
4.8 Dependent Types 97

4.8 Dependent Types

We have encountered a number of constructors for propositions and types. Gen-
erally, propositions are constructed from simpler propositions, and types are
constructed from simpler types. Furthermore, propositions refer to types (such
as ∀x∈τ. A(x)), and propositions refer to terms (such as n =N m). However, we
have not seen a type that refers to either a term or a proposition. In this section
we consider the former. As we will see, allowing types to be constructed from
terms has a number of applications, but it also creates a number of problems.

As an example we consider lists. Rather than simply keeping track of the
types of their elements as we have done so far, we keep track of the length of
the list as part of the type. We obtain the following formation rule:

Γ ` τ type Γ ` n ∈ nat
listF

Γ ` τ list(n) type

Note that we now make a context Γ explicit in this judgment, since the term
n which occurs inside the type τ list(n) may contain variables. We call τ list a
type family and n its index term.

The meaning of the type τ list(n) is the type of lists with elements of type
τ and length n. The introduction rules for this type track the length of the
constructed list.

listIn
Γ ` nilτ ∈ τ list(0)

Γ ` s ∈ τ Γ ` l ∈ τ list(n)
listIc

Γ ` s :: l ∈ τ list(s(n))

The elimination rule now must track the length of the list as well. Written as a
schema of primitive recursion, we obtain

f (0,nil) = sn
f (s(n′), x :: l′) = sc(n

′, x, l′, f(n′, l′))

where sn contains no occurrence of f , and all occurrences of f in sc have the
indicated form of f(n′, l′). Note that coupling occurrences of n and l in the
schema guarantees that the typing remains consistent: even occurrence of f(n, l)
contains a list l in the second argument and its length in the first argument.
Transforming this rule into an elimination rule yields

Γ ` l ∈ τ list(n)
Γ ` sn ∈ σ(0,nil)
Γ, n′∈nat, x∈τ, l′∈τ list(n′), f(n′, l′)∈σ(n′, l′) ` sc ∈ σ(s(n′), x :: l′)

listE
Γ ` (rec l of f(0,nil)⇒ sn | f(s(n′), x :: l′)⇒ sc) ∈ σ(n, l)

Here we have written the premises on top of each other for typographical reasons.
There are two complications in this rule. The first is that we have to iterate
over the lists and its length at the same time. The second is that now types
may depend on terms. Therefore the type σ may actually depend on both n

Draft of November 3, 2000



98 First-Order Logic and Type Theory

and l, and this must be reflected in the rule. In fact, it looks very much like a
rule of induction if we read the type σ(n, l) as a proposition A(n, l). Allowing
types to depend on terms make types look even more like propositions than
before. In fact, we are close to extending the Curry-Howard isomorphism from
the propositional to the first-order case.

Next we consider how to use elements of this new type in some examples.
The first is appending of two lists. We would like to say

app ∈ τ list(n)→ τ list(m)→ τ list(n+m)

that is, app takes a list of length n and a list of length m and returns a list
of length n + m. But what is the status of n and m in this declaration? We
can see that at least n cannot be a global parameter (as τ , for example, since it
changes during the recursion. Instead, we make it explicit in the type, using a
new type constructor Π. This constructor acts on types exactly the way that ∀
acts on propositions. With it, we can write

app ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→ τ list(n +m)

so that app is now a function of four arguments: a number n, a list of length n,
a number m, and then a list of length m. The function returns a list of length
n+m.

The rules for Π are constructed in complete analogy with ∀.
Γ ` τ type Γ, x∈τ ` σ(x) type

ΠF
Γ ` Πx∈τ. σ(x) type

Γ, x∈τ ` s ∈ σ(x)
ΠI

Γ ` λx∈τ. s ∈ Πx∈τ. σ(x)

Γ ` s ∈ Πx∈τ. σ(x) Γ ` t ∈ τ
ΠE

Γ ` s t ∈ σ(t)

Πx ∈ τ. σ(x) is called a dependent function type, because it denotes a function
whose result type depends on the value of the argument. As for universal
quantification, substitution is required in the elimination rule. With this in
mind, we can first write and then type-check the specification of app.

app ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→ τ list(n +m)

app 0 nil m k = k
app (s(n′)) (x :: l′) m k = x :: (app n′ l′ m k)

For each equation in this specification we type-check both the left- and the right-
hand side and verify that they are the same. We show the checking of subterm
to help the understanding of the type-checking process. First, the left-hand side
of the first equation.

app 0 ∈ τ list(0)→Πm∈nat. τ list(m)→ τ list(0 +m)
app 0 nil ∈ Πm∈nat. τ list(m)→ τ list(0 +m)
app 0 nil m ∈ τ list(m)→ τ list(0 +m) for m∈nat
app 0 nil m k ∈ τ list(0 +m) for k∈τ list(m)

k ∈ τ list(m)

Draft of November 3, 2000



4.8 Dependent Types 99

While the two types are different, the first one can be reduced to the second.
Just like previously for propositions, we therefore need rules of computation for
types.

Γ ` s : σ σ =⇒ σ′ Γ ` σ type
conv

Γ ` s : σ′

Γ ` s : σ′ σ =⇒ σ′ Γ ` σ type
conv ′

Γ ` s : σ

Next, we consider the second equation, first the left-hand and then the right-
hand side.

app (s(n′)) ∈ τ list(s(n′))→Πm∈nat. τ list(m)→ τ list(s(n′) +m)
app (s(n′)) (x :: l′) ∈ Πm∈nat. τ list(m)→ τ list(s(n′) +m)

for x ∈ τ and l′ ∈ τ list(n′)
app (s(n′)) (x :: l′) m ∈ τ list(m)→ τ list(s(n′) +m) for m∈nat
app (s(n′)) (x :: l′) m k ∈ τ list(s(n′) +m) for k∈τ list(m)

app n′ l′ m k ∈ τ list(n′ +m)
x :: (app n′ l′ m k) ∈ τ list(s(n′ +m))

Again, we can obtain the right-hand side by computation from the left-hand
side

τ list(s(n′) +m) =⇒ τ list(s(n′ +m))

since addition is defined by primitive recursion over the first argument.
For the sake of completeness, we now show an explicit definition of app by

primitive recursion.

app = λn∈nat. λl∈τ list(n).
rec l
of f(0,nil)⇒ λm∈nat. λk∈τ list(m). k
| f(s(n′), x :: l′)⇒ λm∈nat. λk∈τ list(m). x :: (f(n′, l′) m k)

From the practical point of view, we would like to avoid passing the lengths
of the lists as arguments to app. In the end, we are interested in the list as
a result, and not its length. In order to capture this, we extend the erasure
notation [A] and [M ] from propositions and proof terms to types [τ ] and terms
[t]. The meaning is completely analogous. Since we don’t want to pass length
information, we obtain

app ∈ Π[n]∈[nat]. τ list[n]→Π[m]∈[nat]. τ list[m]→ τ list[n+m]

app [0] nil [m] k = k
app [s(n′)] (x :: l′) [m] k = x :: (app [n′] l′ [m] k)

Fortunately, this annotation is consistent: we never use a bracketed variable
outside of brackets. That is, we never try to construct an answer out of a
variable that will not be carried at runtime. After erasure of the bracketed

Draft of November 3, 2000



100 First-Order Logic and Type Theory

terms and types and simplification, we obtain the prior definition of app on lists
that are not indexed by their length.

But not every function can be consistently annotated. As a simple coun-
terexample consider the following length function:

length ∈ Πn∈nat. τ list(n)→nat
length n l = n

This is a perfectly valid implementation of length: from type-checking we know
that l must have length n. However, if we try to annotate this function

length ∈ Π[n]∈[nat]. τ list[n]→nat
length [n] l = n

we observe a use of n outside of brackets which is illegal. Indeed, if n is not
passed at run-time, then we cannot “compute” the length in this way. Fortu-
nately, there is another obvious definition of length that can be annotated in
the desired way.

length [0] nil = 0
length [s(n′)] (x :: l′) = s(length [n′] l′)

which has the property that the bracketed variable n′ from the left-hand side
also occurs only bracketed on the right-hand side. Note that dependent type-
checking does not verify the correctness of this second implementation of length
in the sense that the type does not exhibit a connection between the length
argument n and the natural number that is returned.

The use of dependent types goes very smoothly for the examples above,
but what happens when the length of an output list to a function is unknown?
Consider the filter function which retains only those elements of a list that
satisfy a given predicate p. We first give the definition with the ordinary lists
not indexed by their length.

filter ∈ (τ→bool)→ τ list→ τ list
filter p nil = nil
filter p (x :: l′) = if p x

then x :: filter p l′

else filter p l′

There is no type of the form

filter ∈ (τ→bool)→Πn∈nat. τ list(n)→ τ list(?)

we can assign to filter, since the length of the result depends on p and the length
of the input. For this we need an existential type. It works analogously to the
existential quantifier on propositions and is written as Σx∈τ. σ(x). With it, we
would specify the type as

filter ∈ (τ→bool)→Πn∈nat. τ list(n)→Σm∈nat. τ list(m)

Draft of November 3, 2000



4.8 Dependent Types 101

We can read this as “the function returns a list of length m for some m” or
as “the function returns a pair consisting of an m and a list of length m”,
depending on whether we intend to carry the lengths are runtime. Before we
show the specification of filter with this new type, we give the rules for Σ types.

Γ ` τ type Γ, x∈τ ` σ(x) type
ΣF

Γ ` Σx∈τ. σ(x)

Γ ` t ∈ τ Γ ` s ∈ σ(t)
ΣI

Γ ` 〈t, s〉 ∈ Σx∈τ. σ(x)

Γ ` t ∈ Σx∈τ. σ(x) Γ, x∈τ, y∈σ(x) ` r ∈ ρ
ΣE

Γ ` (let 〈x, y〉 = t in r) ∈ ρ

If we read σ(x) as a proposition A(x) instead of a type, we obtain the usual
rules for the existential quantifier. Returning to the function filter , we have

filter ∈ (τ→bool)→Πn∈nat. τ list(n)→Σm∈nat. τ list(m)

filter p 0 nil = 〈0,nil〉
filter p (s(n′)) (x :: l′) = let 〈m′, k′〉 = filter p n′ l′

in if p x
then 〈s(m′), x :: k′〉
else 〈m′, k′〉

In this code, k′ stands for the list resulting from the recursive call, and m′ for
its length. Now type-checking succeeds, since each branch in each case has type
Σm∈nat. τ list(m). Again, we can annotate the type and implementation to
erase the part of the code which is not computationally relevant.

filter ∈ (τ→bool)→Π[n]∈[nat]. τ list[n]→Σ[m]∈[nat]. τ list[m]

filter p [0] nil = 〈[0],nil〉
filter p [s(n′)] (x :: l′) = let 〈[m′], k′〉 = filter p [n′] l′

in if p x
then 〈[s(m′)], x :: k′〉
else 〈[m′], k′〉

This annotation is consistent, and erasure followed by simplification produces
the previous version of filter with lists not carrying their length.

Existential types solve a number of potential problems, but they incur a loss
of information which may render dependent type-checking less useful than it
might first appear. Recall the function rev , the generalized version of reverse
carrying an accumulator argument a.

rev ∈ τ list→ τ list→ τ list

rev nil a = a
rev (x :: l′) a = rev l′ (x :: a)

Draft of November 3, 2000



102 First-Order Logic and Type Theory

We would like to verify that

rev ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→ τ list(n +m)

where

rev 0 nil m a = a
rev (s(n′)) (x :: l′) m a = rev n′ l′ (s(m)) (x :: a)

While everything goes according to plan for the first equation, the second equa-
tion yields

rev (s(n′)) (x :: l′) m a ∈ τ list(s(n′) +m)

for the left-hand side, and

rev n′ l′ (s(m)) (x :: a) ∈ τ list(n′ + s(m))

for the right hand side. There is no way to bridge this gap by comptutation
alone; we need to prove that s(n′)+m =N n′+s(m) by induction. Clearly, type-
checking can not accomplish this—it would require type-checking to perform
theorem proving which would not be feasible inside a compiler.

What can we do? One option is the simply hide the length of the output
list by using an existential type.

rev ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→Σx∈nat. τ list(x)

However, this means type-checking guarantees much less about our function
than we might hope for. The other is to reintroduce propositions and change
our type to something like

rev ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)
→Σx∈nat. [x =N n+m]× τ list(x).

That is, we allow the output to be list of length x which is provably, but not
necessarily computationally equal to the sum of n and m. Here we consider
[x =N n + m] as a type, even though x =N n + m is a proposition. This is
consistent with our interpretation of erasure, which converts propositions to
types before running a program.

As a practical matter, in extensions of programming language with some
limited form of dependent types, there are other ways to ensure feasibility of
type-checking. Rather than base the comparison of types entirely on computa-
tion of the terms embedded in them, we can base it instead on any decidable
theory (which is feasible in practice). This is the approach we have taken in
the design of DML [XP98, XP99]. In the simplest application, index objects
may contain only linear equalities and inequalities between integers, which can
be solved effectively during type-checking. As we have seen in the examples
above, dependent types (especially when we can also mention propositions [A])
permit a continuum of properties of programs to be expressed and verified at
type-checking time, all the way from simple types to full specifications. For the

Draft of November 3, 2000



4.8 Dependent Types 103

latter, the proof objects either have to be expressed directly in the program or
extracted as obligations and verified separately.

We now briefly reexamine the Curry-Howard isomorphism, when extended
to the first-order level. We have the following correspondence:

Propositions ∧ ⊃ > ∨ ⊥ ∀ ∃
Types × → 1 + 0 Π Σ

Note that under erasure, ∀ is related to→ and ∃ is related to ×. The analogous
property holds for Π and Σ: Πx:τ. σ corresponds to τ→ σ if x does not occur
in σ, and Σx:τ. σ simplifies to τ ×σ if x does not occur in σ.

In view of this strong correspondence, one wonders if propositions are really
necessary as a primitive concept. In some systems, they are introduced in order
to distinguish those elements with computational contents from those without.
However, we have introduced the bracket annotation to serve this purpose, so
one can streamline and simplify type theory by eliminating the distinction be-
tween propositions and types. Similarly, there is no need to distinguish between
terms and proof terms. In fact, we have already used identical notations for
them. Propositional constructs such as n =N m are then considered as types
(namely: the types of their proof terms).

Because of the central importance of types and their properties in the design
and theory of programming languages, there are many other constructions that
are considered both in the literature and in practical languages. Just to name
some of them, we have polymorphic types, singleton types, intersection types,
union types, subtypes, record types, quotient types, equality types, inductive
types, recursive types, linear types, strict types, modal types, temporal types,
etc. Because of the essentially open-ended nature of type theory, all of these
could be considered in the context of the machinery we have built up so far.
We have seen most of the principles which underly the design of type systems
(or corresponding logics), thereby providing a foundation for understanding the
vast literature on the subject.

Instead of discussing these (which could be subject of another course) we
consider one further application of dependent types and then consider theorem
proving in various fragments of the full type theory.

Draft of November 3, 2000



104 First-Order Logic and Type Theory

Draft of November 3, 2000



Bibliography

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages 153–
175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI’98), pages 249–257, Montreal, Canada, June 1998. ACM Press.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In A. Aiken, editor, Conference Record of the 26th Sym-
posium on Principles of Programming Languages (POPL’99), pages
214–227. ACM Press, January 1999.

Draft of November 3, 2000


