
4.4 Contracting Proofs to Programs 75

We close this section with the formal version of the proof above. Note the
use of the conversion rule conv ′.

[x : nat;

[~ 0 = 0; 0 = 0; F;

s(pred(0)) = 0];

~ 0 = 0 => s(pred(0)) = 0; % case (x = 0)

[x’ : nat, ~ x’ = 0 => s(pred(x’)) = x’;

[~ s(x’) = 0;

!z:nat. z = z; % reflexivity lemma

s(x’) : nat;

s(pred(s(x’))) = s(x’)]; % since pred(s(x’)) ==> x’

~ s(x’) = 0 => s(pred(s(x’))) = s(x’)]; % case (x = s(x’))

~ x = 0 => s(pred(x)) = x];

!x:nat. ~ x = 0 => s(pred(x)) = x

4.4 Contracting Proofs to Programs

In this section we return to an early idea behind the computational interpre-
tation of constructive logic: a proof of ∀x∈τ. ∃y∈σ. A(x, y) should describe a
function f from elements of type τ to elements of type σ such that A(x, f(x))
is true for all x. The proof terms for intuitionistic logic and arithmetic do not
quite fill this role. This is because if M is a proof term for ∀x∈τ. ∃y∈σ. A(x, y),
then it describes a function that returns not only an appropriate term t, but
also a proof term that certifies A(x, t).

Thus we would like to contract proofs to programs, ignoring those parts of a
proof term that are not of interest. Of course, what is and what is not of interest
depends on the application. To illustrate this point and the process of erasing
parts of a proof term, we consider the example of even and odd numbers. We
define the addition function (in slight variation to the definition in Section 3.5)
and the predicates even and odd .

plus : nat→nat→nat
plus = λx∈nat. rec x

of p(0)⇒ λy. y
| p(s(x′))⇒ λy. s(p(x′) y)

even(x) = ∃y∈nat. plus y y =N x
odd(x) = ∃y∈nat. s(plus y y) =

N
x

For the rest of this section, we will use the more familiar notation m + n for
plus mn.

We can now prove that every natural number is either even or odd. First,
the informal proof. For this we need a lemma (whose proof is left to the reader)

lmps : ∀x∈nat. ∀y∈nat. x+ s(y) =N s(x + y)

Draft of October 20, 2000

76 First-Order Logic and Type Theory

Now back to the main theorem.

∀x∈nat. (∃y∈nat. y + y =N x) ∨ (∃y∈nat. s(y + y) =N x)

Proof: The proof is by induction on x.

Case: x = 0. Then x is even, because 0 + 0 =N 0 by computation
and =

N
I0. The computation needed here is 0 + 0 =⇒ 0

Case: x = s(x′). By induction hypothesis we know that x′ is either
even or odd. We distinguish these two subcases.

Subcase: x′ is even, that is, ∃y∈nat. y + y =
N
x′. Let’s call

this element c. Then c+c =N x′ and hence s(c+c) =N s(x′)
by rule =N Is. Therefore ∃y∈nat. s(y + y) =N s(x′) and x
is odd.

Subcase: x′ is odd, that is, ∃y∈nat. s(y + y) =N x′. Let’s
call this element d. Then s(d + d) =

N
x′ and s(s(d +

d)) =
N

s(x′) by rule =
N
Is. Now, we compute s(s(d +

d)) =⇒ s(s(d) + d) and apply lemma lmps to conclude
s(d)+s(d) =N s(s(d+d)). By transitivity, therefore, s(d)+
s(d) =N s(x′). Therefore ∃y∈nat. y + y =N s(x′) and x is
even.

2

The proof term corresponding to this informal proof is mostly straightfor-
ward.

ev : ∀x∈nat. (∃y∈nat. y + y =
N
x) ∨ (∃y∈nat. s(y + y) =

N
x)

ev = λx. rec x
of f(0)⇒ inl〈0, eq0〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ let 〈c, p〉 = u in inr〈c, eqs(p)〉
| inr(w)⇒ let 〈d, q〉 = w in inl〈s(d), r(x′, d, q)〉

Here, r(x′, d, q) is a proof term verifying that s(d) + s(d) =
N

s(x′). It uses
transitivity of equality and the lemma lmps. Its precise form is not important
for the discussion in this section—we give it here only for completeness.

r(x′, d, q) : s(d) + s(d) =N s(x′)
r(x′, d, q) = trans (s(d) + s(d)) (s(s(d) + d)) (s(x′)) (lmps (s(d)) d) q

Next we consider various versions of this specification and its implementa-
tion, erasing “uninteresting” subterms. For the first version, we would like to
obtain the witnesses y∈nat in each case, but we do not want to carry the proof
that y + y =

N
x. We indicate this by bracketing the corresponding part of the

proposition.

ev1 : ∀x∈nat. (∃y∈nat. [y + y =N x]) ∨ (∃y∈nat. [s(y + y) =N x])

Draft of October 20, 2000

4.4 Contracting Proofs to Programs 77

We then bracket the corresponding parts of the proof term. Roughly, every
subterm whose type has the form [A] should be bracketed, including variables
whose type has this form. The intent is that these subterms will be completely
erased before the program is run. In the case of the annotation above we obtain:

ev1 : ∀x∈nat. (∃y∈nat. [y+ y =N x])∨ (∃y∈nat. [s(y + y) =N x])
ev1 = λx. rec x

of f(0)⇒ inl〈0, [eq0]〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ let 〈c, [p]〉 = u in inr〈c, [eqs(p)]〉
| inr(w)⇒ let 〈d, [q]〉 = w in inl〈s(d), [r(x′, d, q)]〉

Not every possible bracket annotation of a term is correct. A formal treat-
ment of which bracket annotations are valid is beyond the scope of these notes.
However, the main rule is easy to state informally:

Bracketed variables [x] may occur only inside brackets [. . . x . . .].

This is because bracketed variables are erased before execution of the program.
Therefore, an occurrence of a bracketed variable in a term that is not erased
would lead to a runtime error, since the corresponding value would not be
available. We refer to variables of this form as hidden variables.

In the example above, [p] and [q] are the only hidden variables. Our restric-
tion is satisfied: p occurs only in [eqs(p)] and q only in [r(x′, d, q)].

The actual erasure can be seen as proceding in three steps. In the first step,
we replace every bracketed proposition [A] by > and every subterm [M] by
its proof term 〈 〉. Furthermore, every bracketed variable [u] is replaced by an
anonymous variable , since this variable is not supposed to occur after erasure.
We obtain:

ev1 : ∀x∈nat. (∃y∈nat. >) ∨ (∃y∈nat. >)
ev1 = λx. rec x

of f(0)⇒ inl〈0, 〈 〉〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ let 〈c, 〉 = u in inr〈c, 〈 〉〉
| inr(w)⇒ let 〈d, 〉 = w in inl〈s(d), 〈 〉〉

In the second step we perform simplifications to obtain a function purely
operating on data types. For this we have to recall that, under the Curry-
Howard isomorphism, for example > is interpreted as the unit type 1, and that
disjunction A ∨B is interpreted as a disjoint sum type τ +σ.

What happens to universal and existential quantification? Recall that the
proof term for ∀x∈nat. A(x) is a function which maps every natural number
n to a proof term for A(n). When we erase all proof terms, n cannot actually
occur in the result of erasing A(n) and the result has the form nat→ τ , where
τ is the erasure of A(x).

Similarly, a proof term for ∃x∈nat. A(x) consists of a pair 〈n,M〉, where n
is a natural number (the witness) and M is a proof term for A(n). When we

Draft of October 20, 2000

78 First-Order Logic and Type Theory

turn propositions into types by erase, we obtain nat× τ , where τ is the erasure
of A(n).

Applying this translation operation to our proof, we obtain:

ev1 : nat→(nat×1)+(nat×1)
ev1 = λx. rec x

of f(0)⇒ inl〈0, 〈 〉〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ inr〈fst(u), 〈 〉〉
| inr(w)⇒ inl〈s(fst(w)), 〈 〉〉

Note that our proof term changes in only two places, because the elimination
rules for existentials and pairs do not match up. In all other cases we have
overloaded our notation, precisely in anticipation of this correspondence. For
existentials, we replace

let 〈x, u〉 = M in N

by

[fst(M)/x][snd(M)/u]N

Finally, we apply some optimizations by eliminating unnecessary construc-
tions involving the unit type. We take advantage of isomorphisms such as

τ ×1 7→ τ
1× τ 7→ τ

1→ τ 7→ τ
τ→1 7→ 1

Note that 1 +1 can not be simplified: it is a type with two elements, inl 〈 〉 and
inr 〈 〉.

An optimization in a type must go along with a corresponding optimization
in a term so that it remains well-typed. This is accomplished by the following
simplification rules.

〈t, s〉 ∈ τ ×1 7→ t
for t ∈ τ ×1, fst(t) ∈ τ 7→ t
for t ∈ τ ×1, snd(t) ∈ 1 7→ 〈 〉

〈s, t〉 ∈ 1× τ 7→ t
for t ∈ 1× τ , snd(t) ∈ τ 7→ t
for t ∈ 1× τ , fst(t) ∈ 1 7→ 〈 〉

(λx∈1. t) ∈ 1→ τ 7→ t
for t ∈ 1→ τ , t s ∈ τ 7→ t

(λx∈τ. t) ∈ τ→1 7→ 〈 〉
for t ∈ τ→1, t s ∈ 1 7→ 〈 〉

When we apply these transformation to our running example, we obtain

Draft of October 20, 2000

4.4 Contracting Proofs to Programs 79

ev1 : nat→(nat +nat)
ev1 = λx. rec x

of f(0)⇒ inl(0)
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ inr(u)
| inr(w)⇒ inl(s(w))

We can see that this function satisfies the following specification:

ev1 n = inl(n/2) if n is even
ev1 n = inr((n− 1)/2) if n is odd

So ev1(n) returns the floor of n/2, plus a tag which tells us if n was even or
odd.

The whole process by which we arrived at this function, starting from the
bracket annotation of the original specification can be done automatically by a
compiler. A similar process is used, for example, in the Coq system to extract
efficient ML functions from constructive proofs in type theory.

Returning to the original specification, assume we want to return only an
indication whether the argument is even or odd, but not the result of dividing
it by two. In that case, we bracket both existential quantifiers, in effect erasing
the witness in addition to the proof term.

ev2 : ∀x∈nat. [∃y∈nat. y + y =
N
x] ∨ [∃y∈nat. s(y + y) =

N
x]

ev2 = λx. rec x
of f(0)⇒ inl[〈0, eq0〉]
| f(s(x′))⇒ case f(x′)

of inl[u]⇒ let [〈c, p〉 = u] in inr[〈c, eqs(p)〉]
| inr[w]⇒ let [〈d, q〉 = w] in inl[〈s(d), r(x′, d, q)〉]

Fortunately, our restriction is once again satisfied: bracketed variables (this
time, u, c, p, w, d, q) appear only within brackets. The occurrences of c and p
in the let-expression should be considered bracketed, because u and therefore
c and p will not be carried when the program is executed. A similar remark
applies to w, d. We now skip several steps, which the reader may want to
reconstruct, to arrive at

ev2 : nat→(1 +1)
ev2 = λx. rec x

of f(0)⇒ inl 〈 〉
| f(s(x′))⇒ case f(x′)

of inl ⇒ inr 〈 〉
| inr ⇒ inl 〈 〉

Note that this function simply alternates between inl 〈 〉 and inr 〈 〉 in each
recursive call, thereby keeping track if the number is even or odd. It satisfies

Draft of October 20, 2000

80 First-Order Logic and Type Theory

ev2 n = inl 〈 〉 if n is even
ev2 n = inr 〈 〉 if n is odd

As a third modification, assume we intend to apply ev to even numbers n
to obtain n/2; if n is odd, we just want an indication that it was not even. The
annotation of the type is straightforward.

ev3 : ∀x∈nat. (∃y∈nat. [y + y =
N
x]) ∨ [∃y∈nat. s(y + y) =

N
x]

Applying our annotation algorithm to the proof term leads to the following.

ev3 = λx. rec x
of f(0)⇒ inl〈0, [eq0]〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ let 〈c, [p]〉 = u in inr[〈c, eqs(p)〉]
| inr[w]⇒ let [〈d, q〉 = w] in inl〈s(d), [r(x′, d, q)]〉

But this version of ev does not satisfy our restriction: in the last line, the
hidden variable [d] occurs outside of brackets. Indeed, if we apply our technique
of erasing computationally irrelevant subterms we obtain

ev3 : nat→(nat+1)
ev3 = λx. rec x

of f(0)⇒ inl(0)
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ inr〈 〉
| inr()⇒ inl(s(d))

where d is required, but not generated by the recursive call. Intuitively, the
information flow in the program is such that, in order to compute n/2 for even
n, we must compute (n− 1)/2 for odd n.

The particular proof we had did not allow the particular bracket annotation
we proposed. However, we can give a different proof, which permits this anno-
tation. In this example, it is easier to just write the function with the desired
specification directly, using the function ev1 which preserved the information
for the case of an odd number.

ev3 : nat→(nat+1)

ev3 n = inl(n/2) if n is even
ev3 n = inr 〈 〉 if n is odd

ev3 = λx. case ev1(x)
of inl(c)⇒ inl(c)
| inr(d)⇒ inr 〈 〉

To complete this section, we return to our example of the predecessor spec-
ification and proof.

Draft of October 20, 2000

4.4 Contracting Proofs to Programs 81

pred ′ : ∀x∈nat. ¬x =
N

0⊃∃y∈nat. s(y) =
N
x

pred ′ = λx∈nat. rec x
of f(0)⇒ (λu. abort (u eq0))
| f(s(x′))⇒ (λu. 〈x′, refl(s(x′))〉)

If we hide all proof objects we obtain:

pred ′ : ∀x∈nat. [¬x =N 0]⊃∃y∈nat. [s(y) =N x]
pred ′ = λx∈nat. rec x

of f(0)⇒ (λ[u]. abort (u eq0))
| f(s(x′))⇒ (λ[u]. 〈x′, [refl(s(x′))]〉)

Note that this function does not satisfy our restriction: the hidden variable u
occurs outside a bracket in the case for f(0). This is because we cannot bracket
any subterm of

abort (u eq0) : ∃y∈nat. [s(y) =N 0]

We conclude that our proof of pred ′ does not lend itself to the particular
given annotation. However, we can give a different proof where we supply an
arbitrary witness c for y in case x is 0 and prove that it satisfies s(y) =

N
0 by

⊥E as before. We chose c = 0.

pred ′ : ∀x∈nat. ¬x =N 0⊃∃y∈nat. s(y) =N x
pred ′ = λx∈nat. rec x

of f(0)⇒ (λu. 〈0, abort (u eq0)〉)
| f(s(x′))⇒ (λu. 〈x′, refl(s(x′))〉)

Now annotation and extraction succeeds, yielding pred . Of course, any nat-
ural number would do for the result of pred(0)

pred ′2 : ∀x∈nat. [¬x =
N

0]⊃∃y∈nat. [s(y) =
N
x]

pred ′2 = λx∈nat. rec x
of f(0)⇒ (λ[u]. 〈0, [abort (u eq0)〉])
| f(s(x′))⇒ (λ[u]. 〈x′, [refl(s(x′))]〉)

pred : nat→nat
pred = λx∈nat. rec x

of f(0)⇒ 0
| f(s(x′))⇒ x′

The reader may test his understanding of the erasure process by transforming
pred ′2 from above step by step into pred . It requires some of the simplifications
on function types.

Draft of October 20, 2000

82 First-Order Logic and Type Theory

Draft of October 20, 2000

