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Complete Induction

The principle of mathematical induction states that if a property P holds of 0
and is closed under successor, then it holds for every natural number:1

P (0) ∧ (∀z ∈ nat.P (z)⊃P (s(z)))⊃∀x ∈ nat.P (x).

Re-phrasing a bit, the principal of mathematical induction states that P is
universal, if it is closed. Defining

ALL(P ) = ∀x ∈ nat.P (x)

and
CLOSED(P ) = P (0) ∧ ∀z ∈ nat.P (z)⊃P (s(z)),

the principle of mathematical induction may be re-stated in the form

CLOSED(P )⊃ALL(P ).

While mathematically sufficient, it can be inconvenient to structure a proof
so that it relies only on this basic principle. A more convenient form is the prin-
ciple of complete induction,2 which states that P is universal, if it is complete:

COMPL(P )⊃ALL(P ),

where
COMPL(P ) = ∀x ∈ nat.(∀z ∈ nat.z < x⊃P (z))⊃P (x).

It is helpful to define

LT(x)(P ) = ∀z ∈ nat.z < x⊃P (z),

1We write P (t) to mean [t/x]P , where x is a designated free variable of P over which we
are reasoning by induction.

2Also called strong induction or complete induction.
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so that we may re-state completeness in the form

COMPL(P ) = ∀x ∈ nat.LT(x)(P )⊃P (x).

Thus the principle of complete induction states that to show ALL(P ), it is
enough to show that, for a general x ∈ nat, P (x) holds under the inductive
assumption that P holds for every number less than x. Thus, there is no separate
base case, and the inductive hypothesis states that P holds not just for the
immediate predecessor, but for all smaller numbers. (Do you see why this covers
the base case implicitly?)

The principle of complete induction is derivable from ordinary mathematical
induction. That is, we may prove the principle of complete induction as a
theorem, using the principle of ordinary mathematical induction in the proof.
It follows that any use of complete induction is simply a disguised use of ordinary
mathematical induction.

Proof of Complete Induction

Theorem 0.1 (Complete Induction)

COMPL(P )⊃ALL(P ).

We first prove the following lemma:

Lemma 0.1

COMPL(P )⊃∀x ∈ nat.LT(x)(P ).

Proof: Assume COMPL(P ), and let x ∈ nat be arbitrary. We show LT(x)(P )
by ordinary mathematical induction on x.

1. For the basis, we are to show LT(0)(P ). Let z ∈ nat and assume z < 0.
This is a contradiction; consequently, P (z) holds, as required.

2. For the inductive step, assume LT(x′)(P ) to show LT(s(x′))(P ). Let z ∈
nat be such that z < s(x′). By a simple lemma, either z = x′ or z < x′.
We show P (z) by cases:

(a) If z = x′, then since COMPL(P ), it is enough to show LT(x′)(P ).
But this is precisely the inductive assumption!

(b) If z < x′, then by the inductive hypothesis P (z), as required.

2

We may now prove the complete induction theorem:

Proof: Assume that COMPL(P ). Suppose that x ∈ nat; we are to show P (x).
By the lemma, we have LT(s(x))(P ), and hence P (x) since x < s(x). This
completes the proof. 2
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What is the computational content of this proof?
Suppressing proof terms for propositions, the statement of the lemma erases

(and simplifies) to the type

(nat → (nat → τ) → τ) → (nat → (nat → τ)).

The proof of the lemma erases to a term, H, of this type satisfying the equations

H(c)(0)(n) ⇔ abort
H(c)(s(m))(n) ⇔ c(m)(H(c)(m)) (m = n)
H(c)(s(m))(n) ⇔ H(c)(m)(n) (n < m).

The first argument to H is the proof of completeness of the predicate P ; the
second governs the primitive recursion (it decreases by one on each recursive
call); the third is the “real” argument, which may decrease by more than one
on each call.

The statement of complete induction erases (and simplifies) to the type

(nat → (nat → τ) → τ) → (nat → τ).

The proof of complete induction erases to a term, I, of this type such that

I(c)(m) ⇔ H(c)(s(m))(m).

Example

Pfenning gives a proof of the totality of the discrete logarithm function by com-
plete induction. The discrete logarithm is defined by the following equations:

lg(0) ⇔ 0
lg(s(m)) ⇔ s(lg(half(s(m))))

Informally, lg(n) = blog2(n + 1)c. Pfenning gives a proof of the proposition

∀x ∈ nat.∃y ∈ nat. lg(x) = y.

This states that lg is a total function in the sense that every natural number
has a discrete logarithm according to the foregoing definition.

The core of the proof is to show that the predicate P (x) defined by

P (x) = ∃y ∈ nat. lg(x) = y

is complete, from which the result follows by complete induction. If t is the
(erased) term corresponding to the proof of completeness of P (x), then I(t) is
(the erasure of) a proof of ALL(P ). Consequently, if m ∈ nat, then I(t)(m) ⇔
n, where lg(m) = n. Expanding the definition of I given above, we have
H(t)(s(m))(m) ⇔ lg(m) for every m ∈ nat.
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To see how this works, observe that Pfenning’s proof of completeness for the
predicate P (x) defines a term t of type nat → (nat → nat) → nat satisfying
the equations

t(0)(f) ⇔ 0
t(s(m))(f) ⇔ s(f(half(s(m))))

Plugging this into the equations for complete induction we obtain

I(t)(m) ⇔ H(t)(s(m))(m)

H(t)(0)(n) ⇔ abort
H(t)(s(m))(n) ⇔ t(m)(H(t)(m)) (n = m)
H(t)(s(m))(n) ⇔ H(t)(m)(n) (n < m)

Plugging in the term t obtained from the logarithm example, and simplifying,
we obtain these equations:

H(t)(s(0))(0) ⇔ t(0)(H(t)(0))
⇔ 0

H(t)(s(s(m′)))(s(m′)) ⇔ t(s(m′))(H(t)(s(m′)))
⇔ s(H(t)(s(m′))(half(s(m′))))

H(t)(s(s(m′)))(n) ⇔ H(t)(s(m′))(n) (n < s(m′))

In essence H computes by “counting down” in its second argument until it
reaches one more than the third argument, then applies t, which calls H with half
of the third argument. The countdown repeats until finally the third argument
is zero.

From these we may deduce the following equations for I(t):

I(t)(0) = 0
I(t)(s(m)) = s(I(t)(half(s(m)))) (m ∈ nat).

In other words I(t)(m) = lg(m) for every m ∈ nat, as required, and is, more-
over, primitive recursive (because H is primitive recursive).
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