdot \Vdash s(x\cdot y') \multimap f(y)} \forall I^{y'}\end{array}}_{\begin{array}{c}\Gamma_r(s,f);\cdot \Vdash \forall y.\ s(x\cdot y) \multimap f(y)\end{array}} \underbrace{\vdots}_{\begin{array}{c}\Gamma_r(s,f);s(x\cdot y') \vdash f(y')\\\hline \Gamma_r(s,f);\cdot \Vdash \forall y.\ s(x\cdot y) \multimap f(y)\end{array}}_{\begin{array}{c}\Gamma_r(s,f);\cdot \vdash \forall y.\ s(x\cdot y) \multimap f(y)\end{array}}$$

This is where things started getting less clear in recitation. It's also where the proof tree starts getting really wide, so I will switch to our linear notation. Let's examine that top-right subgoal on its own.

First, we show that you can get s_1 and s_2 from s.

1.
$$\Gamma_r(s, f); s(x \cdot y') \Vdash s(x \cdot y')$$
 [Lin Hyp]

2.
$$\Gamma_r(s, f)$$
; $\vdash \forall x. \ s(x) \multimap s_1(x) \otimes s_2(x)$ [Hyp]

3.
$$\Gamma_r(s, f)$$
; $\vdash s(x \cdot y') \multimap s_1(x \cdot y') \otimes s_2(x \cdot y')$ [$\forall \to 2$]

4.
$$\Gamma_r(s, f); s(x \cdot y') \Vdash s_1(x \cdot y') \otimes s_2(x \cdot y')$$
 [\multimap E 3 1]

Next, we get the first I.H. into a useful form

$$\Gamma_r(s, f); \cdot \Vdash \forall y. \ s_1(x \cdot y) \multimap f_1(y)$$
 [I.H.]

6.
$$\Gamma_r(s, f)$$
; $\Vdash s_1(x \cdot y') \multimap f_1(y')$ $[\forall E 5]$

7.
$$\Gamma_r(s, f); s_1(x \cdot y') \Vdash s_1(x \cdot y')$$
 [Lin Hyp]

8.
$$\Gamma_r(s,f); s_1(x\cdot y') \Vdash f_1(y')$$
 [\multimap E 6 7]

Same for the second I.H.

9.
$$\Gamma_r(s, f)$$
; $\vdash \forall y. \ s_2(x \cdot y) \multimap f_2(y)$ [I.H.]

10.
$$\Gamma_r(s,f)$$
; $\vdash \vdash s_2(x \cdot y') \multimap f_2(y')$ [$\forall \to 9$]
11. $\Gamma_r(s,f)$; $s_2(x \cdot y') \vdash s_2(x \cdot y')$ [Lin Hy

11.
$$\Gamma_r(s, f); s_2(x \cdot y') \Vdash s_2(x \cdot y')$$
 [Lin Hyp]

12.
$$\Gamma_r(s, f); s_2(x \cdot y') \Vdash f_2(y')$$
 [$\multimap \to 10 \ 11$]

We combine the two I.H.s

13.
$$\Gamma_r(s, f); s_1(x \cdot y'), s_2(x \cdot y') \Vdash f_1(y') \otimes f_2(y')$$
 [\otimes I 8 12]

And finally, we use ⊗-elim on the statement we proved in line 4 and the combined I.H.s

14.
$$\Gamma_r(s, f); s(x \cdot y') \Vdash f_1(y') \otimes f_2(y')$$
 [\otimes E 4 13]