64 First-Order Logic and Type Theory

The problem can be seen in the two questionable rules. In the existential in-
troduction, the term a has not yet been introduced into the derivation and its
use can therefore not be justified. Related is the incorrect application of the 3F
rule. It is supposed to introduce a new parameter a and a new assumption w.
However, a occurs in the conclusion, invalidating this inference.

In this case, the flaw can be repaired by moving the existential elimination
downward, in effect introducing the parameter into the derivation earlier (when
viewed from the perspective of normal proof construction).

—a
a € nat
————mnatly, ———w
s(a) € nat A(s(a)) true
u a1
Jrenat. A(s(x)) true Jyenat. A(y) true

JEv
Jyenat. A(y) true

DI*
(Jzenat. A(s(x))) D Jyenat. A(y) true

Of course there are other cases where the flawed rule cannot be repaired. For ex-
ample, it is easy to construct an incorrect derivation of (Jzer. A(z)) DVaer. A(z).

4.2 First-Order Logic

First-order logic, also called the predicate calculus, is concerned with the study
of propositions whose quantifiers range over a domain about which we make
no assumptions. In our case this means we allow only quantifiers of the form
Vzer. A(z) and Jxer. A(x) that are parametric in a type 7. We assume only
that 7 type, but no other property of 7. When we add particular types, such as
natural numbers nat or lists 7 list, we say that we reason within specific theories.
The theory of natural numbers, for example, is called arithmetic. When we
allow essentially arbitrary propositions and types explained via introduction
and elimination constructs (including function types, product types, etc.) we
say that we reason in type theory. It is important that type theory is open-ended:
we can always add new propositions and new types and even new judgment
forms, as long as we can explain their meaning satisfactorily. On the other
hand, first-order logic is essentially closed: when we add new constructs, we
work in other theories or logics that include first-order logic, but we go beyond
it in essential ways.

We have already seen some examples of reasoning in first-order logic in the
previous section. In this section we investigate the truth of various other propo-
sitions in order to become comfortable with first-order reasoning. Just like
propositional logic, first-order logic has both classical and constructive variants.
We pursue the constructive or intuitionistic point of view. We can recover classi-
cal truth either via an interpretation such as Godel’s translation!, or by adding

ldetailed in a separate note by Jeremy Avigad

Draft of October 14, 2000

4.2 First-Order Logic 65

the law of excluded middle. The practical difference at the first-order level is
the interpretation of the existential quantifier. In classical logic, we can prove
a proposition Jx€r. A(z) true by proving —Vaxer. mA(x) true instead. Such a
proof may not yield the witness object ¢ such that A(t) is satisfied, which is
required under the constructive interpretation of the existential quantifier. But
how is it possible to provide witnesses in pure logic, without any assumptions
about the domain of quantifiers? The answer is that assumptions about the
existence of objects will be introduced locally during the proof. But we have to
be careful to verify that the objects we use to witness existential quantifiers or
instantiate universal quantifiers are indeed assumed to exist and are available
at the right point in the derivation.

As a first concrete example, we investigate the interaction between negation
and quantification. We prove

(Fzer. —A(z)) DV € 7. A(x) true.

The subject of the judgment above is a proposition, assuming 7 type and €T F
A(x) prop. Since all quantifiers range over the same type 7, we will omit the
type label from quantification in all propositions below. The reader should keep
in mind that this is merely a shorthand. Furthermore, we will not explicitly
state the assumption about the propositional or predicate parameters such as

A(x).

v c

V. A(z) ceT
w VE

-A(c) Alc)
U OF
Jz. ~A(z) 1

1

V. A(z)

>
(Fz. -A(x)) D V. A(z)

The two-dimensional notation for derivations becomes difficult to manage
for large proofs, so we extend the linear notation from Section 2.8. We use the
following concrete syntax.

DIv

Vzer. A(x) Ix:t. A(x)
Jzer. A(x) ?7x:t. A(x)
cerT c:t

The quantifiers V and 3 act like a prefix operator with minimal binding
strength, so that
Vzer. A(x) DB

is the same as

Vzer. (A(z) D B).

One complication introduced by existential quantification is that the elimina-
tion rule introduces two new assumptions, ¢ € 7 and A(c) true. In order to

Draft of October 14, 2000

66 First-Order Logic and Type Theory

distinguish between inferred and assumed judgments, new assumptions are sep-
arated by commas and terminated by semi-colon. Under these conventions, the
four rules for quantification take the following form:

Introduction Elimination
c : t; ?x:t. A(x);
A(c); [c : t, A(c);
?x:t. A(x); e

Bl;

B;
[c : t; Ix:t. A(x);
e c : t;
A()T; Alc);
Ix:t. A(x)

We use c as a new parameter to distinguish parameters more clearly from
bound variables. Their confusion is a common source of error in first-order
reasoning. And we have the usual assumption that the name chosen for ¢ must
be new (that is, may not occur in A(x) or B) in the existential elimination and
universal introduction rules.

Below we restate the proof from above in the linear notation.

[7x:t. "A(x);
['x:t. A(x);
[c:t, "ACc);
ACe);
F1;
F1;
“ix:t. A(x) 1;
(?x:t. "A(x)) => “Ix:t. A(x);

The opposite implication does not hold: even if we know that it is impos-
sible that A(z) is true for every x, this does not necessarily provide us with
enough information to obtain a witness for Jz. A(x). In order to verify that
this cannot be proven without additional information about A, we need to ex-
tend our notion of normal and neutral proof. This is straightforward—only the
existential elimination rule requires some thought. It is treated in analogy with
disjunction.

T,cerk Ae) t PFVeer. A(z) | ThHter
I

2 VE
I'kVzer. A(z) t L' A®)

I'Fter I“I—A(t)T3 It Jzer. A(z) | 1“,(:67',14((:)$|—C'T3

I E
It Jzer. A(z) t r=Ct

Draft of October 14, 2000

4.2 First-Order Logic 67

In the case of pure first-order logic (that is, quantification is allowed only
over one unknown type 7), normal proofs remain complete. A correspondingly
strong property fails for arithmetic, that is, when we allow the type nat. This
situation is familiar from mathematics, where we often need to generalize the
induction hypothesis in order to prove a theorem. This generalization means
that the resulting proof does not have a strong normality property. We will
return to this topic in the next section.

Now we return to showing that (=Va. A(x)) D 3z. ~A(x) true is not deriv-
able. We search for a normal proof, which means the first step in the bottom-up
construction is forced and we are in the state

—_—u
—Vx. A(z) |

Jx. —\A(m) T 5
(=Vz. A(x)) D 3x. ~A(z) T

At this point it is impossible to apply the existential introduction rule, because
no witness object of type 7 is available. So we can only apply the implication
elimination rule, which leads us to the following situation.

u

V. A(z) |

—Vx. A(z) | h V. A(z) T
L1
— 1F
Jx. —\A(m) T 5
(=Vz. A(x)) D 3x. ~A(z) T

DF

Now we can either repeat the negation elimination (which leads nowhere), or
use universal introduction.

u c
V. A(z) | ceT

Ale) 1
U vIe
V. A(z) | V. A(z) T
DF
L1
— 1F
Jx. —\A(m) T

D
(=Vz. A(x)) D 3x. ~A(z) T

The only applicable rule for constructing normal deductions now is again the
implication elimination rule, applied to the assumption labelled w. This leads to

Draft of October 14, 2000

68 First-Order Logic and Type Theory

the identical situation, except that we have an additional assumption d € 7 and
try to prove A(d) 1. Clearly, we have made no progress (since the assumption
¢ € 7 is now useless). Therefore the given proposition has no normal proof and
hence, by the completeness of normal proofs, no proof.

As a second example, we see that (Vz. A(z)) D Jz. A(z) true does not have
a normal proof. After one forced step, we have to prove

V. A(z) |

Jz. A(x) T

At this point, no rule is applicable, since we cannot construct any term of type
7. Intuitively, this should make sense: if the type 7 is empty, then we cannot
prove JzeT. A(x) since we cannot provide a witness object. Since we make no
assumptions about 7, 7 may in fact denote an empty type (such as 0), the above
is clearly false.

In classical first-order logic, the assumption is often made that the domain of
quantification is non-empty, in which case the implication above is true. In type
theory, we can prove this implication for specific types that are known to be
non-empty (such as nat). We can also model the standard assumption that the
domain is non-empty by establishing the corresponding hypothetical judgment:

ce Tk (Vzer. A(z)) D 3zer. A(x)

We just give this simple proof in our linear notation.

[c: t;
['x:t. A(x);
Ac);
?x:t. A(x) 1;

('x:t. A(x)) = 7x:t. A(x)];

We can also discharge this assumption to verify that
Vy. (Vz. A(z)) D Jz. A(x)) true

without any additional assumption. This shows that, in general, Vy. B is not
equivalent to B, even if y does not occur in B! While this may be counterin-
tuitive at first, the example above shows why it must be the case. The point is
that while y does not occur in the proposition, it does occur in the proof and
can therefore not be dropped.

Draft of October 14, 2000

