4.5 Structural Induction 85

Now this can be proven by a straightforward structural induction over [. It most
natural to pick ! as the induction variable here, since this allows reduction on
the right-hand side as well as the left-hand side. In general, it a good heuristic
to pick variables that permit reduction when instantiated.

Proof: By structural induction on I.
Case: [= nil. Then we get

left-hand side: rev nil (app m k) = app m k
right-hand side: app (rev nil m) k = app m k

so the equality follows by computation and reflexivity of equal-
ity.

Case: [= z::l’. Tt is often useful to write out the general form of the
induction hypothesis before starting the proof in the induction
step.

mer list. Vker list. rev app m k) =, app (rev ' m
v list. Vkerli I k I k

As we will see, the quantifiers over m and k are critical here.
Now we follow the general strategy to reduce the left-hand side
and the right-hand side to see if we can close the gap by using
the induction hypothesis.

lhs: rev (z:: 1) (app m k)
= rev !l (z:: (app m k))
rhs: app (rev (1) m) k
= app (revl’ (x::m)) k
=z revl (app (z::m) k) by ind. hyp
= rev !l (z:: (app m k))

So by computation and the induction hypothesis the left-hand
side and the right-hand side are equal. Note that the universal
quantifier on m in the induction hypothesis needed to be instan-
tiated by x :: m. This is a frequent pattern when accumulator
variables are involved.

O

Returning to our original question, we generalize the term on the left-hand
side, reverse (app 1 k), to rev (app I k) m. The appropriate generalization of
the right-hand side yields

Vierlist. Vker list. Ymer list. rev (app L k) m =1, rev k (rev [m)
In this general form we can easily prove it by induction over .

Proof: By induction over I.

Draft of October 24, 2000

86 First-Order Logic and Type Theory

Case: [= nil. Then

lhs: rev (app nil k) m = rev k m
rhs: rev k (rev nil m) = rev k' m

So the left- and right-hand side are equal by computation.

Case: | = x::1’. Again, we write out the induction hypothesis:
Vker list. Vmer list. Vrev (app I' k) m =g, rev k (rev ' m)

Then
lhs rev (app (z::1') k) m
= rev (x:: (app ' k)) m
= rev (app ' k) (z ::m)
rhs rev k (rev (z ::1") m)
= revk (revl (z::m))
So the left- and right-hand sides are equal by computation and
the induction hypothesis. Again, we needed to use x ::m for m
in the induction hypothesis.

O

By using these two properties together we can now show that this implies
the original theorem directly.

Vierlist. Vker list. reverse (app 1 k) =, app (reverse k) (reverse 1)
Proof: Direct, by computation and previous lemmas.

lhs reverse (app 1 k)
= rev (app 1 k) nil
=g, rev k (rev [nil) by lemma
rhs app (reverse k) (reverse 1)
= app (rev k nil) (rev I nil)
=1, rev k (app nil (rev [nil) by lemma
=g, rev k (rev [nil)

So the left- and right-hand sides are equal by computation and the
two preceding lemmas. |

4.6 Reasoning about Data Representations

So far, our data types have been “freely generated” from a set of constructors.
Equality on such types is structural. This has been true for natural numbers,
lists, and booleans. In practice, there are many data representation which does
not have this property. In this section we will examine two examples of this
form.

Draft of October 24, 2000

4.6 Reasoning about Data Representations 87

The first is a representation of natural numbers in binary form, that is, as bit
string consisting of zeroes and ones. This representation is of course prevalent
in hardware and also much more compact than the unary numbers we have
considered so far. The length of the representation of n is logarithmic in n.
Thus, almost all work both on practical arithmetic and complexity theory uses
binary representations. The main reason to consider unary representations in
our context is the induction principle, and the connection between induction
and primitive recursion.

We define the binary numbers with three constructors. We have the empty
bit string €, the operation of appending a 0 at the end, and the operation of
appending a 1 at the end. We write the latter two in postfix notation, following
the usual presentation of numbers as sequences of bits.

——— binF
T' - bin type

I € ————— bin —
I'F e € bin I'+b0 € bin ® Tkblebin

The schema of primitive recursion has the following form

f € = t
fo(0) = to(b, (b))
fo®1) = t(b f(b))

Note that f, the recursive function, can occur only applied to b in the last two
cases and not at all in the first case. It should be clear by now how to formulate
the corresponding rec term and proof term construct. The induction principle
is also straightforward.

To prove A(b) true for an arbitrary bit string b, prove

Base Case: A(e) true.
Step Case 0: A(V' 0) true assuming A(V') true for an arbitrary b'.
Step Case 1: A(V' 1) true assuming A(V') true for an arbitrary b'.

In order to describe formally how bitstring represent natural numbers, recall
the function on natural numbers doubling its argument, specified as follows:

double € nat— nat
double 0 =0
double (s(z)) = s(s(double x))

Then we specify

tonat € bin— nat

tonat e = 0
tonat (b0) = double (tonat b)
tonat (b1) = s(double (tonat b))

Draft of October 24, 2000

88 First-Order Logic and Type Theory

Note that this satisfies the schema of primitive recursion. Now we can see why
we think of binary numbers as satisying some non-structural equality: every
natural number has an infinite number of bit strings as representations, because
we can always add leading zeroes without changing the result of tonat. For
example,

tonat(e1) =, tonat(e01) =, tonat(e001) =, s(0)

This has several consequences. If we think of bit strings only as a means to
represent natural numbers, we would define equality such that e =g €0. Sec-
ondly, we can define functions which are ill-defined as far as their interpretation
as natural numbers is concerned. For example,

flip € = €
flip (b0) = bl
flip (b1) = boO

may make sense intuitively, but it maps € and €0 to different results and thus
does not respect the intended equality.

A general mechanism to deal with such problems is to define quotient types.
This is somewhat more complicated than needed in most instances, so we will
stick to the simpler idea of just verifying that functions implement the intended
operations on natural numbers.

A simple example is the increment function inc on binary numbers. Assume
a bit string b represents a natural number n. When we can show that inc(b)
always represents s(n) we say that inc implements s. In general, a function f
implements g if f(b) represents g(n) whenever b represents n. Representation is
defined via the function tonat, so by definition f implements g if we can prove
that

Vbebin. tonat(f b) =, g(tonat b)

In our case:
Vbebin. tonat(inc b) =, s(tonat b)

The increment function is primitive recursive and defined as follows:

inc € bin— bin

me e = €l
inc (b0) = bl
inc (b1l) = (inch)0

Now we can prove that inc correctly implements the successor function.
Vbebin. tonat(inc b) =, s(tonat b)

Proof: By structural induction on b.

Draft of October 24, 2000

4.6 Reasoning about Data Representations 89

Case: b=ce.
lhs: tonat(inc €)

= tonat(e1)
= s(double(tonat €))
= s(0)

rhs: s(tonat €) = s(0)

Case: b =0 0. We simply calculate left- and right-hand side with-
out appeal to the induction hypothesis.

lhs: tonat(inc(b’ 0))

= tonat(b'1)

= s(double(tonat b))
rhs: s(tonat(b' 0))

= s(double(tonat V'))

Case: b =10'1. In this case we need the induction hypothesis.
tonat (inc b') =, s(tonat V')

Then we compute as usual, starting from the left- and right-
hand sides.

lhs: tonat(inc(b’ 1))
= tonat((inc V') 0)
= double(tonat(inc V'))
= double(s(tonat b)) by ind. hyp.
= s(s(double(tonat V"))
rhs: s(tonat(b' 1))
= s(s(double(tonat V"))

O

The second case of the proof looks straightforward, but we have swept an
important step under the rug. The induction hypothesis had the form s = t.
We used it to conclude double(s) =, double(t). This is a case of a general
substitution principle for equality. However, our notion of equality on natural
numbers is defined by introduction and elimination rules, so we need to justify
this principle. In general, an application of substitutivity of equality can have
one of the two forms

'tm=,ntrue T F A(m) true
T'F A(n) true

subst

'kFm=,ntrue TI'F A(n) true
' A(m) true

subst’

The second one is easy to justify from the first one by symmetry of equality.

Draft of October 24, 2000

90 First-Order Logic and Type Theory

These are examples of admissible rules of inference. We cannot derive them
directly from the elimination rules for equality, but every instance of them is
correct. In general, we say that an inference rule is admissible if every instance
of the rule is valid.

Theorem: The rule subst is admissible.

Proof: By induction on m.

Case: m = 0. Then we distinguish cases on n.
Case: n = 0. Then A(m) = A(0) = A(n) and the right
premise and conclusion are identical.
Case: n =s(n). Then the right premise is not even needed to
obtain the conclusion.
I'k0=, s(n') true

N 0s
'+ A(s(n')) true

Case: m = s(m’). Then we distinguish cases on n.

Case: n = 0. Again, the right premise is not needed to justify
the conclusion.

[k s(m')=, 0 true
=xEso
I' - A(0) true v

Case: n =s(n'). Then we derive the rule as follows.

['ks(m') =, s(n) true

- S

I'Em =, n true A L'+ A(s(m')) true
'k A(s(n'))

i.h.

Here, a derivation of the conclusion exists by induction
hypothesis on m’. Critical is to use the induction hy-
pothesis for B(m') = A(s(m’)) which yields the desired
B(n’) = A(s(n’)) in the conclusion.

O

In this case, we must formulate the desired principle as a rule of inference.
We can write it out as a parametric proposition,

VYméEnat. VneEnat. m =, n D A(m) D A(n)

but this can not be proven parametrically in A. The problem is that we need to
use the induction hypothesis with a predicate different from A, as the last case
in our proof of admissibility shows. And quantification over A, as in

VYméEnat. VneEnat. m =, n D VA:nat — prop. A(m) D A(n)

Draft of October 24, 2000

4.6 Reasoning about Data Representations 91

is outside of our language. In fact, quantification over arbitrary propositions
or predicates can not be explained satisfactorily using our approach, since the
domain of quantification (such at nat — prop in the example), includes the new
kind of proposition we are just defining. This is an instance of impredicativity
which is rejected in constructive type theory in the style of Martin-Lof. The
rules for quantification over propositions would be something like

T, p prop = A(p) prop

2
T+ Vap:prop. A(p) prop

T, p propt A(p) true P T Vap:prop. A(p) true I' = B prop

2
T Vap:prop. A(p) true '+ A(B) true 2

The problem is that A(p) is not really a subformula of Vap:prop. A(p). For
example, we can instantiate a proposition with itself!

T'F Vop:prop. pDp true T'F VYp:prop. p D p prop

2
' (Vap:prop. p D p) D(Vap:prop. p D p) true

Nonetheless, it is possible to allow this kind of quantification in constructive
or classical logic, in which case we obtain higher-order logic. Another solution
is to introduce universes. In essence, we do not just have one kind of propo-
sition, by a whole hierarchy of propositions, where higher levels may include
quantification over propositions at a lower level. We will not take this extra
step here and instead simply use admissible rules of inference, as in the case of
substitutivity above.

Returning to data representation, some functions are easy to implement. For
example,

shiftt € bin—bin
shiftl b = b0

implements the double function.
Vbebin. tonat(shiftl b) =, double(tonat b)
Proof: By computation.
tonat (shiftl b) = tonat(b0) = double(tonat b)
O

This trival example illustrates why it is convenient to allow multiple rep-
resentations of natural numbers. According to the definition above, we have
shiftl e => €0. The result has leading zeroes. If we wanted to keep representa-
tions in a standard form without leading zeroes, doubling would have to have
a more complicated definition. The alternative approach to work only with
standard forms in the representation is related to the issue of data structure
invariants, which will be discussed in the next section.

Draft of October 24, 2000

92

First-Order Logic and Type Theory

In general, proving the representation theorem for some functions may re-
quire significant knowledge in the theory under consideration. As an example,

we consider addition on binary numbers.

add
add
add
add
add
add
add

add €

(

c0
(c1

ST O o O
=== Oo oo
—_— e — — — — ™
~—— M\ ~—~— " O

(
(
(
(
((cO
(cl

(

bin — bin — bin

c
b0

(add bc)0

(add b))l

b1l

(add b))l

(inc (add b ¢)) 0

This specification is primitive recursive: all recursive calls to add are on b.
The representation theorem states

Vbebin. Veebin. tonat(add b c)

=, plus (tonat b) (tonat c)

The proof by induction on b of this property is left as an exercise to the reader.
One should be careful to extract the needed properties of the natural numbers
and addition and prove them separately as lemmas.

Draft of October 24, 2000

