
15-399 Supplementary Notes:

Definitional Equality

Robert Harper

February 17, 2004

1 Definitional Equality

The rules for simplifying terms derived from composing an eliminatory form
with an introductory form give rise to an equivalence relation, called definitional

equality, on terms, which is written t ≡ u. This relation is the least equivalence
relation containing the reduction relation t Ã u. (Recall that reduction means
“simplify anywhere” in a term.) More precisely, it is defined by the following
rules:

t Ã u
t ≡ u t ≡ t

u ≡ t
t ≡ u

t ≡ u u ≡ v
t ≡ v

We sometimes write Γ ` t ≡ u ∈ τ to mean Γ ` t ∈ τ and Γ ` u ∈ τ and t ≡ u.

2 Predicates and Truth

A predicate over a type is a property of the elements of that type. If p is
a predicate over τ , and t ∈ τ , then p(t) is a proposition expressing that the
property p holds of the element t. A binary relation is a predicate over a
product type τ1 × τ2; a n-ary relation is a predicate over τ1 × · · · × τn, where
n ≥ 2. For example, “even-ness” is a predicate over the type nat, and “less
than” is a predicate over the type nat × nat. That is, “less than” is a binary
relation over the type nat.

These are the rules for the formation and definitional equality of predicates:

Γ ` t ∈ τ

Γ ` p(t) prop

Γ ` t ≡ u ∈ τ

Γ ` p(t) ≡ p(u) prop

Draft of February 17, 2004



3 Proofs and Terms 2

Definitional equality extends to arbitrary propositions by these rules:

Γ ` > ≡ > prop Γ ` ⊥ ≡ ⊥ prop

Γ ` P ≡ P ′ Γ ` Q ≡ Q′

Γ ` P ∧ Q ≡ P ′ ∧ Q′

Γ ` P ≡ P ′ Γ ` Q ≡ Q′

Γ ` P ∨ Q ≡ P ′ ∨ Q′

Γ ` P ≡ P ′ Γ ` Q ≡ Q′

Γ ` P ⊃Q ≡ P ′ ⊃Q′

Finally, if a proposition P is true and definitionally equal to Q, then Q is also
true:

Γ ` P true Γ ` P ≡ Q prop

Γ ` Q true

3 Proofs and Terms

We may reduce logic to type theory by introducing the following definitional
equalities that associates with each a proposition the type of its proofs:

pfs(>) ≡ 1

pfs(⊥) ≡ 0

pfs(P ∧ Q) ≡ pfs(P ) × pfs(Q)
pfs(P ∨ Q) ≡ pfs(P ) + pfs(Q)
pfs(P ⊃Q) ≡ pfs(P ) → pfs(Q)

The proof-term judgment M : P may be regarded as an abbreviation for M ∈

pfs(P ). We have the following rules governing these types:

Γ ` P prop

Γ ` pfs(P ) type

Γ ` P ≡ Q prop

Γ ` pfs(P ) ≡ pfs(Q)

4 Families of Types

Since propositions can involve terms (through the basic predicates), we now
have the possibility of types involving terms. For example, pfs(x =N y) is a
type, if x, y ∈ nat. This is an example of a family of types indexed by a type (in
this case, the type nat × nat).

In general a family of types τ(x) indexed by x ∈ σ determines a type τ(t)
for each element t ∈ σ. Moreover, definitionally equivalent indices determine
definitionally equivalent types:

Γ ` t ∈ σ

Γ ` τ(t) type

Γ ` t ≡ u

Γ ` τ(t) ≡ τ(u) type

Draft of February 17, 2004


