
15-399 Supplementary Notes: The

Computational Content of Classical Logic

Robert Harper

February 18, 2003

1 First-Class Continuations

Standard ML of New Jersey extends the Standard ML language with first-class

continuations. These form an abstract type with the following signature:

signature CONT =

sig

type ’a cont

val callcc : (’a cont -> ’a) -> ’a

val throw : ’a cont -> ’a -> ’b

end

The type ’a cont is the type of continuations accepting values of type ’a.
Continuations are created using callcc, and a value is passed to a continuation
using throw.

In general a continuation represents an evaluation point in an expression.
An evaluation point, indicated by a “hole” (¤) in an expression, represents a
checkpointed computation that may be resumed by providing a value for that
spot in the expression. Evaluation continues from that point onwards according
to the normal rules of evaluation. An expression with a hole in it marking an
evaluation point is called a continuation. The hole in a continuation may be
filled using throw, which provides a value for the hole and resumes execution
from that point. Throwing a value to a continuation abandons the current
evaluation, effecting a “goto” the continuation to which the value is passed.
Continuations are created using callcc, which seizes the current continuation
(the evaluation point at which the application of callcc occurs), and passes it
to a given function.

The use of continuations in a program is best explained by example. Consider
the following simple function to multiply together the integers in a list:

Draft of February 18, 2003



1 First-Class Continuations 2

fun mult l =

let

fun loop nil => 1

| loop (h::t) => h * loop t

in

loop l

end

This function defines an inner loop that performs the multiplication.
Suppose that we wish to “short circuit” mult in the case that zero occurs

in the list. How do we exit the function early with the value zero, avoiding
the need to perform any further multiplications? One method is to grab the
continuation at the point where the function is just about to return, so that we
can throw zero to it when we wish to exit early. This is achieved using callcc

and throw as follows:

fun mult l =

callcc

(fn ret =>

let

fun loop nil => 1

| loop (0:: ) => throw ret 0

| loop (h::t) => h * loop t

in

loop l

end)

The continuation bound to ret corresponds to the point right after the equal
sign, which is the point at which the value of the function is returned to the
caller. Should zero occur at some point in the list, control jumps immediately
to this point with the value 0, effecting an early return of the function.

One thing to note about the function mult is that it passes a value to the
return point of the function in two distinct ways: explicitly, by throwing 0 to it
when 0 arises in the list, and implicitly, by simply returning the value of loop
l. It is entirely equivalent to replace the second-to-last line of mult with this
one:

throw ret (loop l)

In fact there is no loss of generality in insisting that the body of the callcc

throw to some continuation, rather than returning normally. This may may be
achieved by replacing callcc with callcc’ whose type is (’a cont -> void)

-> ’a. The type void is defined by the following signature:

signature VOID =

sig

type void

val abort : void -> ’a

end

Draft of February 18, 2003



2 Continuations and Negation 3

The type void has no elements, so a function of type ’a cont -> void cannot
return — it must throw a value to a continuation. Indeed, if we modify the
short-circuit version of mult as just indicated, then callcc may be replaced by
callcc’, and the program will still type check.

2 Continuations and Negation

Recall that ¬P may be thought of as P ⊃⊥, either informally as a guide to
the primitive rules of negation, or formally, by defining negation in terms of
implication and falsehood. If we think of ¬P in this way, then we see that a
proof of a negated proposition is a function that never returns — for if it were
to return, it would have to return a proof of ⊥, which is impossible.

Continuations may also be thought of as functions that never return. When
we throw a value to a continuation, it jumps to that continuation and never re-
turns to the point at which the throw occurred. This suggests that the type ’a

cont may be thought of as ’a -> void, and that throw k v may be thought
of as abort(k(v)). Since void corresponds to ⊥ under the Curry-Howard iso-
morphism, this suggests that P cont corresponds to ¬P — continuations are
the computational content of refutations (proofs of negations)!

Under this interpretation the type of callcc’ is

((’a -> void) -> void) -> ’a.

Look familiar? Written in logical notation, this is

((P ⊃⊥) ⊃⊥) ⊃ P.

In other words callcc’ is the computational content of the law of double nega-
tion elimination!

3 The Law of the Excluded Middle

In the presence of double negation elimination we may prove the law of the
excluded middle. This means that we can find a proof term of type P ∨ ¬P
using callcc’. We will obtain it in two steps. First, recall that we can prove
constructively ¬¬(P ∨ ¬P ). Here is a proof term of that type:1

M = λk:¬(P ∨ ¬P ).k(inr(λu:P.k(inlu))).

Let MLEM be the term callcc’(M) of type P ∨ ¬P .
Let us analyze the computational behavior of this term. Since MLEM is a

proof of a disjunction, it may be used as the subject of a case analysis of the
form

caseMLEM of inl(u) ⇒ A|inr(v) ⇒ B.

1Here we identify ¬P with P ⊇⊥, rather than treat negation as a primitive notion.

Draft of February 18, 2003



3 The Law of the Excluded Middle 4

The term MLEM seizes the current continuation, and passes it as argument to
the term M given above. The current continuation is the function

K = λx.casex of inl(u) ⇒ A|inr(v) ⇒ B

that, when applied, performs a case analysis on its argument. Applying M to
K results in evaluation of the expression

K(inr(λu:P.K(inlu))),

which in turn leads to the evaluation of

[λu:P.K(inlu)/v]B.

Now what can B do with v? Since its type is ¬P = P ⊃⊥, the only thing that
B can do with it is to apply it to a proof Q of P . Doing so leads to evaluation
of

K(inlQ)

which in turns leads to
[Q/u]A.

What is going on here? The idea is this. First off, MLEM calls its continu-
ation with a proof of ¬P . That is, when asked whether P or ¬P is true (one or
the other must be, since it is a proof of P ∨¬P ), it answers “¬P”, providing the
proof inr(λu:P.K(inlu)). If B ever makes use of this proof, it can only do so
by providing a proof of P , contradicting the purported proof of ¬P provided to
MLEM’s continuation! But then the proof of ¬P rescues itself by backtracking,
abandoning the ¬P case, and instead invoking the P case with the given proof
of P . In other words, first it “lies” by asserting that ¬P is true. If it “gets
caught”, then it backtracks, and says “oh, I meant P all along, sorry about
that.” From there onwards the proof proceeds as normal.

What makes this possible is first-class continuations. Crucially, the contin-
uation K above is used twice, once to pass the “proof” of ¬P , then again (if
necessary) with the given proof of P . Without continuations this cannot be
programmed.2

2Proof: there is no normal proof of the law of the excluded middle.

Draft of February 18, 2003


