
15-399 Supplementary Notes:

An Algebraic View of Logic

Robert Harper

February 3, 2005

Heyting and Boolean Algebras

The standard semantics for classical logic states that each proposition stands
for, or denotes, a truth value, either ⊤ or ⊥, according to the usual truth ta-

bles for each logical connective. According to this semantics, the categorical
judgement P true means that P denotes ⊤, and the hypothetical judgement
P1 true, . . . , Pn true ⊢ P true means that P denotes ⊤ whenever each Pi denotes
⊤.

The hypothetical judgement induces an ordering relation among propositions
defined by taking P ≤ Q to hold iff P true ⊢ Q true. (There is no loss of gener-
ality in restricting attention to a binary relation, because P1 true, . . . , Pn true ⊢
P true holds iff P1 ∧ · · · ∧Pn true ⊢ P true.1) This relation is a pre-order.2 This
extends to a partial order3 on equivalence classes of propositions under mutual
entailment. Specifically, define

[P ] = {Q | P true ⊢ Q true and Q true ⊢ P true },

to be the equivalence class of P under mutual entailment, and define [P ] ≤ [Q]
to hold exactly when P ≤ Q. (This is easily seen to be well-defined.)

Since equivalent propositions have the same truth value, this suggests that
we may re-cast the truth-table interpretation in terms of partially ordered sets.
Specifically, we define the relation ≤ on the set {⊤,⊥} of truth values to be the
least reflexive, transitive, and anti-symmetric binary relation such that ⊥ ≤ ⊤.
Then ⊥ is the least element of the ordering, and ⊤ is the greatest element. With
respect to this ordering, the conjunction of two truth values is their greatest
lower bound (the smaller of the two), and their disjunction is the least upper
bound (the larger of the two).4 Negation inverts the ordering in the sense that
a ≤ b iff ¬b ≤ ¬a.

1When n = 0, this means ⊤ true ⊢ P true.
2That is, a reflexive and transitive binary relation.
3That is, an anti-symmetric pre-order.
4Recall that the greatest lower bound, or meet, of a and b is the element a ∧ b defined by

the conditions a ∧ b ≤ a, a ∧ b ≤ b, and if c ≤ a and c ≤ b, then c ≤ a ∧ b. The least upper

bound, or join, of two elements is defined similarly.
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Making use of this order structure on truth values, we may re-interpret the
hypothetical judgement P1 true, . . . , Pn true ⊢ P true to mean that a1∧· · ·∧an ≤
a, where Pi denotes ai and P denotes a. When n = 0, this means that ⊤ ≤ a,
where P denotes a. Since ⊤ is the greatest element of the pre-order, this is
equivalent to saying that a = ⊤.

This interpretation is an instance of the general concept of a Boolean algebra.
A Boolean algebra is a partially ordered set B = (B,≤) satisfying the following
requirements:

1. There is a (unique) least element, ⊥∈ B, a (unique) greatest element,
⊤ ∈ B.

2. Each pair a, b ∈ B of elements has a (unique) greatest lower bound, a∧b ∈
B, and a (unique) least upper bound, a ∨ b ∈ B.

3. For every a, b ∈ B, there exists a (unique) element a → b ∈ B (sometimes
written ba and called the exponential) such that

c ≤ a → b iff c ∧ a ≤ b.

4. For all a ∈ B, ¬¬a ≤ a. (Here we define ¬a to be the element a →⊥
provided by the first and third conditions.)

The first two requirements state that B is a lattice; the third states that it
is Cartesian closed ; the fourth states that it is stable. When only the first
three requirements are met, the structure forms a Heyting algebra. A Heyting
algebra is therefore a Cartesian-closed pre-order, and a Boolean algebra is a
stable Heyting algebra. There are Heyting algebras that are not Boolean; the
constructive Lindenbaum algebra (discussed below) is a simple example.

Given any Boolean algebra B, the denotation, PB, of a proposition P in B
is defined by the following equations:

⊥B = ⊥
⊤B = ⊤

(P ∧ Q)B = PB ∧ QB

(P ∨ Q)B = PB ∨ QB

(P ⊃ Q)B = PB → QB

(¬P )B = PB →⊥

Note that the symbols on the left are logical connectives, whereas on the right
they are part of the structure of B.

Boolean algebras are defined so as to capture the “essence” of classical logic.
More precisely, the the relationship between Boolean algebras and classical logic
is established by the following theorem.

Theorem 0.1 P1 true, . . . , Pn true ⊢ P true in classical propositional logic iff

PB
1
∧ · · ·∧PB

n
≤ PB for every Boolean algebra B = (B,≤). In particular, P true

holds in classical logic iff ⊤ ≤ PB holds in every Boolean algebra B.
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Proof (sketch): In the forward direction we proceed by induction on the deriva-
tion of the hypothetical judgement. This is called the soundness of the classical
logic for the class of Boolean algebras. In the reverse direction we construct a
Boolean algebra, called the Lindenbaum algebra, L, whose elements are equiv-
alence classes, [P ], of propositions P , partially ordered as above. The least
element is [⊥], the greatest is [⊤], [P ] ∧ [Q] = [P ∧ Q], [P ] ∨ [Q] = [P ∨ Q],
and [P ] → [Q] = [P ⊃ Q]. These operations are all well-defined, and satisfy the
requirements of a Boolean algebra. The Lindenbaum algebra L is constructed so
that PL = [P ], and such that PL

1
∧· · ·∧PL

n
≤ PL iff P1 true, . . . , Pn true ⊢ P true.

This is called the completeness of classical logic for the class of Boolean algebras.
2

A similar story can be told for constructive propositional logic, except for
Heyting algebras instead of Boolean algebras.

Theorem 0.2 P1 true, . . . , Pn true ⊢ P true in constructive propositional logic

iff for every Heyting algebra H = (H,≤), PH
1

∧ · · · ∧ PH
n

≤ PH. In particular,

P true holds in constructive logic iff ⊤ ≤ PH in every Heyting algebra H.

This theorem is proved in essentially the same manner as the preceding one.
The constructive Lindenbaum algebra is a Heyting algebra that is not stable,
precisely because ¬¬P is not equivalent to P in constructive logic.

The utility of the completeness theorems is that we may show that a partic-
ular hypothetical judgement is not provable in classical or constructive logic by
finding a counter-model, a Boolean or Heyting algebra, respectively, in which
the hypotheses are all true, but the consequent is not. Since every Boolean
algebra is a Heyting algebra, one consequence of the completeness theorem for
constructive logic is that a proposition P is constructively provable only if it
is classically true. Put the other way around, if a proposition is false classi-
cally, then it cannot be provable constructively. For example, we cannot prove
¬(P ∨¬P ) is constructive logic, because this proposition denotes ⊥ in the truth-
table interpretation.

Exercises

1. Show that the meet and join of any two elements of a Boolean algebra is
uniquely determined.

2. Show that the exponential of any two elements of a Boolean algebra is
uniquely determined. That is, if a →′ b also satisfies the requirements of
the third axiom, then a →′ b = a → b.

3. Give a precise definition of the Lindenbaum algebra for constructive logic.
What logical equivalences do you need to prove for the Lindenbaum alge-
bra to be a Heyting algebra?
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