15-399 Supplementary Notes: Double Negation Elimination

Robert Harper

February 18, 2003

1 Proof of the Gödel-Gentzen Embedding

The Gödel-Gentzen embedding P^* of classical into constructive logic is defined by induction on the structure of propositions as follows:¹

$$P^* = \neg \neg P \quad (P \ atomic)$$
$$\perp^* = \perp$$
$$\top^* = \top$$
$$(P \land Q)^* = P^* \land Q^*$$
$$(P \lor Q)^* = \neg (\neg P^* \land \neg Q^*)$$
$$(P \supset Q)^* = P^* \supset Q^*$$

This translation expresses the constructive content of classical logic. In classical logic we always have the option of proving a proposition by contradiction (proving $\neg \neg P$, but stating it as a proof of P). Classical logic is also weaker when it comes to disjunction: rather than prove one or the other disjunct, we may instead prove that both cannot fail to hold true. From a constructivist viewpoint the classical proof proves less than it claims. The Gödel-Gentzen translation makes this precise.

From a classical point of view the translation does nothing.

Theorem 1.1 Classically, P and P^* are equivalent.

(I

Proof: Proceed by induction on the structure of *P*, using truth tables to show the equivalence.

From a constructive viewpoint, it "constructivizes" classical logic. We write $\vdash_{class} P$ true to mean that P true is derivable using the rules of constructive logic, plus the law of the excluded middle $(P \lor \neg P \text{ true for every } P)$.

Theorem 1.2 If $\vdash_{class} P$ true, then $\vdash P^*$ true.

Draft of February 18, 2003

¹The course notes write P^N instead of P^* .

This means that the constructivist may always reinterpret what the classicist says in constructive terms.

Our aim is to give a proof of this theorem. The proof is a bit tricky in spots, which is why we outline it here.

A proposition P is stable iff $\neg \neg P \supset P$ true. Recall that it is easy to show constructively that $P \supset \neg \neg P$ true.

Lemma 1.1 Every negated proposition is stable. That is, if $P = \neg Q$, then $\neg \neg P \supset P$ true.

Proof: Assume $\neg \neg P$ true, that is $\neg \neg \neg Q$ true. We are to show P true, that is $\neg Q$ true. Assume towards a contradiction that Q true. It follows that $\neg \neg Q$ true. But this contradicts the assumption $\neg \neg \neg Q$ true.

An implication is stable if its consequent is stable.

Lemma 1.2 If R is stable, then $Q \supset R$ is stable.

Proof: Assume $\neg \neg (Q \supset R)$ true. To show $Q \supset R$ true, assume Q true. Since R is stable, it is enough to show $\neg \neg R$ true. So assume towards a contradiction that $\neg R$ true. We will show $\neg (Q \supset R)$ true to obtain a contradiction. So assume $Q \supset R$ true. Then since Q true, we have R true, which contradicts the assumption that $\neg R$ true.

Lemma 1.3 For all propositions P, P^* is stable.

Proof: By induction on the structure of *P*.

- 1. If P is atomic, then $P^* = \neg \neg P$, so it is negated. By the Lemma 1.1, it is stable.
- 2. If P is \perp or \top , it is easy to show stability.
- 3. If $P = Q \wedge R$, the result follows by induction, using the fact that $(P \wedge Q)^* = P^* \wedge Q^*$.
- 4. If $P = Q \lor R$, then P^* is negated, and hence is stable by Lemma 1.1.
- 5. If $P = Q \supset R$, then by induction R is stable, and hence P is stable by Lemma 1.2.

If $\Gamma = P_1$ true, ..., P_n true, then $\Gamma^* = P_1^*$ true, ..., P_n^* true.

Theorem 1.3 If $\Gamma \vdash_{class} P$ true, then $\Gamma^* \vdash P^*$ true.

Proof: By induction on the derivation of the assumption.

1. Suppose that $P = Q \lor \neg Q$ and that we have derived P true by applying the law of the excluded middle. We are to show that $\neg(\neg Q^* \land \neg \neg Q^*)$ true. So assume $\neg Q^* \land \neg \neg Q^*$ true. But this is a contradiction!

- 2. Suppose that $P = Q \supset R$, and that we derived P true by implication introduction, assuming Q true and deriving R true. Then by induction we have proved constructively R^* true from the assumption Q^* true, and hence $Q^* \supset R^*$ true. That is, $(Q \supset R)^*$ true.
- 3. Suppose that we have derived P true from $Q \supset P$ true and Q true. By induction $Q^* \supset P^*$ true and Q^* true, so P^* true, as required.
- 4. Suppose that $P = Q \lor R$ and that we have derived P true by \lor -introduction (left) from Q true. By induction Q^* true, and hence P^* true. The symmetric case is handled similarly.
- 5. Suppose that P true is derived from $Q \vee R$ true, P true assuming Q true, and P true assuming R true, using \vee -elimination. By induction $\neg(\neg Q^* \land \neg R^*)$ true is derivable constructively. Moreover, P^* true is derivable constructively from Q^* true and also from R^* true. We are to show P^* true. By Lemma 1.3 it is enough to show $\neg \neg P^*$ true. So assume $\neg P^*$ true, and derive a contradiction. It suffices to prove $\neg Q^* \land \neg R^*$. To prove $\neg Q^*$, assume Q^* . Then P^* follows, which is a contradiction of the assumption $\neg P^*$ true. Similarly, to prove $\neg R^*$, assume R^* . Then P^* , and hence a contradiction. So $\neg Q^* \land \neg R^*$ true, which is a contradiction.